Wavelets on graphs via spectral graph theory
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L . Gi...
Uloženo v:
| Vydáno v: | Applied and computational harmonic analysis Ročník 30; číslo 2; s. 129 - 150 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.03.2011
Elsevier |
| Témata: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian
L
. Given a wavelet generating kernel
g and a scale parameter
t, we define the scaled wavelet operator
T
g
t
=
g
(
t
L
)
. The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on
g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing
L
. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains. |
|---|---|
| AbstractList | We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator Ttg = g(tL). The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains. We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L . Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator T g t = g ( t L ) . The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L . We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains. |
| Author | Vandergheynst, Pierre Gribonval, Rémi Hammond, David K. |
| Author_xml | – sequence: 1 givenname: David K. surname: Hammond fullname: Hammond, David K. email: hammond@uoregon.edu organization: NeuroInformatics Center, University of Oregon, Eugene, USA – sequence: 2 givenname: Pierre surname: Vandergheynst fullname: Vandergheynst, Pierre email: pierre.vanderhheynst@epfl.ch organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Rémi surname: Gribonval fullname: Gribonval, Rémi email: remi.gribonval@inria.fr organization: INRIA, Rennes, France |
| BackLink | https://inria.hal.science/inria-00541855$$DView record in HAL |
| BookMark | eNp9kMFKw0AQhhdRsK2-gKfcNXF2N7tNwUspaoWCF0Vvy2QzMVtiUnZDoG9vQsSDh55m-Pm_gfnm7LxpG2LshkPCgev7fYK2wkTAEECaAKgzNuOw0rEG-Xk-7lrGSoC8ZPMQ9gCcp2o1Y3cf2FNNXYjaJvryeKhC1DuMwoFs57GesqirqPXHK3ZRYh3o-ncu2PvT49tmG-9en182611sZQZdnGslbMkVkioKmUsJMs2FkBkBFLTkZSHICosohOYCuU7zvMwxs2JZgEUpF-x2ulthbQ7efaM_mhad2a53xjXeoRk-THmmVM-Htpja1rcheCr_EA5mtGP2ZrRjRjsG0pEdoOwfZF2HnWub4WtXn0YfJpQGBb0jb4J11FgqnB-kmaJ1p_AfUPKBWQ |
| CitedBy_id | crossref_primary_10_1109_TIM_2022_3144732 crossref_primary_10_1137_17M1124474 crossref_primary_10_1007_s11633_020_1271_y crossref_primary_10_1088_0031_8949_90_7_074022 crossref_primary_10_1109_JBHI_2022_3207519 crossref_primary_10_1109_LSP_2020_3038375 crossref_primary_10_1109_TSP_2016_2617833 crossref_primary_10_1145_3696444 crossref_primary_10_1016_j_dsp_2024_104728 crossref_primary_10_1088_1402_4896_ad74a5 crossref_primary_10_1111_cgf_14180 crossref_primary_10_1016_j_ymssp_2024_111370 crossref_primary_10_1093_bib_bbad423 crossref_primary_10_1016_j_neucom_2023_126901 crossref_primary_10_1109_JPROC_2018_2820126 crossref_primary_10_1109_TKDE_2024_3465241 crossref_primary_10_1109_TCSS_2022_3226177 crossref_primary_10_1016_j_neunet_2020_06_006 crossref_primary_10_1080_10106049_2020_1856195 crossref_primary_10_3390_math12121820 crossref_primary_10_1109_TSP_2020_2993780 crossref_primary_10_1109_ACCESS_2020_2999520 crossref_primary_10_1109_TSIPN_2017_2710619 crossref_primary_10_1007_s11432_020_3318_5 crossref_primary_10_1007_s00521_023_08964_5 crossref_primary_10_1049_iet_spr_2015_0433 crossref_primary_10_1016_j_cviu_2016_10_004 crossref_primary_10_1109_JSTARS_2023_3349162 crossref_primary_10_1016_j_neunet_2025_107338 crossref_primary_10_1109_TSIPN_2016_2532464 crossref_primary_10_1016_j_ins_2022_08_053 crossref_primary_10_1088_1741_2552_ac63ec crossref_primary_10_1109_ACCESS_2020_2974243 crossref_primary_10_1016_j_jvcir_2019_102614 crossref_primary_10_1007_s13042_024_02136_0 crossref_primary_10_1109_TMM_2021_3111440 crossref_primary_10_1109_TSIPN_2018_2818950 crossref_primary_10_1155_2022_1838468 crossref_primary_10_3390_e26070576 crossref_primary_10_1016_j_cagd_2016_02_011 crossref_primary_10_1109_TPAMI_2021_3125981 crossref_primary_10_12677_jisp_2024_133025 crossref_primary_10_1109_JAS_2021_1003976 crossref_primary_10_1109_TSC_2022_3145019 crossref_primary_10_1016_j_neunet_2024_107046 crossref_primary_10_1109_TDSC_2022_3187973 crossref_primary_10_1007_s11042_022_12683_9 crossref_primary_10_1016_j_dsp_2024_104974 crossref_primary_10_1016_j_iot_2023_100818 crossref_primary_10_1080_09540091_2022_2080806 crossref_primary_10_1007_s10115_021_01553_9 crossref_primary_10_1016_j_watres_2023_120313 crossref_primary_10_1007_s11571_021_09683_0 crossref_primary_10_1109_LSP_2018_2818062 crossref_primary_10_1016_j_compind_2025_104269 crossref_primary_10_1007_s11220_019_0226_2 crossref_primary_10_1007_s10489_023_04997_4 crossref_primary_10_1016_j_engappai_2023_106000 crossref_primary_10_1109_MSP_2012_2235192 crossref_primary_10_1186_s12864_024_09967_9 crossref_primary_10_1109_ACCESS_2023_3305945 crossref_primary_10_1161_CIRCEP_119_007975 crossref_primary_10_3389_fdata_2021_608286 crossref_primary_10_3390_cells8090977 crossref_primary_10_1016_j_ins_2020_03_040 crossref_primary_10_3390_axioms12111043 crossref_primary_10_1109_ACCESS_2021_3085905 crossref_primary_10_1007_s11370_022_00422_w crossref_primary_10_1109_TSIPN_2023_3264993 crossref_primary_10_3390_rs15235483 crossref_primary_10_1093_bib_bbaa360 crossref_primary_10_1109_TCAD_2023_3336212 crossref_primary_10_1177_1748006X211009329 crossref_primary_10_1109_TCSI_2022_3179821 crossref_primary_10_1109_TSP_2017_2666772 crossref_primary_10_1109_LSP_2021_3086391 crossref_primary_10_1016_j_ymssp_2024_112025 crossref_primary_10_3390_ijgi10070455 crossref_primary_10_1007_s43670_024_00092_y crossref_primary_10_1109_ACCESS_2022_3166505 crossref_primary_10_1016_j_ijleo_2015_07_166 crossref_primary_10_1109_ACCESS_2021_3054171 crossref_primary_10_1016_j_dsp_2024_104914 crossref_primary_10_1111_cgf_15230 crossref_primary_10_1080_10618600_2015_1048345 crossref_primary_10_1109_TITS_2020_3026836 crossref_primary_10_1007_s11760_015_0792_2 crossref_primary_10_1093_comjnl_bxab178 crossref_primary_10_3390_rs11192290 crossref_primary_10_1016_j_mechmachtheory_2019_103768 crossref_primary_10_1109_TKDE_2020_3014089 crossref_primary_10_3390_rs14061436 crossref_primary_10_1007_s00034_020_01499_3 crossref_primary_10_1109_TIT_2013_2252233 crossref_primary_10_1007_s11042_020_08611_4 crossref_primary_10_1016_j_neuroimage_2017_12_052 crossref_primary_10_1109_TAI_2024_3350545 crossref_primary_10_1145_3624580 crossref_primary_10_1109_JSTSP_2015_2403799 crossref_primary_10_1109_JSTARS_2021_3062642 crossref_primary_10_1007_s10845_024_02511_2 crossref_primary_10_1137_19M1259201 crossref_primary_10_1680_jtran_21_00024 crossref_primary_10_1186_s12880_024_01297_2 crossref_primary_10_1109_TNNLS_2024_3449573 crossref_primary_10_1016_j_measurement_2022_111697 crossref_primary_10_1109_TNNLS_2023_3285874 crossref_primary_10_3390_rs13112038 crossref_primary_10_1109_LSP_2016_2594072 crossref_primary_10_1109_TSIPN_2017_2743561 crossref_primary_10_1109_ACCESS_2020_2975584 crossref_primary_10_1109_JSEN_2022_3208415 crossref_primary_10_1109_TSP_2022_3207045 crossref_primary_10_1109_TFUZZ_2020_3029285 crossref_primary_10_1109_MITS_2021_3082397 crossref_primary_10_1109_TII_2024_3372013 crossref_primary_10_1111_cgf_14120 crossref_primary_10_1109_ACCESS_2021_3055280 crossref_primary_10_1109_TSP_2016_2614793 crossref_primary_10_1109_ACCESS_2024_3463176 crossref_primary_10_1109_TSP_2018_2870386 crossref_primary_10_1109_LSP_2015_2488279 crossref_primary_10_1016_j_gmod_2021_101121 crossref_primary_10_1016_j_knosys_2022_109028 crossref_primary_10_1109_TSIPN_2017_2731164 crossref_primary_10_1109_TSP_2014_2313528 crossref_primary_10_1016_j_psep_2023_08_080 crossref_primary_10_1109_ACCESS_2020_2983590 crossref_primary_10_1016_j_bspc_2024_107380 crossref_primary_10_1109_TSIPN_2016_2605763 crossref_primary_10_1007_s10489_022_03836_2 crossref_primary_10_1109_TSP_2016_2591513 crossref_primary_10_1109_TSIPN_2018_2854627 crossref_primary_10_1109_TSP_2014_2365761 crossref_primary_10_1016_j_acha_2016_12_005 crossref_primary_10_1016_j_procs_2023_10_082 crossref_primary_10_1109_LSP_2024_3421972 crossref_primary_10_1016_j_measurement_2021_109428 crossref_primary_10_1007_s11063_025_11728_y crossref_primary_10_1016_j_eswa_2023_120227 crossref_primary_10_1007_s42401_020_00070_x crossref_primary_10_1109_TNNLS_2019_2934131 crossref_primary_10_1109_TSP_2019_2896246 crossref_primary_10_1049_iet_ipr_2017_0965 crossref_primary_10_1109_TSP_2023_3267990 crossref_primary_10_1016_j_ins_2023_03_013 crossref_primary_10_1109_TCCN_2023_3313591 crossref_primary_10_3389_fnins_2021_828512 crossref_primary_10_3390_s22134987 crossref_primary_10_1016_j_neunet_2022_08_030 crossref_primary_10_1016_j_neuroimage_2014_02_028 crossref_primary_10_1007_s00521_023_08935_w crossref_primary_10_1109_TSTE_2021_3057521 crossref_primary_10_1177_02783649241246847 crossref_primary_10_1007_s11042_023_17176_x crossref_primary_10_1109_TITS_2019_2963722 crossref_primary_10_1080_13658816_2025_2455075 crossref_primary_10_1109_TSP_2012_2188718 crossref_primary_10_1109_TKDE_2020_3036212 crossref_primary_10_1016_j_infrared_2016_02_003 crossref_primary_10_1007_s00371_013_0815_3 crossref_primary_10_1007_s10915_025_02856_7 