Equilibrium optimizer: A novel optimization algorithm

This paper presents a novel, optimization algorithm called Equilibrium Optimizer (EO), inspired by control volume mass balance models used to estimate both dynamic and equilibrium states. In EO, each particle (solution) with its concentration (position) acts as a search agent. The search agents rand...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 191; s. 105190
Hlavní autoři: Faramarzi, Afshin, Heidarinejad, Mohammad, Stephens, Brent, Mirjalili, Seyedali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 05.03.2020
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a novel, optimization algorithm called Equilibrium Optimizer (EO), inspired by control volume mass balance models used to estimate both dynamic and equilibrium states. In EO, each particle (solution) with its concentration (position) acts as a search agent. The search agents randomly update their concentration with respect to best-so-far solutions, namely equilibrium candidates, to finally reach to the equilibrium state (optimal result). A well-defined “generation rate” term is proved to invigorate EO’s ability in exploration, exploitation, and local minima avoidance. The proposed algorithm is benchmarked with 58 unimodal, multimodal, and composition functions and three engineering application problems. Results of EO are compared to three categories of existing optimization methods, including: (i) the most well-known meta-heuristics, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO); (ii) recently developed algorithms, including Grey Wolf Optimizer (GWO), Gravitational Search Algorithm (GSA), and Salp Swarm Algorithm (SSA); and (iii) high performance optimizers, including CMA-ES, SHADE, and LSHADE-SPACMA. Using average rank of Friedman test, for all 58 mathematical functions EO is able to outperform PSO, GWO, GA, GSA, SSA, and CMA-ES by 60%, 69%, 94%, 96%, 77%, and 64%, respectively, while it is outperformed by SHADE and LSHADE-SPACMA by 24% and 27%, respectively. The Bonferroni–Dunnand Holm’s tests for all functions showed that EO is significantly a better algorithm than PSO, GWO, GA, GSA, SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-SPACMA. The source code of EO is publicly availabe at https://github.com/afshinfaramarzi/Equilibrium-Optimizer, http://built-envi.com/portfolio/equilibrium-optimizer/ and http://www.alimirjalili.com/SourceCodes/EOcode.zip. •Developed a novel optimization algorithm inspired by mass balance models.•Tested EO against well-studied mathematical and engineering benchmarks.•Compared the algorithm to other well-known meta-heuristics.•Demonstrated effectiveness and superiority of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2019.105190