Self-adaptive forward–backward splitting algorithm for the sum of two monotone operators in Banach spaces
In this work, we prove the weak convergence of a one-step self-adaptive algorithm to a solution of the sum of two monotone operators in 2-uniformly convex and uniformly smooth real Banach spaces. We give numerical examples in infinite-dimensional spaces to compare our result with some existing algor...
Uložené v:
| Vydané v: | Fixed point theory and algorithms for sciences and engineering Ročník 2022; číslo 1; s. 1 - 16 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
06.12.2022
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2730-5422, 2730-5422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this work, we prove the weak convergence of a one-step self-adaptive algorithm to a solution of the sum of two monotone operators in 2-uniformly convex and uniformly smooth real Banach spaces. We give numerical examples in infinite-dimensional spaces to compare our result with some existing algorithms. Finally, our results extend and complement several existing results in the literature. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2730-5422 2730-5422 |
| DOI: | 10.1186/s13663-022-00732-9 |