crossref_primary_10_1109_JSEN_2023_3337519 crossref_primary_10_1016_j_engappai_2021_104364 crossref_primary_10_1016_j_patrec_2018_05_004 crossref_primary_10_1109_TII_2021_3051934 crossref_primary_10_1109_TGRS_2023_3265879 crossref_primary_10_1016_j_gmod_2012_04_010 crossref_primary_10_1016_j_cma_2022_114764 crossref_primary_10_1109_TIE_2020_3040669 crossref_primary_10_1016_j_gmod_2025_101276 crossref_primary_10_1109_TKDE_2023_3324501 crossref_primary_10_1109_TIM_2025_3558173 crossref_primary_10_1016_j_ymssp_2025_112383 crossref_primary_10_1016_j_compag_2023_107868 crossref_primary_10_1016_j_dsp_2022_103683 crossref_primary_10_1016_j_patrec_2016_04_009 crossref_primary_10_1109_TNNLS_2023_3263676 crossref_primary_10_1016_j_epsr_2024_111126 crossref_primary_10_1109_TSP_2014_2321121 crossref_primary_10_1016_j_ijforecast_2023_08_006 crossref_primary_10_1109_TIM_2023_3310092 crossref_primary_10_1109_ACCESS_2020_3042241 crossref_primary_10_3390_sym14081578 crossref_primary_10_1007_s42452_019_1044_9 crossref_primary_10_1016_j_future_2020_10_016 crossref_primary_10_1016_j_ins_2020_01_028 crossref_primary_10_1016_j_patcog_2017_09_030 crossref_primary_10_1007_s11042_023_16269_x crossref_primary_10_1109_JSYST_2023_3298884 crossref_primary_10_1109_TCSII_2020_3017800 crossref_primary_10_1109_TSP_2017_2745444 crossref_primary_10_1109_TSP_2017_2771730 crossref_primary_10_1117_1_JRS_19_016514 crossref_primary_10_1016_j_neunet_2025_107541 crossref_primary_10_1109_TIM_2023_3238048 crossref_primary_10_1109_TCYB_2023_3243763 crossref_primary_10_1109_TNNLS_2023_3325542 crossref_primary_10_1007_s12239_023_0122_6 crossref_primary_10_1016_j_jhydrol_2023_130079 crossref_primary_10_1109_TPAMI_2022_3182052 crossref_primary_10_1007_s10707_021_00454_x crossref_primary_10_1016_j_dsp_2025_105222 crossref_primary_10_1109_TSP_2015_2460216 crossref_primary_10_1016_j_sigpro_2023_109129 crossref_primary_10_1109_TMI_2013_2271486 crossref_primary_10_1002_widm_70024 crossref_primary_10_1109_TSP_2023_3257983 crossref_primary_10_1111_tgis_12644 crossref_primary_10_1016_j_trc_2018_10_011 crossref_primary_10_1109_TASE_2016_2598094 crossref_primary_10_1109_LSP_2018_2860250 crossref_primary_10_1109_JSTARS_2021_3132394 crossref_primary_10_1007_s11571_021_09746_2 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_1186_s12859_023_05564_x crossref_primary_10_1007_s00371_014_0971_0 crossref_primary_10_1016_j_engappai_2022_105452 crossref_primary_10_1016_j_patcog_2019_107000 crossref_primary_10_1109_TMM_2021_3086711 crossref_primary_10_1016_j_neunet_2020_04_028 crossref_primary_10_1109_TGRS_2022_3199467 crossref_primary_10_1016_j_neuroimage_2021_118611 crossref_primary_10_1109_ACCESS_2025_3555997 crossref_primary_10_1109_TSP_2021_3079804 crossref_primary_10_1109_TGRS_2025_3548654 crossref_primary_10_1109_JSEN_2023_3330090 crossref_primary_10_1080_01431161_2024_2370501 crossref_primary_10_1109_TSP_2017_2731299 crossref_primary_10_1109_TSP_2019_2923142 crossref_primary_10_1007_s11063_024_11596_y crossref_primary_10_3390_s23073515 crossref_primary_10_1016_j_dsp_2022_103644 crossref_primary_10_1088_1361_6501_ad34eb crossref_primary_10_1016_j_dsp_2023_103941 crossref_primary_10_1016_j_patrec_2013_07_018 crossref_primary_10_1016_j_sigpro_2025_109944 crossref_primary_10_1049_iet_spr_2018_5147 crossref_primary_10_1109_TSIPN_2019_2936358 crossref_primary_10_1016_j_neucom_2024_127965 crossref_primary_10_1038_s41598_023_38314_3 crossref_primary_10_1109_TMI_2021_3088344 crossref_primary_10_3390_s20226433 crossref_primary_10_1016_j_matdes_2021_110272 crossref_primary_10_1109_TSP_2014_2332441 crossref_primary_10_1109_TSP_2022_3160003 crossref_primary_10_1016_j_oceaneng_2024_117921 crossref_primary_10_3390_machines10100873 crossref_primary_10_1016_j_sigpro_2018_10_016 crossref_primary_10_1214_18_AOAS1176 crossref_primary_10_1016_j_cosrev_2021_100400 crossref_primary_10_1016_j_neuroimage_2018_07_002 crossref_primary_10_1109_TSIPN_2025_3574855 crossref_primary_10_1007_s11390_022_2149_y crossref_primary_10_1016_j_cag_2021_03_006 crossref_primary_10_1109_JPROC_2018_2798928 crossref_primary_10_1109_TGRS_2023_3341893 crossref_primary_10_1080_01431161_2019_1694194 crossref_primary_10_1109_JSTSP_2017_2726969 crossref_primary_10_1145_3439602_3439605 crossref_primary_10_1109_TPAMI_2020_3019139 crossref_primary_10_1109_TSIPN_2020_2976704 crossref_primary_10_1109_TBDATA_2017_2757942 crossref_primary_10_1109_TSP_2013_2273197 crossref_primary_10_3390_rs13030526 crossref_primary_10_1109_TVT_2024_3508021 crossref_primary_10_3390_electronics13183768 crossref_primary_10_1016_j_ress_2022_108947 crossref_primary_10_1137_140977680 crossref_primary_10_1109_TIM_2023_3243680 crossref_primary_10_1109_TSP_2019_2892033 crossref_primary_10_1109_JSTSP_2017_2726979 crossref_primary_10_1016_j_knosys_2021_107528 crossref_primary_10_1109_JSTSP_2017_2726972 crossref_primary_10_1002_wcms_1651 crossref_primary_10_1109_TFUZZ_2023_3326657 crossref_primary_10_1007_s11042_022_13806_y crossref_primary_10_1016_j_cageo_2022_105074 crossref_primary_10_1007_s11042_022_12426_w crossref_primary_10_1109_TSP_2017_2718969 crossref_primary_10_1016_j_patcog_2023_109367 crossref_primary_10_3390_rs15010075 crossref_primary_10_1007_s10107_022_01861_0 crossref_primary_10_1007_s40747_022_00838_y crossref_primary_10_1109_TSIPN_2025_3572698 crossref_primary_10_1016_j_nicl_2018_10_024 crossref_primary_10_1137_21M1407616 crossref_primary_10_3103_S1060992X21010021 crossref_primary_10_1016_j_techfore_2024_123684 crossref_primary_10_1111_tgis_70002 crossref_primary_10_1016_j_comcom_2021_02_019 crossref_primary_10_1002_cbdv_202200746 crossref_primary_10_1109_TCSS_2022_3181739 crossref_primary_10_1016_j_ifacol_2017_08_1177 crossref_primary_10_1049_iet_spr_2016_0700 crossref_primary_10_1109_TGRS_2022_3168712 crossref_primary_10_1109_TSP_2015_2469645 crossref_primary_10_1080_13658816_2024_2321229 crossref_primary_10_1016_j_apnum_2016_11_011 crossref_primary_10_1016_j_ymssp_2020_107202 crossref_primary_10_1109_TMI_2014_2363884 crossref_primary_10_1111_cgf_12794 crossref_primary_10_1016_j_cad_2017_02_003 crossref_primary_10_1016_j_jmapro_2023_09_045 crossref_primary_10_1016_j_physa_2016_01_002 crossref_primary_10_1016_j_compbiomed_2023_106780 crossref_primary_10_1049_ipr2_12632 crossref_primary_10_1109_TSP_2022_3205474 crossref_primary_10_1109_TSP_2022_3182470 crossref_primary_10_1109_TNNLS_2022_3158280 crossref_primary_10_1080_15230406_2023_2218106 crossref_primary_10_1080_13658816_2020_1768260 crossref_primary_10_1007_s00041_021_09826_1 crossref_primary_10_1016_j_acha_2023_101579 crossref_primary_10_1109_TPAMI_2023_3324937 crossref_primary_10_1109_LGRS_2018_2834626 crossref_primary_10_2118_208596_PA crossref_primary_10_1016_j_ins_2019_11_019 crossref_primary_10_1016_j_patcog_2024_110628 crossref_primary_10_1109_TCSVT_2021_3100128 crossref_primary_10_1007_s00034_023_02541_w crossref_primary_10_1016_j_media_2015_02_003 crossref_primary_10_1016_j_cageo_2021_104943 crossref_primary_10_1145_3564594 crossref_primary_10_1371_journal_pcbi_1009986 crossref_primary_10_1007_s11668_025_02194_8 crossref_primary_10_1109_JBHI_2024_3413146 crossref_primary_10_1109_JSTSP_2024_3350508 crossref_primary_10_1109_TCDS_2022_3152791 crossref_primary_10_1109_TSIPN_2021_3100302 crossref_primary_10_1109_TNNLS_2024_3442379 crossref_primary_10_1109_JSEN_2023_3267427 crossref_primary_10_1109_TNSE_2021_3109614 crossref_primary_10_1109_TCOMM_2019_2899620 crossref_primary_10_1109_TIM_2024_3440413 crossref_primary_10_3390_s19245518 crossref_primary_10_1016_j_acha_2024_101635 crossref_primary_10_1007_s00034_015_0073_x crossref_primary_10_1016_j_jag_2022_102696 crossref_primary_10_1016_j_dsp_2020_102802 crossref_primary_10_1145_3416509 crossref_primary_10_1162_netn_a_00183 crossref_primary_10_1007_s11042_023_16071_9 crossref_primary_10_1016_j_specom_2020_06_005 crossref_primary_10_1109_MSP_2014_2329213 crossref_primary_10_1109_TVCG_2020_2978847 crossref_primary_10_1109_TPAMI_2024_3524180 crossref_primary_10_1016_j_patcog_2019_04_004 crossref_primary_10_1016_j_acha_2023_101583 crossref_primary_10_3390_technologies9010010 crossref_primary_10_1109_TKDE_2022_3186016 crossref_primary_10_1145_3748727 crossref_primary_10_1016_j_spasta_2024_100822 crossref_primary_10_1109_TSP_2025_3567831 crossref_primary_10_1093_imaiai_iax021 crossref_primary_10_1007_s00041_024_10128_5 crossref_primary_10_1016_j_patrec_2013_11_024 crossref_primary_10_1016_j_jfranklin_2022_08_059 crossref_primary_10_1088_2632_2153_acc0d8 crossref_primary_10_1016_j_acha_2015_03_005 crossref_primary_10_1109_TVCG_2017_2746080 crossref_primary_10_1190_geo2022_0324_1 crossref_primary_10_1016_j_compmedimag_2021_101939 crossref_primary_10_1109_TNNLS_2024_3453280 crossref_primary_10_3389_fbioe_2021_706229 crossref_primary_10_1109_TPAMI_2022_3177075 crossref_primary_10_1016_j_neucom_2021_08_006 crossref_primary_10_1186_s12859_021_04447_3 crossref_primary_10_1016_j_jag_2023_103485 crossref_primary_10_1016_j_dsp_2024_104565 crossref_primary_10_1109_TSP_2014_2345355 crossref_primary_10_1109_TNSRE_2022_3193103 crossref_primary_10_12677_aam_2024_134141 crossref_primary_10_1109_TGRS_2022_3220409 crossref_primary_10_1109_TMI_2020_2967451 crossref_primary_10_1080_01431161_2021_1936267 crossref_primary_10_3390_fi11110245 crossref_primary_10_1002_cav_1741 crossref_primary_10_1109_TAP_2023_3283043 crossref_primary_10_1109_TNNLS_2022_3213589 crossref_primary_10_1016_j_acha_2022_10_003 crossref_primary_10_1016_j_cag_2014_09_008 crossref_primary_10_1109_TSP_2011_2158428 crossref_primary_10_1007_s00521_021_06006_6 crossref_primary_10_1109_JSEN_2023_3326096 crossref_primary_10_1016_j_acha_2019_06_003 crossref_primary_10_3390_ijgi11100527 crossref_primary_10_1109_JSTARS_2025_3575207 crossref_primary_10_1016_j_patcog_2021_108443 crossref_primary_10_1109_TPAMI_2022_3146796 crossref_primary_10_1109_TKDE_2020_3008774 crossref_primary_10_3389_fphy_2020_00203 crossref_primary_10_1109_TSIPN_2015_2480223 crossref_primary_10_1088_1361_6501_aca706 crossref_primary_10_1109_LSP_2017_2657889 crossref_primary_10_1007_s40747_024_01738_z crossref_primary_10_1109_TSP_2020_2976583 crossref_primary_10_1016_j_laa_2020_06_008 crossref_primary_10_1109_TSP_2017_2752689 crossref_primary_10_1109_TSP_2017_2775589 crossref_primary_10_1016_j_measurement_2021_110084 crossref_primary_10_1109_JSAC_2019_2951964 crossref_primary_10_1109_TSIPN_2016_2614903 crossref_primary_10_1016_j_acha_2023_04_003 crossref_primary_10_1109_TBCAS_2022_3217464 crossref_primary_10_1007_s10462_022_10321_2 crossref_primary_10_3390_rs13081600 crossref_primary_10_1016_j_bspc_2024_106954 crossref_primary_10_23919_PCMP_2023_000172 crossref_primary_10_1109_ACCESS_2022_3149619 crossref_primary_10_1016_j_ipm_2020_102309 crossref_primary_10_1109_LSP_2016_2598750 crossref_primary_10_1016_j_neucom_2020_12_084 crossref_primary_10_1145_3643770 crossref_primary_10_1109_TGRS_2021_3066485 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_1016_j_sigpro_2023_109099 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1109_TGRS_2020_3015157 crossref_primary_10_1155_2022_9261537 crossref_primary_10_1109_TGRS_2020_2973363 crossref_primary_10_1089_brain_2018_0590 crossref_primary_10_1016_j_acha_2015_02_005 crossref_primary_10_1109_TSP_2018_2869119 crossref_primary_10_1109_ACCESS_2025_3584523 crossref_primary_10_1016_j_laa_2024_11_014 crossref_primary_10_1007_s13369_021_06116_2 crossref_primary_10_1016_j_neucom_2021_05_004 crossref_primary_10_3390_math12182946 crossref_primary_10_1038_s42005_024_01830_3 crossref_primary_10_1016_j_neunet_2023_05_009 crossref_primary_10_1016_j_acha_2014_07_002 crossref_primary_10_1016_j_jempfin_2025_101639 crossref_primary_10_1002_mma_5907 crossref_primary_10_1016_j_knosys_2021_107564 crossref_primary_10_1109_LGRS_2018_2869563 crossref_primary_10_1016_j_measurement_2019_107036 crossref_primary_10_1016_j_ijar_2025_109517 crossref_primary_10_1109_TCE_2024_3511994 crossref_primary_10_1371_journal_pone_0231728 crossref_primary_10_1007_s13042_023_01982_8 crossref_primary_10_1016_j_jksuci_2022_04_003 crossref_primary_10_1007_s11227_020_03373_0 crossref_primary_10_1016_j_image_2020_115862 crossref_primary_10_1587_transfun_E100_A_1743 crossref_primary_10_1109_TAI_2024_3351105 crossref_primary_10_1109_JSTARS_2014_2386902 crossref_primary_10_7717_peerj_cs_276 crossref_primary_10_1111_cgf_142645 crossref_primary_10_1109_TSP_2019_2940129 crossref_primary_10_1109_TSP_2016_2620111 crossref_primary_10_1155_2020_2568179 crossref_primary_10_1186_s12920_018_0372_8 crossref_primary_10_1016_j_jat_2021_105620 crossref_primary_10_1109_TGRS_2020_2994205 crossref_primary_10_3389_fams_2021_651467 crossref_primary_10_1016_j_eswa_2024_125303 crossref_primary_10_1016_j_patrec_2014_04_003 crossref_primary_10_1080_10095020_2025_2480815 crossref_primary_10_1109_TGRS_2024_3372497 crossref_primary_10_1016_j_sigpro_2022_108530 crossref_primary_10_1109_TSIPN_2018_2869354 crossref_primary_10_1016_j_dsp_2024_104751 crossref_primary_10_1109_TSP_2018_2802465 crossref_primary_10_1016_j_trc_2021_103040 crossref_primary_10_1109_ACCESS_2021_3049548 crossref_primary_10_1007_s12145_023_01116_2 crossref_primary_10_1007_s11517_022_02698_7 crossref_primary_10_1016_j_measurement_2018_01_024 crossref_primary_10_1016_j_neucom_2025_130400 crossref_primary_10_1109_TGRS_2022_3229027 crossref_primary_10_1109_TSP_2015_2441042 crossref_primary_10_1155_2018_3264294 crossref_primary_10_1007_s10489_021_02342_1 crossref_primary_10_1109_TSP_2015_2411217 crossref_primary_10_1016_j_epsr_2022_108145 crossref_primary_10_1109_JPROC_2021_3055400 crossref_primary_10_1016_j_patcog_2023_109960 crossref_primary_10_1109_TMI_2019_2911203 crossref_primary_10_1186_s40649_019_0069_y crossref_primary_10_1016_j_ins_2023_120012 crossref_primary_10_1109_TSP_2016_2634543 crossref_primary_10_1155_2021_7161293 crossref_primary_10_1016_j_aei_2024_102379 crossref_primary_10_1109_TNNLS_2024_3370918 crossref_primary_10_1109_TSP_2017_2690388 crossref_primary_10_1016_j_ins_2022_07_125 crossref_primary_10_1109_LSP_2014_2368128 crossref_primary_10_1109_LSP_2016_2514490 crossref_primary_10_1007_s40747_021_00332_x crossref_primary_10_1109_TVCG_2012_111 crossref_primary_10_1109_TSIPN_2018_2824239 crossref_primary_10_1016_j_neuroimage_2024_120921 crossref_primary_10_1016_j_jestch_2021_09_005 crossref_primary_10_1016_j_bdr_2024_100427 crossref_primary_10_1016_j_sigpro_2021_108211 crossref_primary_10_1080_01431161_2020_1864056 crossref_primary_10_1016_j_sigpro_2021_108216 crossref_primary_10_1080_15230406_2023_2187886 crossref_primary_10_1109_TBC_2023_3290493 crossref_primary_10_1007_s00041_021_09835_0 crossref_primary_10_1016_j_aei_2023_102088 crossref_primary_10_1007_s10489_022_04211_x crossref_primary_10_1007_s11063_020_10404_7 crossref_primary_10_1109_TKDE_2021_3126475 crossref_primary_10_1002_ese3_932 crossref_primary_10_1109_MSP_2020_3018087 crossref_primary_10_1109_ACCESS_2024_3520172 crossref_primary_10_1016_j_sigpro_2016_09_008 crossref_primary_10_1109_TMI_2019_2915629 crossref_primary_10_1007_s10845_023_02134_z crossref_primary_10_1016_j_dsp_2020_102782 crossref_primary_10_1111_j_1467_8659_2011_02026_x crossref_primary_10_1007_s42421_023_00073_y crossref_primary_10_1049_iet_spr_2018_5087 crossref_primary_10_1016_j_envsoft_2025_106678 crossref_primary_10_1016_j_sigpro_2021_108180 crossref_primary_10_1109_TIP_2018_2886788 crossref_primary_10_3390_app13179651 crossref_primary_10_1109_TITS_2020_3043250 crossref_primary_10_1109_MSP_2023_3262906 crossref_primary_10_3390_app12062948 crossref_primary_10_3390_pr11082257 crossref_primary_10_1002_hbm_26638 crossref_primary_10_1016_j_ins_2023_01_107 crossref_primary_10_1109_JBHI_2021_3053568 crossref_primary_10_1109_LSP_2020_2976550 crossref_primary_10_1088_1361_6560_aaa71a crossref_primary_10_1016_j_neunet_2025_107693 crossref_primary_10_1007_s00521_024_10893_w crossref_primary_10_1109_TSP_2022_3223217 crossref_primary_10_1016_j_future_2023_05_026 crossref_primary_10_1109_TPAMI_2019_2929519 crossref_primary_10_1038_s41467_023_43220_3 crossref_primary_10_1109_TPAMI_2020_3025258 crossref_primary_10_1109_TPAMI_2019_2915591 crossref_primary_10_1016_j_procs_2021_07_047 crossref_primary_10_1007_s11042_022_12618_4 crossref_primary_10_4218_etrij_17_0116_0509 crossref_primary_10_1016_j_engappai_2023_106141 crossref_primary_10_1109_TSP_2020_2981202 crossref_primary_10_1007_s00371_022_02553_8 crossref_primary_10_1109_TSIPN_2024_3378122 crossref_primary_10_1016_j_measurement_2021_109178 crossref_primary_10_1016_j_neucom_2020_10_033 crossref_primary_10_3389_fdata_2022_978857 crossref_primary_10_1007_s10851_012_0380_9 crossref_primary_10_1109_ACCESS_2020_3027375 crossref_primary_10_1109_ACCESS_2019_2928130 crossref_primary_10_1016_j_sigpro_2019_07_010 crossref_primary_10_1109_TGRS_2021_3075223 crossref_primary_10_1007_s00138_021_01251_0 crossref_primary_10_1109_ACCESS_2024_3398356 crossref_primary_10_1109_JIOT_2024_3436520 crossref_primary_10_1109_ACCESS_2021_3054034 crossref_primary_10_1109_TAES_2024_3421908 crossref_primary_10_1007_s11042_021_11843_7 crossref_primary_10_1109_TNNLS_2022_3232291 crossref_primary_10_1109_TIA_2024_3463608 crossref_primary_10_1109_TVCG_2025_3556209 crossref_primary_10_1016_j_cam_2020_113319 crossref_primary_10_1016_j_eswa_2024_124397 crossref_primary_10_1109_TSIPN_2022_3140477 crossref_primary_10_1016_j_eswa_2024_125039 crossref_primary_10_1002_hbm_25994 crossref_primary_10_1016_j_compenvurbsys_2022_101870 crossref_primary_10_1109_TIFS_2024_3407508 crossref_primary_10_1109_MSP_2018_2887284 crossref_primary_10_1080_10106049_2024_2436906 crossref_primary_10_3389_fenrg_2023_1082534 crossref_primary_10_1088_1361_6501_ad9ac1 crossref_primary_10_1109_ACCESS_2021_3079349 crossref_primary_10_1109_MSP_2020_3014591 crossref_primary_10_1016_j_neucom_2024_128062 crossref_primary_10_1109_TPDS_2023_3245092 crossref_primary_10_1109_TSP_2016_2546233 crossref_primary_10_1109_TSP_2021_3087905 crossref_primary_10_1145_3749156 crossref_primary_10_1109_ACCESS_2021_3127914 crossref_primary_10_1016_j_jmsy_2022_08_007 crossref_primary_10_1080_13658816_2021_2024195 crossref_primary_10_1051_0004_6361_201936094 crossref_primary_10_1016_j_acha_2023_03_005 crossref_primary_10_1145_3300198 crossref_primary_10_1109_TSTE_2018_2844102 crossref_primary_10_3390_w13121681 crossref_primary_10_1016_j_jag_2021_102615 crossref_primary_10_1016_j_neucom_2018_09_008 crossref_primary_10_1109_TMI_2017_2716825 crossref_primary_10_1109_MMUL_2024_3371381 crossref_primary_10_1103_PhysRevResearch_2_033325 crossref_primary_10_1016_j_trc_2021_103323 crossref_primary_10_1080_10236198_2019_1576656 crossref_primary_10_1007_s11704_022_2220_4 crossref_primary_10_1109_ACCESS_2020_3037118 crossref_primary_10_1007_s11042_021_11033_5 crossref_primary_10_1145_3451394 crossref_primary_10_1371_journal_pone_0330640 crossref_primary_10_1109_LSP_2019_2906776 crossref_primary_10_1016_j_amc_2022_127112 crossref_primary_10_1109_JSTARS_2024_3355290 crossref_primary_10_1109_TSP_2024_3507787 crossref_primary_10_1155_2022_7699998 crossref_primary_10_1016_j_isprsjprs_2019_02_010 crossref_primary_10_1016_j_sigpro_2022_108480 crossref_primary_10_1109_TGRS_2021_3096320 crossref_primary_10_1002_cav_1847 crossref_primary_10_1007_s11401_016_1061_6 crossref_primary_10_1145_3568022 crossref_primary_10_1029_2024JH000520 crossref_primary_10_1145_3386569_3392443 crossref_primary_10_1155_2019_1637623 crossref_primary_10_1016_j_neuroimage_2015_06_010 crossref_primary_10_1038_s41598_025_01696_7 crossref_primary_10_1177_03611981211012003 crossref_primary_10_1049_iet_epa_2019_0763 crossref_primary_10_1016_j_eswa_2025_128615 crossref_primary_10_1016_j_ijmecsci_2025_110511 crossref_primary_10_1109_TNNLS_2025_3569413 crossref_primary_10_1016_j_neucom_2019_06_012 crossref_primary_10_1177_1748006X20935760 crossref_primary_10_1109_JIOT_2025_3577265 crossref_primary_10_1109_TSP_2019_2904925 crossref_primary_10_1109_JSTARS_2021_3061418 crossref_primary_10_1016_j_neucom_2023_126611 crossref_primary_10_1016_j_ymssp_2025_113308 crossref_primary_10_1016_j_acha_2014_06_006 crossref_primary_10_1016_j_asoc_2024_111899 crossref_primary_10_1016_j_neunet_2025_108125 crossref_primary_10_1007_s40747_022_00744_3 crossref_primary_10_1109_TCYB_2023_3256080 crossref_primary_10_1016_j_neunet_2021_06_018 crossref_primary_10_1080_17538947_2023_2300319 crossref_primary_10_1007_s11265_022_01802_2 crossref_primary_10_1109_TIP_2020_3043892 crossref_primary_10_1007_s00521_024_09751_6 crossref_primary_10_1007_s10851_021_01064_w crossref_primary_10_1016_j_patcog_2021_107920 crossref_primary_10_1016_j_procs_2025_08_152 crossref_primary_10_1016_j_sigpro_2014_04_029 crossref_primary_10_1109_TIP_2018_2815744 crossref_primary_10_1109_TIP_2023_3275914 crossref_primary_10_1007_s00034_020_01613_5 crossref_primary_10_1109_TVCG_2022_3222186 crossref_primary_10_1186_s42400_022_00131_y crossref_primary_10_1049_ipr2_12220 crossref_primary_10_1109_JSTARS_2021_3103744 crossref_primary_10_3390_rs14194951 crossref_primary_10_1016_j_neuroscience_2016_11_047 crossref_primary_10_1109_TCSS_2024_3385539 crossref_primary_10_1186_s12859_017_1616_x crossref_primary_10_1109_ACCESS_2019_2903467 crossref_primary_10_1109_TGRS_2023_3264653 crossref_primary_10_1109_TIM_2021_3087834 crossref_primary_10_1186_s13634_018_0584_2 crossref_primary_10_1088_0266_5611_32_12_124001 crossref_primary_10_1109_RBME_2021_3122522 crossref_primary_10_3390_math9070772 crossref_primary_10_1109_TSP_2013_2238935 crossref_primary_10_1016_j_jvcir_2017_01_001 crossref_primary_10_1109_TSP_2015_2512529 crossref_primary_10_3390_e23040490 crossref_primary_10_1145_3495161 crossref_primary_10_3390_ijgi8090414 crossref_primary_10_3390_rs13214342 crossref_primary_10_1007_s43670_024_00093_x crossref_primary_10_1109_JBHI_2021_3089162 crossref_primary_10_3233_JIFS_211729 crossref_primary_10_1016_j_laa_2024_09_014 crossref_primary_10_1109_TIP_2014_2378055 crossref_primary_10_1145_3695863 crossref_primary_10_1080_00207543_2023_2290700 crossref_primary_10_1109_TNSE_2022_3207205 crossref_primary_10_1186_s13634_022_00926_8 crossref_primary_10_1016_j_ins_2022_10_006 crossref_primary_10_1137_16M105928X crossref_primary_10_1007_s10915_024_02466_9 crossref_primary_10_1109_TSP_2024_3349788 crossref_primary_10_1038_s41598_025_00116_0 crossref_primary_10_1109_TBDATA_2023_3313031 crossref_primary_10_1109_TSIPN_2016_2581303 crossref_primary_10_3389_fnins_2020_00630 crossref_primary_10_1016_j_jag_2022_102753 crossref_primary_10_1115_1_4040264 crossref_primary_10_1109_MCSE_2017_3421553 crossref_primary_10_1109_TETCI_2024_3378331 crossref_primary_10_1007_s10440_019_00299_5 crossref_primary_10_1109_TKDE_2025_3581578 crossref_primary_10_3390_sym14122654 crossref_primary_10_1109_MSP_2020_3015024 crossref_primary_10_1109_TIP_2019_2932853 crossref_primary_10_1038_s41598_023_29047_4 crossref_primary_10_1109_LGRS_2021_3067733 crossref_primary_10_1016_j_knosys_2019_105138 crossref_primary_10_1016_j_patcog_2020_107451 crossref_primary_10_1109_TVCG_2023_3255820 crossref_primary_10_1016_j_jmsy_2020_02_004 crossref_primary_10_1109_TSP_2019_2908909 crossref_primary_10_1016_j_patcog_2015_11_019 crossref_primary_10_1016_j_bspc_2022_103788 crossref_primary_10_1109_LSP_2021_3062233 crossref_primary_10_1007_s00034_021_01930_3 crossref_primary_10_1109_TNSE_2024_3513456 crossref_primary_10_1109_ACCESS_2020_3018452 crossref_primary_10_1038_s41587_020_00803_5 crossref_primary_10_1109_TSP_2019_2922160 crossref_primary_10_1109_TGRS_2025_3604376 crossref_primary_10_1016_j_neunet_2021_05_025 crossref_primary_10_1109_TNSE_2018_2849342 crossref_primary_10_1073_pnas_2021299118 crossref_primary_10_1016_j_acha_2020_04_001 crossref_primary_10_1109_TIP_2019_2906554 crossref_primary_10_1088_1361_6501_ad9e1d crossref_primary_10_3390_jimaging7020020 crossref_primary_10_1007_s10851_018_0822_0 crossref_primary_10_1109_TIP_2020_2969076 crossref_primary_10_7717_peerj_17396 crossref_primary_10_1016_j_neuroimage_2015_05_050 crossref_primary_10_1038_s41598_023_32825_9 crossref_primary_10_1007_s00371_021_02244_w crossref_primary_10_1080_17499518_2023_2172186 crossref_primary_10_1016_j_knosys_2025_114163 crossref_primary_10_1109_ACCESS_2023_3337260 crossref_primary_10_1109_TSMC_2024_3448226 crossref_primary_10_1109_ACCESS_2024_3399883 crossref_primary_10_1016_j_rcim_2025_102972 crossref_primary_10_1109_ACCESS_2022_3163535 crossref_primary_10_1002_cav_2084 crossref_primary_10_1109_TSP_2020_2982325 crossref_primary_10_1109_TNSE_2019_2958892 crossref_primary_10_1016_j_dsp_2021_103347 crossref_primary_10_1162_netn_a_00456 crossref_primary_10_1016_j_cagd_2017_11_002 crossref_primary_10_1016_j_sigpro_2016_07_003 crossref_primary_10_1109_TSP_2023_3295096 crossref_primary_10_1109_ACCESS_2019_2942853 crossref_primary_10_1109_TPAMI_2023_3339130 crossref_primary_10_1016_j_acha_2016_07_002 crossref_primary_10_1016_j_ijmecsci_2024_109075 crossref_primary_10_1109_TSP_2023_3304410 crossref_primary_10_1109_JSTARS_2021_3063679 crossref_primary_10_1007_s00371_019_01644_3 crossref_primary_10_1109_JSTARS_2021_3100400 crossref_primary_10_1016_j_sigpro_2011_04_025 crossref_primary_10_1109_ACCESS_2021_3120994 crossref_primary_10_1109_TSIPN_2022_3205555 crossref_primary_10_1109_TSP_2014_2328983 crossref_primary_10_1007_s00034_019_01086_1 crossref_primary_10_1002_sim_9140 crossref_primary_10_1109_JBHI_2024_3434394 crossref_primary_10_1016_j_ast_2025_110516 crossref_primary_10_1155_2021_5536386 crossref_primary_10_1145_3503043 crossref_primary_10_1007_s10444_020_09824_9 crossref_primary_10_1016_j_autcon_2022_104344 crossref_primary_10_1109_TMM_2023_3318325 crossref_primary_10_3390_e26050377 crossref_primary_10_1007_s12539_024_00644_9 crossref_primary_10_1016_j_acha_2018_02_001 crossref_primary_10_1109_TSP_2015_2481866 crossref_primary_10_3390_app12031402 crossref_primary_10_1109_TGRS_2023_3307609 crossref_primary_10_3934_fods_2021015 crossref_primary_10_1016_j_crhy_2019_08_003 crossref_primary_10_1109_TKDE_2020_2981333 crossref_primary_10_1016_j_eswa_2021_115127 crossref_primary_10_1109_TIP_2016_2529506 crossref_primary_10_1109_TSP_2013_2243445 crossref_primary_10_3390_s21206735 crossref_primary_10_1016_j_acha_2013_08_007 crossref_primary_10_1109_LSP_2024_3435396 crossref_primary_10_1016_j_eswa_2025_127033 crossref_primary_10_1016_j_acha_2018_09_006 crossref_primary_10_1134_S0016793223600418 crossref_primary_10_1016_j_acha_2016_06_007 crossref_primary_10_1080_03081060_2021_1992180 crossref_primary_10_1109_LSP_2012_2224655 crossref_primary_10_1007_s11042_024_20562_8 crossref_primary_10_1049_el_2016_0482 crossref_primary_10_1111_cgf_12670 crossref_primary_10_1109_TCSS_2021_3062884 crossref_primary_10_1109_JBHI_2023_3340325 crossref_primary_10_1109_TSIPN_2022_3193252 crossref_primary_10_1007_s11222_025_10689_5 crossref_primary_10_1016_j_ymssp_2022_110010 crossref_primary_10_1109_JSEN_2024_3392372 crossref_primary_10_1016_j_eswa_2023_122041 crossref_primary_10_1109_JSTSP_2012_2216504 crossref_primary_10_1109_TIFS_2023_3237364 crossref_primary_10_1080_26941899_2025_2554883 crossref_primary_10_1007_s10489_017_0955_7 crossref_primary_10_1109_TVCG_2024_3368083 crossref_primary_10_1111_cgf_12866 crossref_primary_10_1109_ACCESS_2019_2950643 crossref_primary_10_1162_netn_a_00084 crossref_primary_10_1016_j_acha_2016_05_004 crossref_primary_10_1007_s41095_022_0290_8 crossref_primary_10_1109_JSEN_2021_3129340 crossref_primary_10_1016_j_acha_2016_05_005 crossref_primary_10_3390_math9192465 crossref_primary_10_1109_TSP_2016_2602809 crossref_primary_10_1109_TIA_2022_3231586 crossref_primary_10_1109_TITS_2021_3091708 crossref_primary_10_3389_fmed_2021_750396 crossref_primary_10_1016_j_eswa_2025_128386 crossref_primary_10_1109_JSTARS_2025_3549515 crossref_primary_10_1108_DTA_02_2022_0056 crossref_primary_10_1109_TIP_2024_3468893 crossref_primary_10_1007_s00025_024_02247_8 crossref_primary_10_1016_j_sigpro_2016_05_037 crossref_primary_10_1109_TGRS_2023_3257369 crossref_primary_10_1109_TSP_2019_2899822 crossref_primary_10_1016_j_aei_2023_102143 crossref_primary_10_1016_j_media_2018_06_001 crossref_primary_10_1088_1367_2630_ac54c9 crossref_primary_10_1109_ACCESS_2020_3021580 crossref_primary_10_1007_JHEP01_2018_139 crossref_primary_10_1109_ACCESS_2023_3287214 crossref_primary_10_3390_app15094609 crossref_primary_10_1109_TGRS_2021_3079438 crossref_primary_10_1016_j_spasta_2019_100359 crossref_primary_10_1016_j_trc_2020_102620 crossref_primary_10_1109_TCYB_2018_2883970 crossref_primary_10_1007_s11042_023_15346_5 crossref_primary_10_1109_JIOT_2023_3317190 crossref_primary_10_1016_j_compeleceng_2021_107235 crossref_primary_10_1109_TSP_2016_2544747 crossref_primary_10_1007_s10915_021_01699_2 crossref_primary_10_1155_2023_7152010 crossref_primary_10_1109_TGRS_2019_2949180 crossref_primary_10_1109_TGRS_2022_3210398 crossref_primary_10_1016_j_asoc_2023_110015 crossref_primary_10_1016_j_jcp_2024_113708 crossref_primary_10_1109_TPAMI_2020_3042093 crossref_primary_10_1109_TIM_2024_3413190 crossref_primary_10_3390_math9121407 crossref_primary_10_1002_int_22966 crossref_primary_10_1080_10586458_2018_1538911 crossref_primary_10_1016_j_patrec_2021_04_021 crossref_primary_10_1109_TVT_2022_3214348 crossref_primary_10_1186_s13634_024_01187_3 crossref_primary_10_1109_TSP_2013_2259825 crossref_primary_10_1109_ACCESS_2021_3085114 crossref_primary_10_1016_j_patrec_2021_09_020 crossref_primary_10_1109_TCSII_2021_3065977 crossref_primary_10_1186_s13073_021_00845_7 crossref_primary_10_1109_ACCESS_2023_3320682 crossref_primary_10_1016_j_acha_2021_10_004 crossref_primary_10_1007_s00041_021_09816_3 crossref_primary_10_1109_TIP_2021_3134466 crossref_primary_10_1016_j_neunet_2024_106207 crossref_primary_10_1109_TGCN_2021_3069395 crossref_primary_10_1109_ACCESS_2020_2982439 crossref_primary_10_3390_app14209288 crossref_primary_10_1016_j_aei_2023_102120 crossref_primary_10_1016_j_ijepes_2023_109771 crossref_primary_10_1109_TNNLS_2022_3202569 crossref_primary_10_1109_TCSVT_2020_3015901 crossref_primary_10_1016_j_patcog_2021_108334 crossref_primary_10_1002_cjce_25080 crossref_primary_10_1109_TSP_2015_2424203 crossref_primary_10_1109_TIM_2020_3037953 crossref_primary_10_3389_fcvm_2022_983868 crossref_primary_10_1109_ACCESS_2021_3094663 crossref_primary_10_1007_s00371_023_02935_6 crossref_primary_10_1007_s13278_022_00895_8 crossref_primary_10_1109_LSP_2017_2769002 crossref_primary_10_1016_j_neucom_2025_129594 crossref_primary_10_1016_j_knosys_2021_108105 crossref_primary_10_1016_j_acha_2017_10_002 crossref_primary_10_1016_j_acha_2017_10_003 crossref_primary_10_1007_s00041_021_09878_3 crossref_primary_10_1016_j_asoc_2023_110052 crossref_primary_10_1109_ACCESS_2020_2989443 crossref_primary_10_1007_s00041_021_09832_3 crossref_primary_10_1109_ACCESS_2021_3111898 crossref_primary_10_1109_TNNLS_2024_3363244 crossref_primary_10_1145_3627816 crossref_primary_10_3389_fnins_2022_967116 crossref_primary_10_1016_j_artint_2022_103708 crossref_primary_10_1007_s10489_021_03120_9 crossref_primary_10_1002_hbm_25175 crossref_primary_10_1016_j_acha_2015_09_005 crossref_primary_10_1111_mice_12450 crossref_primary_10_1109_TVCG_2015_2498557 crossref_primary_10_1145_3469799 crossref_primary_10_1109_TGRS_2022_3217142 crossref_primary_10_1007_s43670_021_00019_x crossref_primary_10_1038_s41598_025_93168_1 crossref_primary_10_1109_TMM_2024_3521735 crossref_primary_10_1109_TMI_2016_2633393 crossref_primary_10_1109_TSP_2020_3026980 crossref_primary_10_1049_iet_ipr_2018_6224 crossref_primary_10_1109_TWC_2023_3239311 crossref_primary_10_1109_TCSVT_2016_2633418 crossref_primary_10_3390_app13127143 crossref_primary_10_1109_TNNLS_2022_3177742 crossref_primary_10_1016_j_dsp_2020_102728 crossref_primary_10_1109_TSIPN_2021_3109820 crossref_primary_10_1016_j_neuroimage_2021_118095 crossref_primary_10_1109_TSP_2024_3439211 crossref_primary_10_3390_rs14092227 crossref_primary_10_1002_hbm_26255 crossref_primary_10_1109_ACCESS_2023_3323591 crossref_primary_10_1109_TSP_2018_2839620 crossref_primary_10_1007_s10044_024_01214_x crossref_primary_10_3390_a16030126 crossref_primary_10_1109_JSAC_2024_3460086 crossref_primary_10_2118_215056_PA crossref_primary_10_1109_TKDE_2020_2984212 crossref_primary_10_3390_math12182823 crossref_primary_10_1016_j_sigpro_2014_01_028 crossref_primary_10_1109_TGRS_2021_3135567 crossref_primary_10_1109_JPROC_2018_2799702 crossref_primary_10_1016_j_psep_2025_106855 crossref_primary_10_1145_3309547 crossref_primary_10_1109_TSP_2021_3119416 crossref_primary_10_1080_10494820_2020_1855207 crossref_primary_10_1109_JIOT_2024_3380746 crossref_primary_10_1109_ACCESS_2021_3119569 crossref_primary_10_1109_TITS_2021_3067675 crossref_primary_10_1016_j_sigpro_2022_108662 crossref_primary_10_1109_TIM_2025_3565242 crossref_primary_10_1016_j_sigpro_2021_108302 crossref_primary_10_1007_s11431_020_1871_8 crossref_primary_10_1109_TKDE_2023_3333824 crossref_primary_10_1111_cgf_14656 crossref_primary_10_1109_TSP_2014_2369013 crossref_primary_10_1145_3565973 crossref_primary_10_1109_TSP_2019_2908129 crossref_primary_10_1016_j_ifacol_2018_03_074 crossref_primary_10_1109_TSIPN_2016_2632039 crossref_primary_10_1007_s10618_021_00779_z crossref_primary_10_1007_s00521_021_06084_6 crossref_primary_10_1038_s41598_025_98398_x crossref_primary_10_1109_TNNLS_2025_3552129 crossref_primary_10_1109_TSIPN_2023_3240899 crossref_primary_10_1016_j_imavis_2020_104092 crossref_primary_10_1016_j_physa_2017_06_018 crossref_primary_10_3390_s21041275 crossref_primary_10_3389_frai_2024_1290491 crossref_primary_10_1007_s10489_022_03337_2 crossref_primary_10_1016_j_neucom_2025_129780 crossref_primary_10_1371_journal_pone_0284563 crossref_primary_10_1177_03611981221095511 crossref_primary_10_1109_TMM_2020_3020693 crossref_primary_10_1109_LSP_2017_2704359 crossref_primary_10_1145_3491206 crossref_primary_10_1007_s00530_023_01177_9 crossref_primary_10_1587_nolta_13_511 crossref_primary_10_1016_j_energy_2024_132489 crossref_primary_10_1016_j_dsp_2024_104414 crossref_primary_10_1109_LSP_2019_2954981 crossref_primary_10_1155_2022_8153249 crossref_primary_10_1016_j_knosys_2025_113615 crossref_primary_10_1038_s42005_024_01711_9 crossref_primary_10_3390_rs16203912 crossref_primary_10_1016_j_acha_2022_03_002 crossref_primary_10_3390_a13110295 crossref_primary_10_1007_s10915_023_02274_7 crossref_primary_10_1007_s41468_023_00129_6 crossref_primary_10_1111_risa_14241 |
| Cites_doi | 10.1371/journal.pbio.0060159 10.1109/78.258085 10.1093/biomet/81.3.425 10.1109/83.862633 10.1111/j.1365-2966.2008.13448.x 10.1002/cpa.10116 10.1007/s00209-008-0405-7 10.1109/18.119751 10.1109/TSP.2002.804091 10.1016/j.jcss.2007.08.006 10.1109/ICCV.1999.790410 10.1214/07-AOAS137 10.1137/0715083 10.1109/TIP.2003.818640 10.1029/96JB00104 10.1109/76.499834 10.1016/j.acha.2006.03.004 10.1016/j.acha.2004.12.004 10.1109/78.258077 10.1016/0165-1684(94)90211-9 10.1016/j.neuroimage.2004.07.056 10.1137/1031129 10.1145/321281.321282 10.1006/acha.1995.1008 10.1002/cpa.20242 10.1016/j.acha.2007.07.001 10.1142/S0219720009004187 10.1007/s00357-007-0007-9 10.1007/b97417 10.1109/10.568915 10.1137/0515056 10.1145/183422.183423 10.1016/S0167-8655(03)00090-4 10.1109/83.806616 10.1006/acha.2000.0343 10.1109/18.857793 10.1109/18.119725 10.1109/INFCOM.2003.1209207 10.1006/acha.1995.1009 10.1006/acha.1999.0272 10.1142/S0219691308002288 10.1016/S0730-725X(99)00100-9 10.1016/j.acha.2006.04.004 10.1137/S0895479894270427 10.1109/TIP.2005.863972 10.1109/42.700727 10.1109/TCOM.1983.1095851 10.1111/j.1467-9868.2008.00672.x |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.acha.2010.04.005 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1096-603X |
| EndPage | 150 |
| ExternalDocumentID | oai:HAL:inria-00541855v1 10_1016_j_acha_2010_04_005 S1063520310000552 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c380t-b652cf15ae5dd3b33034b2238e00de71fd2ec2caa22612a164bbfba8c27d0ca33 |
| ISICitedReferencesCount | 1525 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-5203 |
| IngestDate | Tue Oct 14 20:12:58 EDT 2025 Sat Nov 29 08:20:21 EST 2025 Tue Nov 18 22:43:19 EST 2025 Fri Feb 23 02:28:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Wavelets Graph theory Overcomplete wavelet frames Spectral graph theory |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-b652cf15ae5dd3b33034b2238e00de71fd2ec2caa22612a164bbfba8c27d0ca33 |
| ORCID | 0000-0002-9450-8125 |
| OpenAccessLink | https://inria.hal.science/inria-00541855 |
| PageCount | 22 |
| ParticipantIDs | hal_primary_oai_HAL_inria_00541855v1 crossref_primary_10_1016_j_acha_2010_04_005 crossref_citationtrail_10_1016_j_acha_2010_04_005 elsevier_sciencedirect_doi_10_1016_j_acha_2010_04_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-01 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied and computational harmonic analysis |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Sendur, Selesnick (br0080) 2002; 50 Apté, Damerau, Weiss (br0190) 1994; 12 Flandrin (br0170) 1992; 38 Phillips (br0500) 2003 Sleijpen, der Vorst (br0460) 1996; 17 Antoine, Vandergheynst (br0270) 1999; 7 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (br0550) 2008; 6 M. Crovella, E. Kolaczyk, Graph wavelets for spatial traffic analysis, in: INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2003, pp. 1848–1857. Coifman, Maggioni (br0350) 2006; 21 Chung (br0200) 1997; vol. 92 R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002. D. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157. Miller, Willsky (br0130) 1995; 2 Kingsbury (br0240) 2001; 10 Said, Pearlman (br0020) 1996; 6 Geddes (br0490) 1978; 15 Bioucas-Dias (br0150) 2006; 15 Singer (br0400) 2006; 21 Chang, Yu, Vetterli (br0070) 2000; 9 Daubechies, Teschke (br0100) 2005; 19 Daubechies (br0430) 1992 Simoncelli, Freeman, Adelson, Heeger (br0230) 1992; 38 Lee, Nadler, Wasserman (br0340) 2008; 2 Heil, Walnut (br0440) 1989; 31 Candes, Donoho (br0250) 2003; 57 Ruttimann, Unser, Rawlings, Rio, Ramsey, Mattay, Hommer, Frank, Weinberger (br0530) 1998; 17 Fraser (br0480) 1965; 12 Belkin, Niyogi (br0410) 2008; 74 Geller, Mayeli (br0370) 2009; 262 Reed, Simon (br0420) 1980 Wiaux, McEwen, Vandergheynst, Blanc (br0280) 2008; 388 Peyré, Mallat (br0260) 2008; 61 Donoho, Johnstone (br0060) 1994; 81 Murtagh (br0330) 2007; 24 Ville, Blu, Unser (br0540) 2004; 23 Starck, Bijaoui (br0110) 1994; 35 Burt, Adelson (br0220) 1983; 31 Jansen, Nason, Silverman (br0320) 2009; 71 Mallat (br0210) 1998 Buccigrossi, Simoncelli (br0040) 1999; 8 Grochenig (br0510) 1993; 41 Cheney (br0470) 1966 Portilla, Strela, Wainwright, Simoncelli (br0090) 2003; 12 Zaroubi, Goelman (br0520) 2000; 18 Hilton (br0030) 1997; 44 Taubman, Marcellin (br0050) 2002 Shapiro (br0010) 1993; 41 Hein, Audibert, von Luxburg (br0390) 2005; vol. 3559 Smalter, Huan, Lushington (br0310) 2009; 7 Donoho (br0120) 1995; 2 Nowak, Kolaczyk (br0140) 2000; 46 Antoine, Bogdanova, Vandergheynst (br0290) 2008; 6 Watkins (br0450) 2007 Maggioni, Mhaskar (br0360) 2008; 24 Manthalkar, Biswas, Chatterji (br0160) 2003; 24 Grossmann, Morlet (br0380) 1984; 15 Wessel, Smith (br0560) 1996; 101 Chung (10.1016/j.acha.2010.04.005_br0200) 1997; vol. 92 Miller (10.1016/j.acha.2010.04.005_br0130) 1995; 2 Candes (10.1016/j.acha.2010.04.005_br0250) 2003; 57 Fraser (10.1016/j.acha.2010.04.005_br0480) 1965; 12 Portilla (10.1016/j.acha.2010.04.005_br0090) 2003; 12 Antoine (10.1016/j.acha.2010.04.005_br0270) 1999; 7 Maggioni (10.1016/j.acha.2010.04.005_br0360) 2008; 24 Sleijpen (10.1016/j.acha.2010.04.005_br0460) 1996; 17 Ruttimann (10.1016/j.acha.2010.04.005_br0530) 1998; 17 Bioucas-Dias (10.1016/j.acha.2010.04.005_br0150) 2006; 15 Manthalkar (10.1016/j.acha.2010.04.005_br0160) 2003; 24 Said (10.1016/j.acha.2010.04.005_br0020) 1996; 6 Daubechies (10.1016/j.acha.2010.04.005_br0100) 2005; 19 10.1016/j.acha.2010.04.005_br0300 Watkins (10.1016/j.acha.2010.04.005_br0450) 2007 Grossmann (10.1016/j.acha.2010.04.005_br0380) 1984; 15 Geddes (10.1016/j.acha.2010.04.005_br0490) 1978; 15 Donoho (10.1016/j.acha.2010.04.005_br0060) 1994; 81 Buccigrossi (10.1016/j.acha.2010.04.005_br0040) 1999; 8 Hein (10.1016/j.acha.2010.04.005_br0390) 2005; vol. 3559 Chang (10.1016/j.acha.2010.04.005_br0070) 2000; 9 Zaroubi (10.1016/j.acha.2010.04.005_br0520) 2000; 18 Donoho (10.1016/j.acha.2010.04.005_br0120) 1995; 2 Grochenig (10.1016/j.acha.2010.04.005_br0510) 1993; 41 Mallat (10.1016/j.acha.2010.04.005_br0210) 1998 Heil (10.1016/j.acha.2010.04.005_br0440) 1989; 31 Daubechies (10.1016/j.acha.2010.04.005_br0430) 1992 Geller (10.1016/j.acha.2010.04.005_br0370) 2009; 262 Nowak (10.1016/j.acha.2010.04.005_br0140) 2000; 46 Wiaux (10.1016/j.acha.2010.04.005_br0280) 2008; 388 Jansen (10.1016/j.acha.2010.04.005_br0320) 2009; 71 Phillips (10.1016/j.acha.2010.04.005_br0500) 2003 Shapiro (10.1016/j.acha.2010.04.005_br0010) 1993; 41 Starck (10.1016/j.acha.2010.04.005_br0110) 1994; 35 Burt (10.1016/j.acha.2010.04.005_br0220) 1983; 31 Taubman (10.1016/j.acha.2010.04.005_br0050) 2002 Lee (10.1016/j.acha.2010.04.005_br0340) 2008; 2 Hilton (10.1016/j.acha.2010.04.005_br0030) 1997; 44 Apté (10.1016/j.acha.2010.04.005_br0190) 1994; 12 Murtagh (10.1016/j.acha.2010.04.005_br0330) 2007; 24 Singer (10.1016/j.acha.2010.04.005_br0400) 2006; 21 Belkin (10.1016/j.acha.2010.04.005_br0410) 2008; 74 Kingsbury (10.1016/j.acha.2010.04.005_br0240) 2001; 10 Peyré (10.1016/j.acha.2010.04.005_br0260) 2008; 61 Cheney (10.1016/j.acha.2010.04.005_br0470) 1966 Reed (10.1016/j.acha.2010.04.005_br0420) 1980 Smalter (10.1016/j.acha.2010.04.005_br0310) 2009; 7 Coifman (10.1016/j.acha.2010.04.005_br0350) 2006; 21 Flandrin (10.1016/j.acha.2010.04.005_br0170) 1992; 38 10.1016/j.acha.2010.04.005_br0180 Simoncelli (10.1016/j.acha.2010.04.005_br0230) 1992; 38 Ville (10.1016/j.acha.2010.04.005_br0540) 2004; 23 Sendur (10.1016/j.acha.2010.04.005_br0080) 2002; 50 10.1016/j.acha.2010.04.005_br0570 Antoine (10.1016/j.acha.2010.04.005_br0290) 2008; 6 Wessel (10.1016/j.acha.2010.04.005_br0560) 1996; 101 Hagmann (10.1016/j.acha.2010.04.005_br0550) 2008; 6 |
| References_xml | – volume: 15 start-page: 937 year: 2006 end-page: 951 ident: br0150 article-title: Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors publication-title: IEEE Trans. Image Process. – volume: vol. 92 year: 1997 ident: br0200 article-title: Spectral Graph Theory publication-title: CBMS Reg. Conf. Ser. Math. – volume: 7 start-page: 262 year: 1999 end-page: 291 ident: br0270 article-title: Wavelets on the 2-sphere: A group-theoretical approach publication-title: Appl. Comput. Harmon. Anal. – year: 2002 ident: br0050 article-title: JPEG2000: Image Compression Fundamentals, Standards and Practice – volume: 12 start-page: 1338 year: 2003 end-page: 1351 ident: br0090 article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 1225 year: 1978 end-page: 1233 ident: br0490 article-title: Near-minimax polynomial approximation in an elliptical region publication-title: SIAM J. Numer. Anal. – volume: 15 start-page: 723 year: 1984 end-page: 736 ident: br0380 article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape publication-title: SIAM J. Math. Anal. – volume: 74 start-page: 1289 year: 2008 end-page: 1308 ident: br0410 article-title: Towards a theoretical foundation for Laplacian-based manifold methods publication-title: J. Comput. System Sci. – volume: 21 start-page: 128 year: 2006 end-page: 134 ident: br0400 article-title: From graph to manifold Laplacian: The convergence rate publication-title: Appl. Comput. Harmon. Anal. – volume: 12 start-page: 295 year: 1965 end-page: 314 ident: br0480 article-title: A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable publication-title: J. Assoc. Comput. Mach. – volume: 262 start-page: 895 year: 2009 end-page: 927 ident: br0370 article-title: Continuous wavelets on compact manifolds publication-title: Math. Z. – volume: 50 start-page: 2744 year: 2002 end-page: 2756 ident: br0080 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Trans. Signal Process. – volume: 24 start-page: 2455 year: 2003 end-page: 2462 ident: br0160 article-title: Rotation and scale invariant texture features using discrete wavelet packet transform publication-title: Pattern Recognit. Lett. – volume: 31 start-page: 628 year: 1989 end-page: 666 ident: br0440 article-title: Continuous and discrete wavelet transforms publication-title: SIAM Rev. – volume: 24 start-page: 3 year: 2007 end-page: 32 ident: br0330 article-title: The Haar wavelet transform of a dendrogram publication-title: J. Classification – volume: 46 start-page: 1811 year: 2000 end-page: 1825 ident: br0140 article-title: A statistical multiscale framework for Poisson inverse problems publication-title: IEEE Trans. Inform. Theory – volume: 8 start-page: 1688 year: 1999 end-page: 1701 ident: br0040 article-title: Image compression via joint statistical characterization in the wavelet domain publication-title: IEEE Trans. Image Process. – volume: 19 start-page: 1 year: 2005 end-page: 16 ident: br0100 article-title: Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising publication-title: Appl. Comput. Harmon. Anal. – year: 1992 ident: br0430 article-title: Ten Lectures on Wavelets – volume: 12 start-page: 233 year: 1994 end-page: 251 ident: br0190 article-title: Automated learning of decision rules for text categorization publication-title: ACM Trans. Inf. Syst. – volume: 9 start-page: 1532 year: 2000 end-page: 1546 ident: br0070 article-title: Adaptive wavelet thresholding for image denoising and compression publication-title: IEEE Trans. Image Process. – volume: 61 start-page: 1173 year: 2008 end-page: 1212 ident: br0260 article-title: Orthogonal bandlet bases for geometric images approximation publication-title: Comm. Pure Appl. Math. – year: 2007 ident: br0450 article-title: The Matrix Eigenvalue Problem – GR and Krylov Subspace Methods – volume: 24 start-page: 329 year: 2008 end-page: 353 ident: br0360 article-title: Diffusion polynomial frames on metric measure spaces publication-title: Appl. Comput. Harmon. Anal. – volume: 17 start-page: 142 year: 1998 end-page: 154 ident: br0530 article-title: Statistical analysis of functional MRI data in the wavelet domain publication-title: IEEE Trans. Medical Imaging – volume: 41 start-page: 3445 year: 1993 end-page: 3462 ident: br0010 article-title: Embedded image coding using zerotrees of wavelet coefficients publication-title: IEEE Trans. Signal Process. – volume: 23 start-page: 1472 year: 2004 end-page: 1485 ident: br0540 article-title: Integrated wavelet processing and spatial statistical testing of fMRI data publication-title: Neuroimage – year: 1998 ident: br0210 article-title: A Wavelet Tour of Signal Processing – volume: vol. 3559 start-page: 470 year: 2005 end-page: 485 ident: br0390 article-title: From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians publication-title: Proc. 18th Conf. Learning Theory (COLT) – volume: 38 start-page: 587 year: 1992 end-page: 607 ident: br0230 article-title: Shiftable multi-scale transforms publication-title: IEEE Trans. Inform. Theory – volume: 10 start-page: 234 year: 2001 end-page: 253 ident: br0240 article-title: Complex wavelets for shift invariant analysis and filtering of signals publication-title: Appl. Comput. Harmon. Anal. – volume: 2 start-page: 101 year: 1995 end-page: 126 ident: br0120 article-title: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition publication-title: Appl. Comput. Harmon. Anal. – reference: M. Crovella, E. Kolaczyk, Graph wavelets for spatial traffic analysis, in: INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2003, pp. 1848–1857. – volume: 6 start-page: 137 year: 2008 end-page: 156 ident: br0290 article-title: The continuous wavelet transform on conic sections publication-title: Int. J. Wavelets Multiresolut. Inf. Process. – volume: 35 start-page: 195 year: 1994 end-page: 211 ident: br0110 article-title: Filtering and deconvolution by the wavelet transform publication-title: Signal Process. – volume: 101 start-page: 8741 year: 1996 end-page: 8743 ident: br0560 article-title: A global, self-consistent, hierarchical, high-resolution shoreline database publication-title: J. Geophys. Res. – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: br0060 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – volume: 388 start-page: 770 year: 2008 ident: br0280 article-title: Exact reconstruction with directional wavelets on the sphere publication-title: Mon. Not. R. Astron. Soc. – reference: R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002. – volume: 31 start-page: 532 year: 1983 end-page: 540 ident: br0220 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. – year: 1980 ident: br0420 article-title: Methods of Modern Mathematical Physics, vol. 1: Functional Analysis – volume: 21 start-page: 53 year: 2006 end-page: 94 ident: br0350 article-title: Diffusion wavelets publication-title: Appl. Comput. Harmon. Anal. – volume: 2 start-page: 127 year: 1995 end-page: 147 ident: br0130 article-title: A multiscale approach to sensor fusion and the solution of linear inverse problems publication-title: Appl. Comput. Harmon. Anal. – volume: 57 start-page: 219 year: 2003 end-page: 266 ident: br0250 article-title: New tight frames of curvelets and optimal representations of objects with piecewise publication-title: Comm. Pure Appl. Math. – volume: 71 start-page: 97 year: 2009 end-page: 125 ident: br0320 article-title: Multiscale methods for data on graphs and irregular multidimensional situations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 6 start-page: 243 year: 1996 end-page: 250 ident: br0020 article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 7 start-page: 473 year: 2009 end-page: 497 ident: br0310 article-title: Graph wavelet alignment kernels for drug virtual screening publication-title: J. Bioinform. Comput. Biol. – volume: 38 start-page: 910 year: 1992 end-page: 917 ident: br0170 article-title: Wavelet analysis and synthesis of fractional Brownian motion publication-title: IEEE Trans. Inform. Theory – volume: 44 start-page: 394 year: 1997 end-page: 402 ident: br0030 article-title: Wavelet and wavelet packet compression of electrocardiograms publication-title: IEEE Trans. Biomed. Eng. – reference: D. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157. – volume: 41 start-page: 3331 year: 1993 end-page: 3340 ident: br0510 article-title: Acceleration of the frame algorithm publication-title: IEEE Trans. Signal Process. – volume: 6 start-page: e159 year: 2008 ident: br0550 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Comput. Biol. – volume: 18 start-page: 59 year: 2000 end-page: 68 ident: br0520 article-title: Complex denoising of MR data via wavelet analysis: Application for functional MRI publication-title: Magnetic Resonance Imaging – year: 1966 ident: br0470 article-title: Introduction to Approximation Theory – volume: 17 start-page: 401 year: 1996 end-page: 425 ident: br0460 article-title: A Jacobi–Davidson iteration method for linear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. – year: 2003 ident: br0500 article-title: Interpolation and Approximation by Polynomials publication-title: CMS Books Math. – volume: 2 start-page: 435 year: 2008 end-page: 471 ident: br0340 article-title: Treelets an adaptive multi-scale basis for sparse unordered data publication-title: Ann. Appl. Stat. – ident: 10.1016/j.acha.2010.04.005_br0570 – volume: 6 start-page: e159 issue: 7 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0550 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pbio.0060159 – volume: 41 start-page: 3445 issue: 12 year: 1993 ident: 10.1016/j.acha.2010.04.005_br0010 article-title: Embedded image coding using zerotrees of wavelet coefficients publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258085 – volume: 81 start-page: 425 year: 1994 ident: 10.1016/j.acha.2010.04.005_br0060 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 9 start-page: 1532 issue: 9 year: 2000 ident: 10.1016/j.acha.2010.04.005_br0070 article-title: Adaptive wavelet thresholding for image denoising and compression publication-title: IEEE Trans. Image Process. doi: 10.1109/83.862633 – volume: 388 start-page: 770 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0280 article-title: Exact reconstruction with directional wavelets on the sphere publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2008.13448.x – volume: 57 start-page: 219 year: 2003 ident: 10.1016/j.acha.2010.04.005_br0250 article-title: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.10116 – volume: 262 start-page: 895 year: 2009 ident: 10.1016/j.acha.2010.04.005_br0370 article-title: Continuous wavelets on compact manifolds publication-title: Math. Z. doi: 10.1007/s00209-008-0405-7 – volume: 38 start-page: 910 issue: 2 year: 1992 ident: 10.1016/j.acha.2010.04.005_br0170 article-title: Wavelet analysis and synthesis of fractional Brownian motion publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.119751 – volume: 50 start-page: 2744 issue: 11 year: 2002 ident: 10.1016/j.acha.2010.04.005_br0080 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.804091 – year: 1966 ident: 10.1016/j.acha.2010.04.005_br0470 – volume: 74 start-page: 1289 issue: 8 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0410 article-title: Towards a theoretical foundation for Laplacian-based manifold methods publication-title: J. Comput. System Sci. doi: 10.1016/j.jcss.2007.08.006 – ident: 10.1016/j.acha.2010.04.005_br0180 doi: 10.1109/ICCV.1999.790410 – volume: 2 start-page: 435 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0340 article-title: Treelets an adaptive multi-scale basis for sparse unordered data publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS137 – volume: 15 start-page: 1225 issue: 6 year: 1978 ident: 10.1016/j.acha.2010.04.005_br0490 article-title: Near-minimax polynomial approximation in an elliptical region publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715083 – volume: 12 start-page: 1338 year: 2003 ident: 10.1016/j.acha.2010.04.005_br0090 article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.818640 – volume: 101 start-page: 8741 issue: B4 year: 1996 ident: 10.1016/j.acha.2010.04.005_br0560 article-title: A global, self-consistent, hierarchical, high-resolution shoreline database publication-title: J. Geophys. Res. doi: 10.1029/96JB00104 – volume: 6 start-page: 243 issue: 3 year: 1996 ident: 10.1016/j.acha.2010.04.005_br0020 article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/76.499834 – volume: 21 start-page: 128 issue: 1 year: 2006 ident: 10.1016/j.acha.2010.04.005_br0400 article-title: From graph to manifold Laplacian: The convergence rate publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.03.004 – year: 2002 ident: 10.1016/j.acha.2010.04.005_br0050 – volume: 19 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.acha.2010.04.005_br0100 article-title: Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2004.12.004 – volume: 41 start-page: 3331 issue: 12 year: 1993 ident: 10.1016/j.acha.2010.04.005_br0510 article-title: Acceleration of the frame algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258077 – volume: 35 start-page: 195 issue: 3 year: 1994 ident: 10.1016/j.acha.2010.04.005_br0110 article-title: Filtering and deconvolution by the wavelet transform publication-title: Signal Process. doi: 10.1016/0165-1684(94)90211-9 – volume: 23 start-page: 1472 issue: 4 year: 2004 ident: 10.1016/j.acha.2010.04.005_br0540 article-title: Integrated wavelet processing and spatial statistical testing of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.056 – year: 1992 ident: 10.1016/j.acha.2010.04.005_br0430 – volume: 31 start-page: 628 issue: 4 year: 1989 ident: 10.1016/j.acha.2010.04.005_br0440 article-title: Continuous and discrete wavelet transforms publication-title: SIAM Rev. doi: 10.1137/1031129 – volume: 12 start-page: 295 year: 1965 ident: 10.1016/j.acha.2010.04.005_br0480 article-title: A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable publication-title: J. Assoc. Comput. Mach. doi: 10.1145/321281.321282 – volume: 2 start-page: 101 issue: 2 year: 1995 ident: 10.1016/j.acha.2010.04.005_br0120 article-title: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1995.1008 – volume: 61 start-page: 1173 issue: 9 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0260 article-title: Orthogonal bandlet bases for geometric images approximation publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20242 – volume: 24 start-page: 329 issue: 3 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0360 article-title: Diffusion polynomial frames on metric measure spaces publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2007.07.001 – volume: vol. 3559 start-page: 470 year: 2005 ident: 10.1016/j.acha.2010.04.005_br0390 article-title: From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians – volume: 7 start-page: 473 year: 2009 ident: 10.1016/j.acha.2010.04.005_br0310 article-title: Graph wavelet alignment kernels for drug virtual screening publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720009004187 – volume: 24 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.acha.2010.04.005_br0330 article-title: The Haar wavelet transform of a dendrogram publication-title: J. Classification doi: 10.1007/s00357-007-0007-9 – year: 2003 ident: 10.1016/j.acha.2010.04.005_br0500 article-title: Interpolation and Approximation by Polynomials doi: 10.1007/b97417 – volume: 44 start-page: 394 issue: 5 year: 1997 ident: 10.1016/j.acha.2010.04.005_br0030 article-title: Wavelet and wavelet packet compression of electrocardiograms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.568915 – year: 2007 ident: 10.1016/j.acha.2010.04.005_br0450 – volume: 15 start-page: 723 issue: 4 year: 1984 ident: 10.1016/j.acha.2010.04.005_br0380 article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape publication-title: SIAM J. Math. Anal. doi: 10.1137/0515056 – volume: 12 start-page: 233 issue: 3 year: 1994 ident: 10.1016/j.acha.2010.04.005_br0190 article-title: Automated learning of decision rules for text categorization publication-title: ACM Trans. Inf. Syst. doi: 10.1145/183422.183423 – volume: 24 start-page: 2455 issue: 14 year: 2003 ident: 10.1016/j.acha.2010.04.005_br0160 article-title: Rotation and scale invariant texture features using discrete wavelet packet transform publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00090-4 – volume: 8 start-page: 1688 issue: 12 year: 1999 ident: 10.1016/j.acha.2010.04.005_br0040 article-title: Image compression via joint statistical characterization in the wavelet domain publication-title: IEEE Trans. Image Process. doi: 10.1109/83.806616 – volume: vol. 92 year: 1997 ident: 10.1016/j.acha.2010.04.005_br0200 article-title: Spectral Graph Theory – year: 1998 ident: 10.1016/j.acha.2010.04.005_br0210 – volume: 10 start-page: 234 issue: 3 year: 2001 ident: 10.1016/j.acha.2010.04.005_br0240 article-title: Complex wavelets for shift invariant analysis and filtering of signals publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.2000.0343 – volume: 46 start-page: 1811 issue: 5 year: 2000 ident: 10.1016/j.acha.2010.04.005_br0140 article-title: A statistical multiscale framework for Poisson inverse problems publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.857793 – volume: 38 start-page: 587 issue: 2 year: 1992 ident: 10.1016/j.acha.2010.04.005_br0230 article-title: Shiftable multi-scale transforms publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.119725 – ident: 10.1016/j.acha.2010.04.005_br0300 doi: 10.1109/INFCOM.2003.1209207 – volume: 2 start-page: 127 issue: 2 year: 1995 ident: 10.1016/j.acha.2010.04.005_br0130 article-title: A multiscale approach to sensor fusion and the solution of linear inverse problems publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1995.1009 – volume: 7 start-page: 262 issue: 3 year: 1999 ident: 10.1016/j.acha.2010.04.005_br0270 article-title: Wavelets on the 2-sphere: A group-theoretical approach publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1999.0272 – volume: 6 start-page: 137 issue: 2 year: 2008 ident: 10.1016/j.acha.2010.04.005_br0290 article-title: The continuous wavelet transform on conic sections publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S0219691308002288 – year: 1980 ident: 10.1016/j.acha.2010.04.005_br0420 – volume: 18 start-page: 59 issue: 1 year: 2000 ident: 10.1016/j.acha.2010.04.005_br0520 article-title: Complex denoising of MR data via wavelet analysis: Application for functional MRI publication-title: Magnetic Resonance Imaging doi: 10.1016/S0730-725X(99)00100-9 – volume: 21 start-page: 53 year: 2006 ident: 10.1016/j.acha.2010.04.005_br0350 article-title: Diffusion wavelets publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.004 – volume: 17 start-page: 401 issue: 2 year: 1996 ident: 10.1016/j.acha.2010.04.005_br0460 article-title: A Jacobi–Davidson iteration method for linear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479894270427 – volume: 15 start-page: 937 issue: 4 year: 2006 ident: 10.1016/j.acha.2010.04.005_br0150 article-title: Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863972 – volume: 17 start-page: 142 issue: 2 year: 1998 ident: 10.1016/j.acha.2010.04.005_br0530 article-title: Statistical analysis of functional MRI data in the wavelet domain publication-title: IEEE Trans. Medical Imaging doi: 10.1109/42.700727 – volume: 31 start-page: 532 issue: 4 year: 1983 ident: 10.1016/j.acha.2010.04.005_br0220 article-title: The Laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1983.1095851 – volume: 71 start-page: 97 issue: 1 year: 2009 ident: 10.1016/j.acha.2010.04.005_br0320 article-title: Multiscale methods for data on graphs and irregular multidimensional situations publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2008.00672.x |
| SSID | ssj0011459 |
| Score | 2.5724444 |
| Snippet | We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 129 |
| SubjectTerms | Computer Science Engineering Sciences Graph theory Overcomplete wavelet frames Signal and Image Processing Spectral graph theory Wavelets |
| Title | Wavelets on graphs via spectral graph theory |
| URI | https://dx.doi.org/10.1016/j.acha.2010.04.005 https://inria.hal.science/inria-00541855 |
| Volume | 30 |
| WOSCitedRecordID | wos000286705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-603X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011459 issn: 1063-5203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6FlAf6gDhFW0B-6Jsx2vW19mNUFcpVISiQN2sPm7hqN1GSWuXfd_ZyXBAVIKFIVry-d2Z3Zuf4BqH9QjasEIxGHKdplIqYRTwpk0ikOaaUyLihzBSboMfHxXRafhyNOp8L051RpYrLy3LxX0kNbUBsnTr7F-TubwoN8B-IDlsgO2z_iPDfmK4lYd0ABo56FXYtC01Kpc7GN202gfGaS9froy7RbXGx9nZCjW5tCuUwh2AyNHu7ssQmNj5899If-mqyZr7P6h_KZZWA_N0E2r5etnyuOlNtIPxkvfXn7dAEQQYxWNYu5nNjroVuwlozgWUuttNX7drKPMqxqQDcz7_OL9MOlsF2MiXOFmLlMrEAtb9M-db6cArsN2MuVE8DomcbAdeHHX7W76RfyTg1sgxE91ZMs7IYo63Jm8Pp297_RFJTZq__BpduZSMDf37S71SaWzNvnDfKysk9dNetMoKJ5Y77aFSrB2h7gD0Jex96wN7VQ_TCc00wV4HlmgC4JvBcY9sCyzWP0JdXhycHR5ErpBGJpMDriOdZLBqSsTqTMuEJqC0pB72wqDGWNSWNjGsRC8ZiDSjHYAXNecNhDMdUYsGS5DEaq7mqn6CAMxDuRU5lIXEKuh1nBH4SzqeNzFmzg4jvi0o4lHld7OSs8uGEp5Xuv0r3X4XTCvpvB4X9NQuLsXLj2Znv4sppiVb7q4AjbrxuH-jRP0DDqh9N3letgpGvj2sUp6wju_94-z10ZzM0nqLxenlRP0O3RbduV8vnjr-uAIGil8c |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelets+on+graphs+via+spectral+graph+theory&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Hammond%2C+David+K.&rft.au=Vandergheynst%2C+Pierre&rft.au=Gribonval%2C+R%C3%A9mi&rft.date=2011-03-01&rft.pub=Elsevier+Inc&rft.issn=1063-5203&rft.eissn=1096-603X&rft.volume=30&rft.issue=2&rft.spage=129&rft.epage=150&rft_id=info:doi/10.1016%2Fj.acha.2010.04.005&rft.externalDocID=S1063520310000552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |