Wavelets on graphs via spectral graph theory

We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L . Gi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied and computational harmonic analysis Ročník 30; číslo 2; s. 129 - 150
Hlavní autori: Hammond, David K., Vandergheynst, Pierre, Gribonval, Rémi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2011
Elsevier
Predmet:
ISSN:1063-5203, 1096-603X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L . Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator T g t = g ( t L ) . The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L . We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.
AbstractList We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator Ttg = g(tL). The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L . Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator T g t = g ( t L ) . The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on g, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing L . We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.
Author Vandergheynst, Pierre
Gribonval, Rémi
Hammond, David K.
Author_xml – sequence: 1
  givenname: David K.
  surname: Hammond
  fullname: Hammond, David K.
  email: hammond@uoregon.edu
  organization: NeuroInformatics Center, University of Oregon, Eugene, USA
– sequence: 2
  givenname: Pierre
  surname: Vandergheynst
  fullname: Vandergheynst, Pierre
  email: pierre.vanderhheynst@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Rémi
  surname: Gribonval
  fullname: Gribonval, Rémi
  email: remi.gribonval@inria.fr
  organization: INRIA, Rennes, France
BackLink https://inria.hal.science/inria-00541855$$DView record in HAL
BookMark eNp9kMFKw0AQhhdRsK2-gKfcNXF2N7tNwUspaoWCF0Vvy2QzMVtiUnZDoG9vQsSDh55m-Pm_gfnm7LxpG2LshkPCgev7fYK2wkTAEECaAKgzNuOw0rEG-Xk-7lrGSoC8ZPMQ9gCcp2o1Y3cf2FNNXYjaJvryeKhC1DuMwoFs57GesqirqPXHK3ZRYh3o-ncu2PvT49tmG-9en182611sZQZdnGslbMkVkioKmUsJMs2FkBkBFLTkZSHICosohOYCuU7zvMwxs2JZgEUpF-x2ulthbQ7efaM_mhad2a53xjXeoRk-THmmVM-Htpja1rcheCr_EA5mtGP2ZrRjRjsG0pEdoOwfZF2HnWub4WtXn0YfJpQGBb0jb4J11FgqnB-kmaJ1p_AfUPKBWQ
CitedBy_id crossref_primary_10_1109_TIM_2022_3144732
crossref_primary_10_1137_17M1124474
crossref_primary_10_1007_s11633_020_1271_y
crossref_primary_10_1088_0031_8949_90_7_074022
crossref_primary_10_1109_JBHI_2022_3207519
crossref_primary_10_1109_LSP_2020_3038375
crossref_primary_10_1109_TSP_2016_2617833
crossref_primary_10_1145_3696444
crossref_primary_10_1016_j_dsp_2024_104728
crossref_primary_10_1088_1402_4896_ad74a5
crossref_primary_10_1111_cgf_14180
crossref_primary_10_1016_j_ymssp_2024_111370
crossref_primary_10_1093_bib_bbad423
crossref_primary_10_1016_j_neucom_2023_126901
crossref_primary_10_1109_JPROC_2018_2820126
crossref_primary_10_1109_TKDE_2024_3465241
crossref_primary_10_1109_TCSS_2022_3226177
crossref_primary_10_1016_j_neunet_2020_06_006
crossref_primary_10_1080_10106049_2020_1856195
crossref_primary_10_3390_math12121820
crossref_primary_10_1109_TSP_2020_2993780
crossref_primary_10_1109_ACCESS_2020_2999520
crossref_primary_10_1109_TSIPN_2017_2710619
crossref_primary_10_1007_s11432_020_3318_5
crossref_primary_10_1007_s00521_023_08964_5
crossref_primary_10_1049_iet_spr_2015_0433
crossref_primary_10_1016_j_cviu_2016_10_004
crossref_primary_10_1109_JSTARS_2023_3349162
crossref_primary_10_1016_j_neunet_2025_107338
crossref_primary_10_1109_TSIPN_2016_2532464
crossref_primary_10_1016_j_ins_2022_08_053
crossref_primary_10_1088_1741_2552_ac63ec
crossref_primary_10_1109_ACCESS_2020_2974243
crossref_primary_10_1016_j_jvcir_2019_102614
crossref_primary_10_1007_s13042_024_02136_0
crossref_primary_10_1109_TMM_2021_3111440
crossref_primary_10_1109_TSIPN_2018_2818950
crossref_primary_10_1155_2022_1838468
crossref_primary_10_3390_e26070576
crossref_primary_10_1016_j_cagd_2016_02_011
crossref_primary_10_1109_TPAMI_2021_3125981
crossref_primary_10_12677_jisp_2024_133025
crossref_primary_10_1109_JAS_2021_1003976
crossref_primary_10_1109_TSC_2022_3145019
crossref_primary_10_1016_j_neunet_2024_107046
crossref_primary_10_1109_TDSC_2022_3187973
crossref_primary_10_1007_s11042_022_12683_9
crossref_primary_10_1016_j_dsp_2024_104974
crossref_primary_10_1016_j_iot_2023_100818
crossref_primary_10_1080_09540091_2022_2080806
crossref_primary_10_1007_s10115_021_01553_9
crossref_primary_10_1016_j_watres_2023_120313
crossref_primary_10_1007_s11571_021_09683_0
crossref_primary_10_1109_LSP_2018_2818062
crossref_primary_10_1016_j_compind_2025_104269
crossref_primary_10_1007_s11220_019_0226_2
crossref_primary_10_1007_s10489_023_04997_4
crossref_primary_10_1016_j_engappai_2023_106000
crossref_primary_10_1109_MSP_2012_2235192
crossref_primary_10_1186_s12864_024_09967_9
crossref_primary_10_1109_ACCESS_2023_3305945
crossref_primary_10_1161_CIRCEP_119_007975
crossref_primary_10_3389_fdata_2021_608286
crossref_primary_10_3390_cells8090977
crossref_primary_10_1016_j_ins_2020_03_040
crossref_primary_10_3390_axioms12111043
crossref_primary_10_1109_ACCESS_2021_3085905
crossref_primary_10_1007_s11370_022_00422_w
crossref_primary_10_1109_TSIPN_2023_3264993
crossref_primary_10_3390_rs15235483
crossref_primary_10_1093_bib_bbaa360
crossref_primary_10_1109_TCAD_2023_3336212
crossref_primary_10_1177_1748006X211009329
crossref_primary_10_1109_TCSI_2022_3179821
crossref_primary_10_1109_TSP_2017_2666772
crossref_primary_10_1109_LSP_2021_3086391
crossref_primary_10_1016_j_ymssp_2024_112025
crossref_primary_10_3390_ijgi10070455
crossref_primary_10_1007_s43670_024_00092_y
crossref_primary_10_1109_ACCESS_2022_3166505
crossref_primary_10_1016_j_ijleo_2015_07_166
crossref_primary_10_1109_ACCESS_2021_3054171
crossref_primary_10_1016_j_dsp_2024_104914
crossref_primary_10_1111_cgf_15230
crossref_primary_10_1080_10618600_2015_1048345
crossref_primary_10_1109_TITS_2020_3026836
crossref_primary_10_1007_s11760_015_0792_2
crossref_primary_10_1093_comjnl_bxab178
crossref_primary_10_3390_rs11192290
crossref_primary_10_1016_j_mechmachtheory_2019_103768
crossref_primary_10_1109_TKDE_2020_3014089
crossref_primary_10_3390_rs14061436
crossref_primary_10_1007_s00034_020_01499_3
crossref_primary_10_1109_TIT_2013_2252233
crossref_primary_10_1007_s11042_020_08611_4
crossref_primary_10_1016_j_neuroimage_2017_12_052
crossref_primary_10_1109_TAI_2024_3350545
crossref_primary_10_1145_3624580
crossref_primary_10_1109_JSTSP_2015_2403799
crossref_primary_10_1109_JSTARS_2021_3062642
crossref_primary_10_1007_s10845_024_02511_2
crossref_primary_10_1137_19M1259201
crossref_primary_10_1680_jtran_21_00024
crossref_primary_10_1186_s12880_024_01297_2
crossref_primary_10_1109_TNNLS_2024_3449573
crossref_primary_10_1016_j_measurement_2022_111697
crossref_primary_10_1109_TNNLS_2023_3285874
crossref_primary_10_3390_rs13112038
crossref_primary_10_1109_LSP_2016_2594072
crossref_primary_10_1109_TSIPN_2017_2743561
crossref_primary_10_1109_ACCESS_2020_2975584
crossref_primary_10_1109_JSEN_2022_3208415
crossref_primary_10_1109_TSP_2022_3207045
crossref_primary_10_1109_TFUZZ_2020_3029285
crossref_primary_10_1109_MITS_2021_3082397
crossref_primary_10_1109_TII_2024_3372013
crossref_primary_10_1111_cgf_14120
crossref_primary_10_1109_ACCESS_2021_3055280
crossref_primary_10_1109_TSP_2016_2614793
crossref_primary_10_1109_ACCESS_2024_3463176
crossref_primary_10_1109_TSP_2018_2870386
crossref_primary_10_1109_LSP_2015_2488279
crossref_primary_10_1016_j_gmod_2021_101121
crossref_primary_10_1016_j_knosys_2022_109028
crossref_primary_10_1109_TSIPN_2017_2731164
crossref_primary_10_1109_TSP_2014_2313528
crossref_primary_10_1016_j_psep_2023_08_080
crossref_primary_10_1109_ACCESS_2020_2983590
crossref_primary_10_1016_j_bspc_2024_107380
crossref_primary_10_1109_TSIPN_2016_2605763
crossref_primary_10_1007_s10489_022_03836_2
crossref_primary_10_1109_TSP_2016_2591513
crossref_primary_10_1109_TSIPN_2018_2854627
crossref_primary_10_1109_TSP_2014_2365761
crossref_primary_10_1016_j_acha_2016_12_005
crossref_primary_10_1016_j_procs_2023_10_082
crossref_primary_10_1109_LSP_2024_3421972
crossref_primary_10_1016_j_measurement_2021_109428
crossref_primary_10_1007_s11063_025_11728_y
crossref_primary_10_1016_j_eswa_2023_120227
crossref_primary_10_1007_s42401_020_00070_x
crossref_primary_10_1109_TNNLS_2019_2934131
crossref_primary_10_1109_TSP_2019_2896246
crossref_primary_10_1049_iet_ipr_2017_0965
crossref_primary_10_1109_TSP_2023_3267990
crossref_primary_10_1016_j_ins_2023_03_013
crossref_primary_10_1109_TCCN_2023_3313591
crossref_primary_10_3389_fnins_2021_828512
crossref_primary_10_3390_s22134987
crossref_primary_10_1016_j_neunet_2022_08_030
crossref_primary_10_1016_j_neuroimage_2014_02_028
crossref_primary_10_1007_s00521_023_08935_w
crossref_primary_10_1109_TSTE_2021_3057521
crossref_primary_10_1177_02783649241246847
crossref_primary_10_1007_s11042_023_17176_x
crossref_primary_10_1109_TITS_2019_2963722
crossref_primary_10_1080_13658816_2025_2455075
crossref_primary_10_1109_TSP_2012_2188718
crossref_primary_10_1109_TKDE_2020_3036212
crossref_primary_10_1016_j_infrared_2016_02_003
crossref_primary_10_1007_s00371_013_0815_3
crossref_primary_10_1007_s10915_025_02856_7
crossref_primary_10_1109_JSEN_2023_3337519
crossref_primary_10_1016_j_engappai_2021_104364
crossref_primary_10_1016_j_patrec_2018_05_004
crossref_primary_10_1109_TII_2021_3051934
crossref_primary_10_1109_TGRS_2023_3265879
crossref_primary_10_1016_j_gmod_2012_04_010
crossref_primary_10_1016_j_cma_2022_114764
crossref_primary_10_1109_TIE_2020_3040669
crossref_primary_10_1016_j_gmod_2025_101276
crossref_primary_10_1109_TKDE_2023_3324501
crossref_primary_10_1109_TIM_2025_3558173
crossref_primary_10_1016_j_ymssp_2025_112383
crossref_primary_10_1016_j_compag_2023_107868
crossref_primary_10_1016_j_dsp_2022_103683
crossref_primary_10_1016_j_patrec_2016_04_009
crossref_primary_10_1109_TNNLS_2023_3263676
crossref_primary_10_1016_j_epsr_2024_111126
crossref_primary_10_1109_TSP_2014_2321121
crossref_primary_10_1016_j_ijforecast_2023_08_006
crossref_primary_10_1109_TIM_2023_3310092
crossref_primary_10_1109_ACCESS_2020_3042241
crossref_primary_10_3390_sym14081578
crossref_primary_10_1007_s42452_019_1044_9
crossref_primary_10_1016_j_future_2020_10_016
crossref_primary_10_1016_j_ins_2020_01_028
crossref_primary_10_1016_j_patcog_2017_09_030
crossref_primary_10_1007_s11042_023_16269_x
crossref_primary_10_1109_JSYST_2023_3298884
crossref_primary_10_1109_TCSII_2020_3017800
crossref_primary_10_1109_TSP_2017_2745444
crossref_primary_10_1109_TSP_2017_2771730
crossref_primary_10_1117_1_JRS_19_016514
crossref_primary_10_1016_j_neunet_2025_107541
crossref_primary_10_1109_TIM_2023_3238048
crossref_primary_10_1109_TCYB_2023_3243763
crossref_primary_10_1109_TNNLS_2023_3325542
crossref_primary_10_1007_s12239_023_0122_6
crossref_primary_10_1016_j_jhydrol_2023_130079
crossref_primary_10_1109_TPAMI_2022_3182052
crossref_primary_10_1007_s10707_021_00454_x
crossref_primary_10_1016_j_dsp_2025_105222
crossref_primary_10_1109_TSP_2015_2460216
crossref_primary_10_1016_j_sigpro_2023_109129
crossref_primary_10_1109_TMI_2013_2271486
crossref_primary_10_1002_widm_70024
crossref_primary_10_1109_TSP_2023_3257983
crossref_primary_10_1111_tgis_12644
crossref_primary_10_1016_j_trc_2018_10_011
crossref_primary_10_1109_TASE_2016_2598094
crossref_primary_10_1109_LSP_2018_2860250
crossref_primary_10_1109_JSTARS_2021_3132394
crossref_primary_10_1007_s11571_021_09746_2
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_1186_s12859_023_05564_x
crossref_primary_10_1007_s00371_014_0971_0
crossref_primary_10_1016_j_engappai_2022_105452
crossref_primary_10_1016_j_patcog_2019_107000
crossref_primary_10_1109_TMM_2021_3086711
crossref_primary_10_1016_j_neunet_2020_04_028
crossref_primary_10_1109_TGRS_2022_3199467
crossref_primary_10_1016_j_neuroimage_2021_118611
crossref_primary_10_1109_ACCESS_2025_3555997
crossref_primary_10_1109_TSP_2021_3079804
crossref_primary_10_1109_TGRS_2025_3548654
crossref_primary_10_1109_JSEN_2023_3330090
crossref_primary_10_1080_01431161_2024_2370501
crossref_primary_10_1109_TSP_2017_2731299
crossref_primary_10_1109_TSP_2019_2923142
crossref_primary_10_1007_s11063_024_11596_y
crossref_primary_10_3390_s23073515
crossref_primary_10_1016_j_dsp_2022_103644
crossref_primary_10_1088_1361_6501_ad34eb
crossref_primary_10_1016_j_dsp_2023_103941
crossref_primary_10_1016_j_patrec_2013_07_018
crossref_primary_10_1016_j_sigpro_2025_109944
crossref_primary_10_1049_iet_spr_2018_5147
crossref_primary_10_1109_TSIPN_2019_2936358
crossref_primary_10_1016_j_neucom_2024_127965
crossref_primary_10_1038_s41598_023_38314_3
crossref_primary_10_1109_TMI_2021_3088344
crossref_primary_10_3390_s20226433
crossref_primary_10_1016_j_matdes_2021_110272
crossref_primary_10_1109_TSP_2014_2332441
crossref_primary_10_1109_TSP_2022_3160003
crossref_primary_10_1016_j_oceaneng_2024_117921
crossref_primary_10_3390_machines10100873
crossref_primary_10_1016_j_sigpro_2018_10_016
crossref_primary_10_1214_18_AOAS1176
crossref_primary_10_1016_j_cosrev_2021_100400
crossref_primary_10_1016_j_neuroimage_2018_07_002
crossref_primary_10_1109_TSIPN_2025_3574855
crossref_primary_10_1007_s11390_022_2149_y
crossref_primary_10_1016_j_cag_2021_03_006
crossref_primary_10_1109_JPROC_2018_2798928
crossref_primary_10_1109_TGRS_2023_3341893
crossref_primary_10_1080_01431161_2019_1694194
crossref_primary_10_1109_JSTSP_2017_2726969
crossref_primary_10_1145_3439602_3439605
crossref_primary_10_1109_TPAMI_2020_3019139
crossref_primary_10_1109_TSIPN_2020_2976704
crossref_primary_10_1109_TBDATA_2017_2757942
crossref_primary_10_1109_TSP_2013_2273197
crossref_primary_10_3390_rs13030526
crossref_primary_10_1109_TVT_2024_3508021
crossref_primary_10_3390_electronics13183768
crossref_primary_10_1016_j_ress_2022_108947
crossref_primary_10_1137_140977680
crossref_primary_10_1109_TIM_2023_3243680
crossref_primary_10_1109_TSP_2019_2892033
crossref_primary_10_1109_JSTSP_2017_2726979
crossref_primary_10_1016_j_knosys_2021_107528
crossref_primary_10_1109_JSTSP_2017_2726972
crossref_primary_10_1002_wcms_1651
crossref_primary_10_1109_TFUZZ_2023_3326657
crossref_primary_10_1007_s11042_022_13806_y
crossref_primary_10_1016_j_cageo_2022_105074
crossref_primary_10_1007_s11042_022_12426_w
crossref_primary_10_1109_TSP_2017_2718969
crossref_primary_10_1016_j_patcog_2023_109367
crossref_primary_10_3390_rs15010075
crossref_primary_10_1007_s10107_022_01861_0
crossref_primary_10_1007_s40747_022_00838_y
crossref_primary_10_1109_TSIPN_2025_3572698
crossref_primary_10_1016_j_nicl_2018_10_024
crossref_primary_10_1137_21M1407616
crossref_primary_10_3103_S1060992X21010021
crossref_primary_10_1016_j_techfore_2024_123684
crossref_primary_10_1111_tgis_70002
crossref_primary_10_1016_j_comcom_2021_02_019
crossref_primary_10_1002_cbdv_202200746
crossref_primary_10_1109_TCSS_2022_3181739
crossref_primary_10_1016_j_ifacol_2017_08_1177
crossref_primary_10_1049_iet_spr_2016_0700
crossref_primary_10_1109_TGRS_2022_3168712
crossref_primary_10_1109_TSP_2015_2469645
crossref_primary_10_1080_13658816_2024_2321229
crossref_primary_10_1016_j_apnum_2016_11_011
crossref_primary_10_1016_j_ymssp_2020_107202
crossref_primary_10_1109_TMI_2014_2363884
crossref_primary_10_1111_cgf_12794
crossref_primary_10_1016_j_cad_2017_02_003
crossref_primary_10_1016_j_jmapro_2023_09_045
crossref_primary_10_1016_j_physa_2016_01_002
crossref_primary_10_1016_j_compbiomed_2023_106780
crossref_primary_10_1049_ipr2_12632
crossref_primary_10_1109_TSP_2022_3205474
crossref_primary_10_1109_TSP_2022_3182470
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1080_15230406_2023_2218106
crossref_primary_10_1080_13658816_2020_1768260
crossref_primary_10_1007_s00041_021_09826_1
crossref_primary_10_1016_j_acha_2023_101579
crossref_primary_10_1109_TPAMI_2023_3324937
crossref_primary_10_1109_LGRS_2018_2834626
crossref_primary_10_2118_208596_PA
crossref_primary_10_1016_j_ins_2019_11_019
crossref_primary_10_1016_j_patcog_2024_110628
crossref_primary_10_1109_TCSVT_2021_3100128
crossref_primary_10_1007_s00034_023_02541_w
crossref_primary_10_1016_j_media_2015_02_003
crossref_primary_10_1016_j_cageo_2021_104943
crossref_primary_10_1145_3564594
crossref_primary_10_1371_journal_pcbi_1009986
crossref_primary_10_1007_s11668_025_02194_8
crossref_primary_10_1109_JBHI_2024_3413146
crossref_primary_10_1109_JSTSP_2024_3350508
crossref_primary_10_1109_TCDS_2022_3152791
crossref_primary_10_1109_TSIPN_2021_3100302
crossref_primary_10_1109_TNNLS_2024_3442379
crossref_primary_10_1109_JSEN_2023_3267427
crossref_primary_10_1109_TNSE_2021_3109614
crossref_primary_10_1109_TCOMM_2019_2899620
crossref_primary_10_1109_TIM_2024_3440413
crossref_primary_10_3390_s19245518
crossref_primary_10_1016_j_acha_2024_101635
crossref_primary_10_1007_s00034_015_0073_x
crossref_primary_10_1016_j_jag_2022_102696
crossref_primary_10_1016_j_dsp_2020_102802
crossref_primary_10_1145_3416509
crossref_primary_10_1162_netn_a_00183
crossref_primary_10_1007_s11042_023_16071_9
crossref_primary_10_1016_j_specom_2020_06_005
crossref_primary_10_1109_MSP_2014_2329213
crossref_primary_10_1109_TVCG_2020_2978847
crossref_primary_10_1109_TPAMI_2024_3524180
crossref_primary_10_1016_j_patcog_2019_04_004
crossref_primary_10_1016_j_acha_2023_101583
crossref_primary_10_3390_technologies9010010
crossref_primary_10_1109_TKDE_2022_3186016
crossref_primary_10_1145_3748727
crossref_primary_10_1016_j_spasta_2024_100822
crossref_primary_10_1109_TSP_2025_3567831
crossref_primary_10_1093_imaiai_iax021
crossref_primary_10_1007_s00041_024_10128_5
crossref_primary_10_1016_j_patrec_2013_11_024
crossref_primary_10_1016_j_jfranklin_2022_08_059
crossref_primary_10_1088_2632_2153_acc0d8
crossref_primary_10_1016_j_acha_2015_03_005
crossref_primary_10_1109_TVCG_2017_2746080
crossref_primary_10_1190_geo2022_0324_1
crossref_primary_10_1016_j_compmedimag_2021_101939
crossref_primary_10_1109_TNNLS_2024_3453280
crossref_primary_10_3389_fbioe_2021_706229
crossref_primary_10_1109_TPAMI_2022_3177075
crossref_primary_10_1016_j_neucom_2021_08_006
crossref_primary_10_1186_s12859_021_04447_3
crossref_primary_10_1016_j_jag_2023_103485
crossref_primary_10_1016_j_dsp_2024_104565
crossref_primary_10_1109_TSP_2014_2345355
crossref_primary_10_1109_TNSRE_2022_3193103
crossref_primary_10_12677_aam_2024_134141
crossref_primary_10_1109_TGRS_2022_3220409
crossref_primary_10_1109_TMI_2020_2967451
crossref_primary_10_1080_01431161_2021_1936267
crossref_primary_10_3390_fi11110245
crossref_primary_10_1002_cav_1741
crossref_primary_10_1109_TAP_2023_3283043
crossref_primary_10_1109_TNNLS_2022_3213589
crossref_primary_10_1016_j_acha_2022_10_003
crossref_primary_10_1016_j_cag_2014_09_008
crossref_primary_10_1109_TSP_2011_2158428
crossref_primary_10_1007_s00521_021_06006_6
crossref_primary_10_1109_JSEN_2023_3326096
crossref_primary_10_1016_j_acha_2019_06_003
crossref_primary_10_3390_ijgi11100527
crossref_primary_10_1109_JSTARS_2025_3575207
crossref_primary_10_1016_j_patcog_2021_108443
crossref_primary_10_1109_TPAMI_2022_3146796
crossref_primary_10_1109_TKDE_2020_3008774
crossref_primary_10_3389_fphy_2020_00203
crossref_primary_10_1109_TSIPN_2015_2480223
crossref_primary_10_1088_1361_6501_aca706
crossref_primary_10_1109_LSP_2017_2657889
crossref_primary_10_1007_s40747_024_01738_z
crossref_primary_10_1109_TSP_2020_2976583
crossref_primary_10_1016_j_laa_2020_06_008
crossref_primary_10_1109_TSP_2017_2752689
crossref_primary_10_1109_TSP_2017_2775589
crossref_primary_10_1016_j_measurement_2021_110084
crossref_primary_10_1109_JSAC_2019_2951964
crossref_primary_10_1109_TSIPN_2016_2614903
crossref_primary_10_1016_j_acha_2023_04_003
crossref_primary_10_1109_TBCAS_2022_3217464
crossref_primary_10_1007_s10462_022_10321_2
crossref_primary_10_3390_rs13081600
crossref_primary_10_1016_j_bspc_2024_106954
crossref_primary_10_23919_PCMP_2023_000172
crossref_primary_10_1109_ACCESS_2022_3149619
crossref_primary_10_1016_j_ipm_2020_102309
crossref_primary_10_1109_LSP_2016_2598750
crossref_primary_10_1016_j_neucom_2020_12_084
crossref_primary_10_1145_3643770
crossref_primary_10_1109_TGRS_2021_3066485
crossref_primary_10_1016_j_neucom_2024_128445
crossref_primary_10_1016_j_sigpro_2023_109099
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1109_TGRS_2020_3015157
crossref_primary_10_1155_2022_9261537
crossref_primary_10_1109_TGRS_2020_2973363
crossref_primary_10_1089_brain_2018_0590
crossref_primary_10_1016_j_acha_2015_02_005
crossref_primary_10_1109_TSP_2018_2869119
crossref_primary_10_1109_ACCESS_2025_3584523
crossref_primary_10_1016_j_laa_2024_11_014
crossref_primary_10_1007_s13369_021_06116_2
crossref_primary_10_1016_j_neucom_2021_05_004
crossref_primary_10_3390_math12182946
crossref_primary_10_1038_s42005_024_01830_3
crossref_primary_10_1016_j_neunet_2023_05_009
crossref_primary_10_1016_j_acha_2014_07_002
crossref_primary_10_1016_j_jempfin_2025_101639
crossref_primary_10_1002_mma_5907
crossref_primary_10_1016_j_knosys_2021_107564
crossref_primary_10_1109_LGRS_2018_2869563
crossref_primary_10_1016_j_measurement_2019_107036
crossref_primary_10_1016_j_ijar_2025_109517
crossref_primary_10_1109_TCE_2024_3511994
crossref_primary_10_1371_journal_pone_0231728
crossref_primary_10_1007_s13042_023_01982_8
crossref_primary_10_1016_j_jksuci_2022_04_003
crossref_primary_10_1007_s11227_020_03373_0
crossref_primary_10_1016_j_image_2020_115862
crossref_primary_10_1587_transfun_E100_A_1743
crossref_primary_10_1109_TAI_2024_3351105
crossref_primary_10_1109_JSTARS_2014_2386902
crossref_primary_10_7717_peerj_cs_276
crossref_primary_10_1111_cgf_142645
crossref_primary_10_1109_TSP_2019_2940129
crossref_primary_10_1109_TSP_2016_2620111
crossref_primary_10_1155_2020_2568179
crossref_primary_10_1186_s12920_018_0372_8
crossref_primary_10_1016_j_jat_2021_105620
crossref_primary_10_1109_TGRS_2020_2994205
crossref_primary_10_3389_fams_2021_651467
crossref_primary_10_1016_j_eswa_2024_125303
crossref_primary_10_1016_j_patrec_2014_04_003
crossref_primary_10_1080_10095020_2025_2480815
crossref_primary_10_1109_TGRS_2024_3372497
crossref_primary_10_1016_j_sigpro_2022_108530
crossref_primary_10_1109_TSIPN_2018_2869354
crossref_primary_10_1016_j_dsp_2024_104751
crossref_primary_10_1109_TSP_2018_2802465
crossref_primary_10_1016_j_trc_2021_103040
crossref_primary_10_1109_ACCESS_2021_3049548
crossref_primary_10_1007_s12145_023_01116_2
crossref_primary_10_1007_s11517_022_02698_7
crossref_primary_10_1016_j_measurement_2018_01_024
crossref_primary_10_1016_j_neucom_2025_130400
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_1109_TSP_2015_2441042
crossref_primary_10_1155_2018_3264294
crossref_primary_10_1007_s10489_021_02342_1
crossref_primary_10_1109_TSP_2015_2411217
crossref_primary_10_1016_j_epsr_2022_108145
crossref_primary_10_1109_JPROC_2021_3055400
crossref_primary_10_1016_j_patcog_2023_109960
crossref_primary_10_1109_TMI_2019_2911203
crossref_primary_10_1186_s40649_019_0069_y
crossref_primary_10_1016_j_ins_2023_120012
crossref_primary_10_1109_TSP_2016_2634543
crossref_primary_10_1155_2021_7161293
crossref_primary_10_1016_j_aei_2024_102379
crossref_primary_10_1109_TNNLS_2024_3370918
crossref_primary_10_1109_TSP_2017_2690388
crossref_primary_10_1016_j_ins_2022_07_125
crossref_primary_10_1109_LSP_2014_2368128
crossref_primary_10_1109_LSP_2016_2514490
crossref_primary_10_1007_s40747_021_00332_x
crossref_primary_10_1109_TVCG_2012_111
crossref_primary_10_1109_TSIPN_2018_2824239
crossref_primary_10_1016_j_neuroimage_2024_120921
crossref_primary_10_1016_j_jestch_2021_09_005
crossref_primary_10_1016_j_bdr_2024_100427
crossref_primary_10_1016_j_sigpro_2021_108211
crossref_primary_10_1080_01431161_2020_1864056
crossref_primary_10_1016_j_sigpro_2021_108216
crossref_primary_10_1080_15230406_2023_2187886
crossref_primary_10_1109_TBC_2023_3290493
crossref_primary_10_1007_s00041_021_09835_0
crossref_primary_10_1016_j_aei_2023_102088
crossref_primary_10_1007_s10489_022_04211_x
crossref_primary_10_1007_s11063_020_10404_7
crossref_primary_10_1109_TKDE_2021_3126475
crossref_primary_10_1002_ese3_932
crossref_primary_10_1109_MSP_2020_3018087
crossref_primary_10_1109_ACCESS_2024_3520172
crossref_primary_10_1016_j_sigpro_2016_09_008
crossref_primary_10_1109_TMI_2019_2915629
crossref_primary_10_1007_s10845_023_02134_z
crossref_primary_10_1016_j_dsp_2020_102782
crossref_primary_10_1111_j_1467_8659_2011_02026_x
crossref_primary_10_1007_s42421_023_00073_y
crossref_primary_10_1049_iet_spr_2018_5087
crossref_primary_10_1016_j_envsoft_2025_106678
crossref_primary_10_1016_j_sigpro_2021_108180
crossref_primary_10_1109_TIP_2018_2886788
crossref_primary_10_3390_app13179651
crossref_primary_10_1109_TITS_2020_3043250
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_3390_app12062948
crossref_primary_10_3390_pr11082257
crossref_primary_10_1002_hbm_26638
crossref_primary_10_1016_j_ins_2023_01_107
crossref_primary_10_1109_JBHI_2021_3053568
crossref_primary_10_1109_LSP_2020_2976550
crossref_primary_10_1088_1361_6560_aaa71a
crossref_primary_10_1016_j_neunet_2025_107693
crossref_primary_10_1007_s00521_024_10893_w
crossref_primary_10_1109_TSP_2022_3223217
crossref_primary_10_1016_j_future_2023_05_026
crossref_primary_10_1109_TPAMI_2019_2929519
crossref_primary_10_1038_s41467_023_43220_3
crossref_primary_10_1109_TPAMI_2020_3025258
crossref_primary_10_1109_TPAMI_2019_2915591
crossref_primary_10_1016_j_procs_2021_07_047
crossref_primary_10_1007_s11042_022_12618_4
crossref_primary_10_4218_etrij_17_0116_0509
crossref_primary_10_1016_j_engappai_2023_106141
crossref_primary_10_1109_TSP_2020_2981202
crossref_primary_10_1007_s00371_022_02553_8
crossref_primary_10_1109_TSIPN_2024_3378122
crossref_primary_10_1016_j_measurement_2021_109178
crossref_primary_10_1016_j_neucom_2020_10_033
crossref_primary_10_3389_fdata_2022_978857
crossref_primary_10_1007_s10851_012_0380_9
crossref_primary_10_1109_ACCESS_2020_3027375
crossref_primary_10_1109_ACCESS_2019_2928130
crossref_primary_10_1016_j_sigpro_2019_07_010
crossref_primary_10_1109_TGRS_2021_3075223
crossref_primary_10_1007_s00138_021_01251_0
crossref_primary_10_1109_ACCESS_2024_3398356
crossref_primary_10_1109_JIOT_2024_3436520
crossref_primary_10_1109_ACCESS_2021_3054034
crossref_primary_10_1109_TAES_2024_3421908
crossref_primary_10_1007_s11042_021_11843_7
crossref_primary_10_1109_TNNLS_2022_3232291
crossref_primary_10_1109_TIA_2024_3463608
crossref_primary_10_1109_TVCG_2025_3556209
crossref_primary_10_1016_j_cam_2020_113319
crossref_primary_10_1016_j_eswa_2024_124397
crossref_primary_10_1109_TSIPN_2022_3140477
crossref_primary_10_1016_j_eswa_2024_125039
crossref_primary_10_1002_hbm_25994
crossref_primary_10_1016_j_compenvurbsys_2022_101870
crossref_primary_10_1109_TIFS_2024_3407508
crossref_primary_10_1109_MSP_2018_2887284
crossref_primary_10_1080_10106049_2024_2436906
crossref_primary_10_3389_fenrg_2023_1082534
crossref_primary_10_1088_1361_6501_ad9ac1
crossref_primary_10_1109_ACCESS_2021_3079349
crossref_primary_10_1109_MSP_2020_3014591
crossref_primary_10_1016_j_neucom_2024_128062
crossref_primary_10_1109_TPDS_2023_3245092
crossref_primary_10_1109_TSP_2016_2546233
crossref_primary_10_1109_TSP_2021_3087905
crossref_primary_10_1145_3749156
crossref_primary_10_1109_ACCESS_2021_3127914
crossref_primary_10_1016_j_jmsy_2022_08_007
crossref_primary_10_1080_13658816_2021_2024195
crossref_primary_10_1051_0004_6361_201936094
crossref_primary_10_1016_j_acha_2023_03_005
crossref_primary_10_1145_3300198
crossref_primary_10_1109_TSTE_2018_2844102
crossref_primary_10_3390_w13121681
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1016_j_neucom_2018_09_008
crossref_primary_10_1109_TMI_2017_2716825
crossref_primary_10_1109_MMUL_2024_3371381
crossref_primary_10_1103_PhysRevResearch_2_033325
crossref_primary_10_1016_j_trc_2021_103323
crossref_primary_10_1080_10236198_2019_1576656
crossref_primary_10_1007_s11704_022_2220_4
crossref_primary_10_1109_ACCESS_2020_3037118
crossref_primary_10_1007_s11042_021_11033_5
crossref_primary_10_1145_3451394
crossref_primary_10_1371_journal_pone_0330640
crossref_primary_10_1109_LSP_2019_2906776
crossref_primary_10_1016_j_amc_2022_127112
crossref_primary_10_1109_JSTARS_2024_3355290
crossref_primary_10_1109_TSP_2024_3507787
crossref_primary_10_1155_2022_7699998
crossref_primary_10_1016_j_isprsjprs_2019_02_010
crossref_primary_10_1016_j_sigpro_2022_108480
crossref_primary_10_1109_TGRS_2021_3096320
crossref_primary_10_1002_cav_1847
crossref_primary_10_1007_s11401_016_1061_6
crossref_primary_10_1145_3568022
crossref_primary_10_1029_2024JH000520
crossref_primary_10_1145_3386569_3392443
crossref_primary_10_1155_2019_1637623
crossref_primary_10_1016_j_neuroimage_2015_06_010
crossref_primary_10_1038_s41598_025_01696_7
crossref_primary_10_1177_03611981211012003
crossref_primary_10_1049_iet_epa_2019_0763
crossref_primary_10_1016_j_eswa_2025_128615
crossref_primary_10_1016_j_ijmecsci_2025_110511
crossref_primary_10_1109_TNNLS_2025_3569413
crossref_primary_10_1016_j_neucom_2019_06_012
crossref_primary_10_1177_1748006X20935760
crossref_primary_10_1109_JIOT_2025_3577265
crossref_primary_10_1109_TSP_2019_2904925
crossref_primary_10_1109_JSTARS_2021_3061418
crossref_primary_10_1016_j_neucom_2023_126611
crossref_primary_10_1016_j_ymssp_2025_113308
crossref_primary_10_1016_j_acha_2014_06_006
crossref_primary_10_1016_j_asoc_2024_111899
crossref_primary_10_1016_j_neunet_2025_108125
crossref_primary_10_1007_s40747_022_00744_3
crossref_primary_10_1109_TCYB_2023_3256080
crossref_primary_10_1016_j_neunet_2021_06_018
crossref_primary_10_1080_17538947_2023_2300319
crossref_primary_10_1007_s11265_022_01802_2
crossref_primary_10_1109_TIP_2020_3043892
crossref_primary_10_1007_s00521_024_09751_6
crossref_primary_10_1007_s10851_021_01064_w
crossref_primary_10_1016_j_patcog_2021_107920
crossref_primary_10_1016_j_procs_2025_08_152
crossref_primary_10_1016_j_sigpro_2014_04_029
crossref_primary_10_1109_TIP_2018_2815744
crossref_primary_10_1109_TIP_2023_3275914
crossref_primary_10_1007_s00034_020_01613_5
crossref_primary_10_1109_TVCG_2022_3222186
crossref_primary_10_1186_s42400_022_00131_y
crossref_primary_10_1049_ipr2_12220
crossref_primary_10_1109_JSTARS_2021_3103744
crossref_primary_10_3390_rs14194951
crossref_primary_10_1016_j_neuroscience_2016_11_047
crossref_primary_10_1109_TCSS_2024_3385539
crossref_primary_10_1186_s12859_017_1616_x
crossref_primary_10_1109_ACCESS_2019_2903467
crossref_primary_10_1109_TGRS_2023_3264653
crossref_primary_10_1109_TIM_2021_3087834
crossref_primary_10_1186_s13634_018_0584_2
crossref_primary_10_1088_0266_5611_32_12_124001
crossref_primary_10_1109_RBME_2021_3122522
crossref_primary_10_3390_math9070772
crossref_primary_10_1109_TSP_2013_2238935
crossref_primary_10_1016_j_jvcir_2017_01_001
crossref_primary_10_1109_TSP_2015_2512529
crossref_primary_10_3390_e23040490
crossref_primary_10_1145_3495161
crossref_primary_10_3390_ijgi8090414
crossref_primary_10_3390_rs13214342
crossref_primary_10_1007_s43670_024_00093_x
crossref_primary_10_1109_JBHI_2021_3089162
crossref_primary_10_3233_JIFS_211729
crossref_primary_10_1016_j_laa_2024_09_014
crossref_primary_10_1109_TIP_2014_2378055
crossref_primary_10_1145_3695863
crossref_primary_10_1080_00207543_2023_2290700
crossref_primary_10_1109_TNSE_2022_3207205
crossref_primary_10_1186_s13634_022_00926_8
crossref_primary_10_1016_j_ins_2022_10_006
crossref_primary_10_1137_16M105928X
crossref_primary_10_1007_s10915_024_02466_9
crossref_primary_10_1109_TSP_2024_3349788
crossref_primary_10_1038_s41598_025_00116_0
crossref_primary_10_1109_TBDATA_2023_3313031
crossref_primary_10_1109_TSIPN_2016_2581303
crossref_primary_10_3389_fnins_2020_00630
crossref_primary_10_1016_j_jag_2022_102753
crossref_primary_10_1115_1_4040264
crossref_primary_10_1109_MCSE_2017_3421553
crossref_primary_10_1109_TETCI_2024_3378331
crossref_primary_10_1007_s10440_019_00299_5
crossref_primary_10_1109_TKDE_2025_3581578
crossref_primary_10_3390_sym14122654
crossref_primary_10_1109_MSP_2020_3015024
crossref_primary_10_1109_TIP_2019_2932853
crossref_primary_10_1038_s41598_023_29047_4
crossref_primary_10_1109_LGRS_2021_3067733
crossref_primary_10_1016_j_knosys_2019_105138
crossref_primary_10_1016_j_patcog_2020_107451
crossref_primary_10_1109_TVCG_2023_3255820
crossref_primary_10_1016_j_jmsy_2020_02_004
crossref_primary_10_1109_TSP_2019_2908909
crossref_primary_10_1016_j_patcog_2015_11_019
crossref_primary_10_1016_j_bspc_2022_103788
crossref_primary_10_1109_LSP_2021_3062233
crossref_primary_10_1007_s00034_021_01930_3
crossref_primary_10_1109_TNSE_2024_3513456
crossref_primary_10_1109_ACCESS_2020_3018452
crossref_primary_10_1038_s41587_020_00803_5
crossref_primary_10_1109_TSP_2019_2922160
crossref_primary_10_1109_TGRS_2025_3604376
crossref_primary_10_1016_j_neunet_2021_05_025
crossref_primary_10_1109_TNSE_2018_2849342
crossref_primary_10_1073_pnas_2021299118
crossref_primary_10_1016_j_acha_2020_04_001
crossref_primary_10_1109_TIP_2019_2906554
crossref_primary_10_1088_1361_6501_ad9e1d
crossref_primary_10_3390_jimaging7020020
crossref_primary_10_1007_s10851_018_0822_0
crossref_primary_10_1109_TIP_2020_2969076
crossref_primary_10_7717_peerj_17396
crossref_primary_10_1016_j_neuroimage_2015_05_050
crossref_primary_10_1038_s41598_023_32825_9
crossref_primary_10_1007_s00371_021_02244_w
crossref_primary_10_1080_17499518_2023_2172186
crossref_primary_10_1016_j_knosys_2025_114163
crossref_primary_10_1109_ACCESS_2023_3337260
crossref_primary_10_1109_TSMC_2024_3448226
crossref_primary_10_1109_ACCESS_2024_3399883
crossref_primary_10_1016_j_rcim_2025_102972
crossref_primary_10_1109_ACCESS_2022_3163535
crossref_primary_10_1002_cav_2084
crossref_primary_10_1109_TSP_2020_2982325
crossref_primary_10_1109_TNSE_2019_2958892
crossref_primary_10_1016_j_dsp_2021_103347
crossref_primary_10_1162_netn_a_00456
crossref_primary_10_1016_j_cagd_2017_11_002
crossref_primary_10_1016_j_sigpro_2016_07_003
crossref_primary_10_1109_TSP_2023_3295096
crossref_primary_10_1109_ACCESS_2019_2942853
crossref_primary_10_1109_TPAMI_2023_3339130
crossref_primary_10_1016_j_acha_2016_07_002
crossref_primary_10_1016_j_ijmecsci_2024_109075
crossref_primary_10_1109_TSP_2023_3304410
crossref_primary_10_1109_JSTARS_2021_3063679
crossref_primary_10_1007_s00371_019_01644_3
crossref_primary_10_1109_JSTARS_2021_3100400
crossref_primary_10_1016_j_sigpro_2011_04_025
crossref_primary_10_1109_ACCESS_2021_3120994
crossref_primary_10_1109_TSIPN_2022_3205555
crossref_primary_10_1109_TSP_2014_2328983
crossref_primary_10_1007_s00034_019_01086_1
crossref_primary_10_1002_sim_9140
crossref_primary_10_1109_JBHI_2024_3434394
crossref_primary_10_1016_j_ast_2025_110516
crossref_primary_10_1155_2021_5536386
crossref_primary_10_1145_3503043
crossref_primary_10_1007_s10444_020_09824_9
crossref_primary_10_1016_j_autcon_2022_104344
crossref_primary_10_1109_TMM_2023_3318325
crossref_primary_10_3390_e26050377
crossref_primary_10_1007_s12539_024_00644_9
crossref_primary_10_1016_j_acha_2018_02_001
crossref_primary_10_1109_TSP_2015_2481866
crossref_primary_10_3390_app12031402
crossref_primary_10_1109_TGRS_2023_3307609
crossref_primary_10_3934_fods_2021015
crossref_primary_10_1016_j_crhy_2019_08_003
crossref_primary_10_1109_TKDE_2020_2981333
crossref_primary_10_1016_j_eswa_2021_115127
crossref_primary_10_1109_TIP_2016_2529506
crossref_primary_10_1109_TSP_2013_2243445
crossref_primary_10_3390_s21206735
crossref_primary_10_1016_j_acha_2013_08_007
crossref_primary_10_1109_LSP_2024_3435396
crossref_primary_10_1016_j_eswa_2025_127033
crossref_primary_10_1016_j_acha_2018_09_006
crossref_primary_10_1134_S0016793223600418
crossref_primary_10_1016_j_acha_2016_06_007
crossref_primary_10_1080_03081060_2021_1992180
crossref_primary_10_1109_LSP_2012_2224655
crossref_primary_10_1007_s11042_024_20562_8
crossref_primary_10_1049_el_2016_0482
crossref_primary_10_1111_cgf_12670
crossref_primary_10_1109_TCSS_2021_3062884
crossref_primary_10_1109_JBHI_2023_3340325
crossref_primary_10_1109_TSIPN_2022_3193252
crossref_primary_10_1007_s11222_025_10689_5
crossref_primary_10_1016_j_ymssp_2022_110010
crossref_primary_10_1109_JSEN_2024_3392372
crossref_primary_10_1016_j_eswa_2023_122041
crossref_primary_10_1109_JSTSP_2012_2216504
crossref_primary_10_1109_TIFS_2023_3237364
crossref_primary_10_1080_26941899_2025_2554883
crossref_primary_10_1007_s10489_017_0955_7
crossref_primary_10_1109_TVCG_2024_3368083
crossref_primary_10_1111_cgf_12866
crossref_primary_10_1109_ACCESS_2019_2950643
crossref_primary_10_1162_netn_a_00084
crossref_primary_10_1016_j_acha_2016_05_004
crossref_primary_10_1007_s41095_022_0290_8
crossref_primary_10_1109_JSEN_2021_3129340
crossref_primary_10_1016_j_acha_2016_05_005
crossref_primary_10_3390_math9192465
crossref_primary_10_1109_TSP_2016_2602809
crossref_primary_10_1109_TIA_2022_3231586
crossref_primary_10_1109_TITS_2021_3091708
crossref_primary_10_3389_fmed_2021_750396
crossref_primary_10_1016_j_eswa_2025_128386
crossref_primary_10_1109_JSTARS_2025_3549515
crossref_primary_10_1108_DTA_02_2022_0056
crossref_primary_10_1109_TIP_2024_3468893
crossref_primary_10_1007_s00025_024_02247_8
crossref_primary_10_1016_j_sigpro_2016_05_037
crossref_primary_10_1109_TGRS_2023_3257369
crossref_primary_10_1109_TSP_2019_2899822
crossref_primary_10_1016_j_aei_2023_102143
crossref_primary_10_1016_j_media_2018_06_001
crossref_primary_10_1088_1367_2630_ac54c9
crossref_primary_10_1109_ACCESS_2020_3021580
crossref_primary_10_1007_JHEP01_2018_139
crossref_primary_10_1109_ACCESS_2023_3287214
crossref_primary_10_3390_app15094609
crossref_primary_10_1109_TGRS_2021_3079438
crossref_primary_10_1016_j_spasta_2019_100359
crossref_primary_10_1016_j_trc_2020_102620
crossref_primary_10_1109_TCYB_2018_2883970
crossref_primary_10_1007_s11042_023_15346_5
crossref_primary_10_1109_JIOT_2023_3317190
crossref_primary_10_1016_j_compeleceng_2021_107235
crossref_primary_10_1109_TSP_2016_2544747
crossref_primary_10_1007_s10915_021_01699_2
crossref_primary_10_1155_2023_7152010
crossref_primary_10_1109_TGRS_2019_2949180
crossref_primary_10_1109_TGRS_2022_3210398
crossref_primary_10_1016_j_asoc_2023_110015
crossref_primary_10_1016_j_jcp_2024_113708
crossref_primary_10_1109_TPAMI_2020_3042093
crossref_primary_10_1109_TIM_2024_3413190
crossref_primary_10_3390_math9121407
crossref_primary_10_1002_int_22966
crossref_primary_10_1080_10586458_2018_1538911
crossref_primary_10_1016_j_patrec_2021_04_021
crossref_primary_10_1109_TVT_2022_3214348
crossref_primary_10_1186_s13634_024_01187_3
crossref_primary_10_1109_TSP_2013_2259825
crossref_primary_10_1109_ACCESS_2021_3085114
crossref_primary_10_1016_j_patrec_2021_09_020
crossref_primary_10_1109_TCSII_2021_3065977
crossref_primary_10_1186_s13073_021_00845_7
crossref_primary_10_1109_ACCESS_2023_3320682
crossref_primary_10_1016_j_acha_2021_10_004
crossref_primary_10_1007_s00041_021_09816_3
crossref_primary_10_1109_TIP_2021_3134466
crossref_primary_10_1016_j_neunet_2024_106207
crossref_primary_10_1109_TGCN_2021_3069395
crossref_primary_10_1109_ACCESS_2020_2982439
crossref_primary_10_3390_app14209288
crossref_primary_10_1016_j_aei_2023_102120
crossref_primary_10_1016_j_ijepes_2023_109771
crossref_primary_10_1109_TNNLS_2022_3202569
crossref_primary_10_1109_TCSVT_2020_3015901
crossref_primary_10_1016_j_patcog_2021_108334
crossref_primary_10_1002_cjce_25080
crossref_primary_10_1109_TSP_2015_2424203
crossref_primary_10_1109_TIM_2020_3037953
crossref_primary_10_3389_fcvm_2022_983868
crossref_primary_10_1109_ACCESS_2021_3094663
crossref_primary_10_1007_s00371_023_02935_6
crossref_primary_10_1007_s13278_022_00895_8
crossref_primary_10_1109_LSP_2017_2769002
crossref_primary_10_1016_j_neucom_2025_129594
crossref_primary_10_1016_j_knosys_2021_108105
crossref_primary_10_1016_j_acha_2017_10_002
crossref_primary_10_1016_j_acha_2017_10_003
crossref_primary_10_1007_s00041_021_09878_3
crossref_primary_10_1016_j_asoc_2023_110052
crossref_primary_10_1109_ACCESS_2020_2989443
crossref_primary_10_1007_s00041_021_09832_3
crossref_primary_10_1109_ACCESS_2021_3111898
crossref_primary_10_1109_TNNLS_2024_3363244
crossref_primary_10_1145_3627816
crossref_primary_10_3389_fnins_2022_967116
crossref_primary_10_1016_j_artint_2022_103708
crossref_primary_10_1007_s10489_021_03120_9
crossref_primary_10_1002_hbm_25175
crossref_primary_10_1016_j_acha_2015_09_005
crossref_primary_10_1111_mice_12450
crossref_primary_10_1109_TVCG_2015_2498557
crossref_primary_10_1145_3469799
crossref_primary_10_1109_TGRS_2022_3217142
crossref_primary_10_1007_s43670_021_00019_x
crossref_primary_10_1038_s41598_025_93168_1
crossref_primary_10_1109_TMM_2024_3521735
crossref_primary_10_1109_TMI_2016_2633393
crossref_primary_10_1109_TSP_2020_3026980
crossref_primary_10_1049_iet_ipr_2018_6224
crossref_primary_10_1109_TWC_2023_3239311
crossref_primary_10_1109_TCSVT_2016_2633418
crossref_primary_10_3390_app13127143
crossref_primary_10_1109_TNNLS_2022_3177742
crossref_primary_10_1016_j_dsp_2020_102728
crossref_primary_10_1109_TSIPN_2021_3109820
crossref_primary_10_1016_j_neuroimage_2021_118095
crossref_primary_10_1109_TSP_2024_3439211
crossref_primary_10_3390_rs14092227
crossref_primary_10_1002_hbm_26255
crossref_primary_10_1109_ACCESS_2023_3323591
crossref_primary_10_1109_TSP_2018_2839620
crossref_primary_10_1007_s10044_024_01214_x
crossref_primary_10_3390_a16030126
crossref_primary_10_1109_JSAC_2024_3460086
crossref_primary_10_2118_215056_PA
crossref_primary_10_1109_TKDE_2020_2984212
crossref_primary_10_3390_math12182823
crossref_primary_10_1016_j_sigpro_2014_01_028
crossref_primary_10_1109_TGRS_2021_3135567
crossref_primary_10_1109_JPROC_2018_2799702
crossref_primary_10_1016_j_psep_2025_106855
crossref_primary_10_1145_3309547
crossref_primary_10_1109_TSP_2021_3119416
crossref_primary_10_1080_10494820_2020_1855207
crossref_primary_10_1109_JIOT_2024_3380746
crossref_primary_10_1109_ACCESS_2021_3119569
crossref_primary_10_1109_TITS_2021_3067675
crossref_primary_10_1016_j_sigpro_2022_108662
crossref_primary_10_1109_TIM_2025_3565242
crossref_primary_10_1016_j_sigpro_2021_108302
crossref_primary_10_1007_s11431_020_1871_8
crossref_primary_10_1109_TKDE_2023_3333824
crossref_primary_10_1111_cgf_14656
crossref_primary_10_1109_TSP_2014_2369013
crossref_primary_10_1145_3565973
crossref_primary_10_1109_TSP_2019_2908129
crossref_primary_10_1016_j_ifacol_2018_03_074
crossref_primary_10_1109_TSIPN_2016_2632039
crossref_primary_10_1007_s10618_021_00779_z
crossref_primary_10_1007_s00521_021_06084_6
crossref_primary_10_1038_s41598_025_98398_x
crossref_primary_10_1109_TNNLS_2025_3552129
crossref_primary_10_1109_TSIPN_2023_3240899
crossref_primary_10_1016_j_imavis_2020_104092
crossref_primary_10_1016_j_physa_2017_06_018
crossref_primary_10_3390_s21041275
crossref_primary_10_3389_frai_2024_1290491
crossref_primary_10_1007_s10489_022_03337_2
crossref_primary_10_1016_j_neucom_2025_129780
crossref_primary_10_1371_journal_pone_0284563
crossref_primary_10_1177_03611981221095511
crossref_primary_10_1109_TMM_2020_3020693
crossref_primary_10_1109_LSP_2017_2704359
crossref_primary_10_1145_3491206
crossref_primary_10_1007_s00530_023_01177_9
crossref_primary_10_1587_nolta_13_511
crossref_primary_10_1016_j_energy_2024_132489
crossref_primary_10_1016_j_dsp_2024_104414
crossref_primary_10_1109_LSP_2019_2954981
crossref_primary_10_1155_2022_8153249
crossref_primary_10_1016_j_knosys_2025_113615
crossref_primary_10_1038_s42005_024_01711_9
crossref_primary_10_3390_rs16203912
crossref_primary_10_1016_j_acha_2022_03_002
crossref_primary_10_3390_a13110295
crossref_primary_10_1007_s10915_023_02274_7
crossref_primary_10_1007_s41468_023_00129_6
crossref_primary_10_1111_risa_14241
Cites_doi 10.1371/journal.pbio.0060159
10.1109/78.258085
10.1093/biomet/81.3.425
10.1109/83.862633
10.1111/j.1365-2966.2008.13448.x
10.1002/cpa.10116
10.1007/s00209-008-0405-7
10.1109/18.119751
10.1109/TSP.2002.804091
10.1016/j.jcss.2007.08.006
10.1109/ICCV.1999.790410
10.1214/07-AOAS137
10.1137/0715083
10.1109/TIP.2003.818640
10.1029/96JB00104
10.1109/76.499834
10.1016/j.acha.2006.03.004
10.1016/j.acha.2004.12.004
10.1109/78.258077
10.1016/0165-1684(94)90211-9
10.1016/j.neuroimage.2004.07.056
10.1137/1031129
10.1145/321281.321282
10.1006/acha.1995.1008
10.1002/cpa.20242
10.1016/j.acha.2007.07.001
10.1142/S0219720009004187
10.1007/s00357-007-0007-9
10.1007/b97417
10.1109/10.568915
10.1137/0515056
10.1145/183422.183423
10.1016/S0167-8655(03)00090-4
10.1109/83.806616
10.1006/acha.2000.0343
10.1109/18.857793
10.1109/18.119725
10.1109/INFCOM.2003.1209207
10.1006/acha.1995.1009
10.1006/acha.1999.0272
10.1142/S0219691308002288
10.1016/S0730-725X(99)00100-9
10.1016/j.acha.2006.04.004
10.1137/S0895479894270427
10.1109/TIP.2005.863972
10.1109/42.700727
10.1109/TCOM.1983.1095851
10.1111/j.1467-9868.2008.00672.x
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.acha.2010.04.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1096-603X
EndPage 150
ExternalDocumentID oai:HAL:inria-00541855v1
10_1016_j_acha_2010_04_005
S1063520310000552
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c380t-b652cf15ae5dd3b33034b2238e00de71fd2ec2caa22612a164bbfba8c27d0ca33
ISICitedReferencesCount 1525
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Tue Oct 14 20:12:58 EDT 2025
Sat Nov 29 08:20:21 EST 2025
Tue Nov 18 22:43:19 EST 2025
Fri Feb 23 02:28:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Wavelets
Graph theory
Overcomplete wavelet frames
Spectral graph theory
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-b652cf15ae5dd3b33034b2238e00de71fd2ec2caa22612a164bbfba8c27d0ca33
ORCID 0000-0002-9450-8125
OpenAccessLink https://inria.hal.science/inria-00541855
PageCount 22
ParticipantIDs hal_primary_oai_HAL_inria_00541855v1
crossref_primary_10_1016_j_acha_2010_04_005
crossref_citationtrail_10_1016_j_acha_2010_04_005
elsevier_sciencedirect_doi_10_1016_j_acha_2010_04_005
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sendur, Selesnick (br0080) 2002; 50
Apté, Damerau, Weiss (br0190) 1994; 12
Flandrin (br0170) 1992; 38
Phillips (br0500) 2003
Sleijpen, der Vorst (br0460) 1996; 17
Antoine, Vandergheynst (br0270) 1999; 7
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (br0550) 2008; 6
M. Crovella, E. Kolaczyk, Graph wavelets for spatial traffic analysis, in: INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2003, pp. 1848–1857.
Coifman, Maggioni (br0350) 2006; 21
Chung (br0200) 1997; vol. 92
R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002.
D. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157.
Miller, Willsky (br0130) 1995; 2
Kingsbury (br0240) 2001; 10
Said, Pearlman (br0020) 1996; 6
Geddes (br0490) 1978; 15
Bioucas-Dias (br0150) 2006; 15
Singer (br0400) 2006; 21
Chang, Yu, Vetterli (br0070) 2000; 9
Daubechies, Teschke (br0100) 2005; 19
Daubechies (br0430) 1992
Simoncelli, Freeman, Adelson, Heeger (br0230) 1992; 38
Lee, Nadler, Wasserman (br0340) 2008; 2
Heil, Walnut (br0440) 1989; 31
Candes, Donoho (br0250) 2003; 57
Ruttimann, Unser, Rawlings, Rio, Ramsey, Mattay, Hommer, Frank, Weinberger (br0530) 1998; 17
Fraser (br0480) 1965; 12
Belkin, Niyogi (br0410) 2008; 74
Geller, Mayeli (br0370) 2009; 262
Reed, Simon (br0420) 1980
Wiaux, McEwen, Vandergheynst, Blanc (br0280) 2008; 388
Peyré, Mallat (br0260) 2008; 61
Donoho, Johnstone (br0060) 1994; 81
Murtagh (br0330) 2007; 24
Ville, Blu, Unser (br0540) 2004; 23
Starck, Bijaoui (br0110) 1994; 35
Burt, Adelson (br0220) 1983; 31
Jansen, Nason, Silverman (br0320) 2009; 71
Mallat (br0210) 1998
Buccigrossi, Simoncelli (br0040) 1999; 8
Grochenig (br0510) 1993; 41
Cheney (br0470) 1966
Portilla, Strela, Wainwright, Simoncelli (br0090) 2003; 12
Zaroubi, Goelman (br0520) 2000; 18
Hilton (br0030) 1997; 44
Taubman, Marcellin (br0050) 2002
Shapiro (br0010) 1993; 41
Hein, Audibert, von Luxburg (br0390) 2005; vol. 3559
Smalter, Huan, Lushington (br0310) 2009; 7
Donoho (br0120) 1995; 2
Nowak, Kolaczyk (br0140) 2000; 46
Antoine, Bogdanova, Vandergheynst (br0290) 2008; 6
Watkins (br0450) 2007
Maggioni, Mhaskar (br0360) 2008; 24
Manthalkar, Biswas, Chatterji (br0160) 2003; 24
Grossmann, Morlet (br0380) 1984; 15
Wessel, Smith (br0560) 1996; 101
Chung (10.1016/j.acha.2010.04.005_br0200) 1997; vol. 92
Miller (10.1016/j.acha.2010.04.005_br0130) 1995; 2
Candes (10.1016/j.acha.2010.04.005_br0250) 2003; 57
Fraser (10.1016/j.acha.2010.04.005_br0480) 1965; 12
Portilla (10.1016/j.acha.2010.04.005_br0090) 2003; 12
Antoine (10.1016/j.acha.2010.04.005_br0270) 1999; 7
Maggioni (10.1016/j.acha.2010.04.005_br0360) 2008; 24
Sleijpen (10.1016/j.acha.2010.04.005_br0460) 1996; 17
Ruttimann (10.1016/j.acha.2010.04.005_br0530) 1998; 17
Bioucas-Dias (10.1016/j.acha.2010.04.005_br0150) 2006; 15
Manthalkar (10.1016/j.acha.2010.04.005_br0160) 2003; 24
Said (10.1016/j.acha.2010.04.005_br0020) 1996; 6
Daubechies (10.1016/j.acha.2010.04.005_br0100) 2005; 19
10.1016/j.acha.2010.04.005_br0300
Watkins (10.1016/j.acha.2010.04.005_br0450) 2007
Grossmann (10.1016/j.acha.2010.04.005_br0380) 1984; 15
Geddes (10.1016/j.acha.2010.04.005_br0490) 1978; 15
Donoho (10.1016/j.acha.2010.04.005_br0060) 1994; 81
Buccigrossi (10.1016/j.acha.2010.04.005_br0040) 1999; 8
Hein (10.1016/j.acha.2010.04.005_br0390) 2005; vol. 3559
Chang (10.1016/j.acha.2010.04.005_br0070) 2000; 9
Zaroubi (10.1016/j.acha.2010.04.005_br0520) 2000; 18
Donoho (10.1016/j.acha.2010.04.005_br0120) 1995; 2
Grochenig (10.1016/j.acha.2010.04.005_br0510) 1993; 41
Mallat (10.1016/j.acha.2010.04.005_br0210) 1998
Heil (10.1016/j.acha.2010.04.005_br0440) 1989; 31
Daubechies (10.1016/j.acha.2010.04.005_br0430) 1992
Geller (10.1016/j.acha.2010.04.005_br0370) 2009; 262
Nowak (10.1016/j.acha.2010.04.005_br0140) 2000; 46
Wiaux (10.1016/j.acha.2010.04.005_br0280) 2008; 388
Jansen (10.1016/j.acha.2010.04.005_br0320) 2009; 71
Phillips (10.1016/j.acha.2010.04.005_br0500) 2003
Shapiro (10.1016/j.acha.2010.04.005_br0010) 1993; 41
Starck (10.1016/j.acha.2010.04.005_br0110) 1994; 35
Burt (10.1016/j.acha.2010.04.005_br0220) 1983; 31
Taubman (10.1016/j.acha.2010.04.005_br0050) 2002
Lee (10.1016/j.acha.2010.04.005_br0340) 2008; 2
Hilton (10.1016/j.acha.2010.04.005_br0030) 1997; 44
Apté (10.1016/j.acha.2010.04.005_br0190) 1994; 12
Murtagh (10.1016/j.acha.2010.04.005_br0330) 2007; 24
Singer (10.1016/j.acha.2010.04.005_br0400) 2006; 21
Belkin (10.1016/j.acha.2010.04.005_br0410) 2008; 74
Kingsbury (10.1016/j.acha.2010.04.005_br0240) 2001; 10
Peyré (10.1016/j.acha.2010.04.005_br0260) 2008; 61
Cheney (10.1016/j.acha.2010.04.005_br0470) 1966
Reed (10.1016/j.acha.2010.04.005_br0420) 1980
Smalter (10.1016/j.acha.2010.04.005_br0310) 2009; 7
Coifman (10.1016/j.acha.2010.04.005_br0350) 2006; 21
Flandrin (10.1016/j.acha.2010.04.005_br0170) 1992; 38
10.1016/j.acha.2010.04.005_br0180
Simoncelli (10.1016/j.acha.2010.04.005_br0230) 1992; 38
Ville (10.1016/j.acha.2010.04.005_br0540) 2004; 23
Sendur (10.1016/j.acha.2010.04.005_br0080) 2002; 50
10.1016/j.acha.2010.04.005_br0570
Antoine (10.1016/j.acha.2010.04.005_br0290) 2008; 6
Wessel (10.1016/j.acha.2010.04.005_br0560) 1996; 101
Hagmann (10.1016/j.acha.2010.04.005_br0550) 2008; 6
References_xml – volume: 15
  start-page: 937
  year: 2006
  end-page: 951
  ident: br0150
  article-title: Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
  publication-title: IEEE Trans. Image Process.
– volume: vol. 92
  year: 1997
  ident: br0200
  article-title: Spectral Graph Theory
  publication-title: CBMS Reg. Conf. Ser. Math.
– volume: 7
  start-page: 262
  year: 1999
  end-page: 291
  ident: br0270
  article-title: Wavelets on the 2-sphere: A group-theoretical approach
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2002
  ident: br0050
  article-title: JPEG2000: Image Compression Fundamentals, Standards and Practice
– volume: 12
  start-page: 1338
  year: 2003
  end-page: 1351
  ident: br0090
  article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 1225
  year: 1978
  end-page: 1233
  ident: br0490
  article-title: Near-minimax polynomial approximation in an elliptical region
  publication-title: SIAM J. Numer. Anal.
– volume: 15
  start-page: 723
  year: 1984
  end-page: 736
  ident: br0380
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM J. Math. Anal.
– volume: 74
  start-page: 1289
  year: 2008
  end-page: 1308
  ident: br0410
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
  publication-title: J. Comput. System Sci.
– volume: 21
  start-page: 128
  year: 2006
  end-page: 134
  ident: br0400
  article-title: From graph to manifold Laplacian: The convergence rate
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 12
  start-page: 295
  year: 1965
  end-page: 314
  ident: br0480
  article-title: A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable
  publication-title: J. Assoc. Comput. Mach.
– volume: 262
  start-page: 895
  year: 2009
  end-page: 927
  ident: br0370
  article-title: Continuous wavelets on compact manifolds
  publication-title: Math. Z.
– volume: 50
  start-page: 2744
  year: 2002
  end-page: 2756
  ident: br0080
  article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
  publication-title: IEEE Trans. Signal Process.
– volume: 24
  start-page: 2455
  year: 2003
  end-page: 2462
  ident: br0160
  article-title: Rotation and scale invariant texture features using discrete wavelet packet transform
  publication-title: Pattern Recognit. Lett.
– volume: 31
  start-page: 628
  year: 1989
  end-page: 666
  ident: br0440
  article-title: Continuous and discrete wavelet transforms
  publication-title: SIAM Rev.
– volume: 24
  start-page: 3
  year: 2007
  end-page: 32
  ident: br0330
  article-title: The Haar wavelet transform of a dendrogram
  publication-title: J. Classification
– volume: 46
  start-page: 1811
  year: 2000
  end-page: 1825
  ident: br0140
  article-title: A statistical multiscale framework for Poisson inverse problems
  publication-title: IEEE Trans. Inform. Theory
– volume: 8
  start-page: 1688
  year: 1999
  end-page: 1701
  ident: br0040
  article-title: Image compression via joint statistical characterization in the wavelet domain
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 1
  year: 2005
  end-page: 16
  ident: br0100
  article-title: Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising
  publication-title: Appl. Comput. Harmon. Anal.
– year: 1992
  ident: br0430
  article-title: Ten Lectures on Wavelets
– volume: 12
  start-page: 233
  year: 1994
  end-page: 251
  ident: br0190
  article-title: Automated learning of decision rules for text categorization
  publication-title: ACM Trans. Inf. Syst.
– volume: 9
  start-page: 1532
  year: 2000
  end-page: 1546
  ident: br0070
  article-title: Adaptive wavelet thresholding for image denoising and compression
  publication-title: IEEE Trans. Image Process.
– volume: 61
  start-page: 1173
  year: 2008
  end-page: 1212
  ident: br0260
  article-title: Orthogonal bandlet bases for geometric images approximation
  publication-title: Comm. Pure Appl. Math.
– year: 2007
  ident: br0450
  article-title: The Matrix Eigenvalue Problem – GR and Krylov Subspace Methods
– volume: 24
  start-page: 329
  year: 2008
  end-page: 353
  ident: br0360
  article-title: Diffusion polynomial frames on metric measure spaces
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 17
  start-page: 142
  year: 1998
  end-page: 154
  ident: br0530
  article-title: Statistical analysis of functional MRI data in the wavelet domain
  publication-title: IEEE Trans. Medical Imaging
– volume: 41
  start-page: 3445
  year: 1993
  end-page: 3462
  ident: br0010
  article-title: Embedded image coding using zerotrees of wavelet coefficients
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 1472
  year: 2004
  end-page: 1485
  ident: br0540
  article-title: Integrated wavelet processing and spatial statistical testing of fMRI data
  publication-title: Neuroimage
– year: 1998
  ident: br0210
  article-title: A Wavelet Tour of Signal Processing
– volume: vol. 3559
  start-page: 470
  year: 2005
  end-page: 485
  ident: br0390
  article-title: From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians
  publication-title: Proc. 18th Conf. Learning Theory (COLT)
– volume: 38
  start-page: 587
  year: 1992
  end-page: 607
  ident: br0230
  article-title: Shiftable multi-scale transforms
  publication-title: IEEE Trans. Inform. Theory
– volume: 10
  start-page: 234
  year: 2001
  end-page: 253
  ident: br0240
  article-title: Complex wavelets for shift invariant analysis and filtering of signals
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 2
  start-page: 101
  year: 1995
  end-page: 126
  ident: br0120
  article-title: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition
  publication-title: Appl. Comput. Harmon. Anal.
– reference: M. Crovella, E. Kolaczyk, Graph wavelets for spatial traffic analysis, in: INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2003, pp. 1848–1857.
– volume: 6
  start-page: 137
  year: 2008
  end-page: 156
  ident: br0290
  article-title: The continuous wavelet transform on conic sections
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
– volume: 35
  start-page: 195
  year: 1994
  end-page: 211
  ident: br0110
  article-title: Filtering and deconvolution by the wavelet transform
  publication-title: Signal Process.
– volume: 101
  start-page: 8741
  year: 1996
  end-page: 8743
  ident: br0560
  article-title: A global, self-consistent, hierarchical, high-resolution shoreline database
  publication-title: J. Geophys. Res.
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: br0060
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 388
  start-page: 770
  year: 2008
  ident: br0280
  article-title: Exact reconstruction with directional wavelets on the sphere
  publication-title: Mon. Not. R. Astron. Soc.
– reference: R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proceedings of the 19th International Conference on Machine Learning, 2002.
– volume: 31
  start-page: 532
  year: 1983
  end-page: 540
  ident: br0220
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
– year: 1980
  ident: br0420
  article-title: Methods of Modern Mathematical Physics, vol. 1: Functional Analysis
– volume: 21
  start-page: 53
  year: 2006
  end-page: 94
  ident: br0350
  article-title: Diffusion wavelets
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 2
  start-page: 127
  year: 1995
  end-page: 147
  ident: br0130
  article-title: A multiscale approach to sensor fusion and the solution of linear inverse problems
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 57
  start-page: 219
  year: 2003
  end-page: 266
  ident: br0250
  article-title: New tight frames of curvelets and optimal representations of objects with piecewise
  publication-title: Comm. Pure Appl. Math.
– volume: 71
  start-page: 97
  year: 2009
  end-page: 125
  ident: br0320
  article-title: Multiscale methods for data on graphs and irregular multidimensional situations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 6
  start-page: 243
  year: 1996
  end-page: 250
  ident: br0020
  article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 7
  start-page: 473
  year: 2009
  end-page: 497
  ident: br0310
  article-title: Graph wavelet alignment kernels for drug virtual screening
  publication-title: J. Bioinform. Comput. Biol.
– volume: 38
  start-page: 910
  year: 1992
  end-page: 917
  ident: br0170
  article-title: Wavelet analysis and synthesis of fractional Brownian motion
  publication-title: IEEE Trans. Inform. Theory
– volume: 44
  start-page: 394
  year: 1997
  end-page: 402
  ident: br0030
  article-title: Wavelet and wavelet packet compression of electrocardiograms
  publication-title: IEEE Trans. Biomed. Eng.
– reference: D. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157.
– volume: 41
  start-page: 3331
  year: 1993
  end-page: 3340
  ident: br0510
  article-title: Acceleration of the frame algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 6
  start-page: e159
  year: 2008
  ident: br0550
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Comput. Biol.
– volume: 18
  start-page: 59
  year: 2000
  end-page: 68
  ident: br0520
  article-title: Complex denoising of MR data via wavelet analysis: Application for functional MRI
  publication-title: Magnetic Resonance Imaging
– year: 1966
  ident: br0470
  article-title: Introduction to Approximation Theory
– volume: 17
  start-page: 401
  year: 1996
  end-page: 425
  ident: br0460
  article-title: A Jacobi–Davidson iteration method for linear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2003
  ident: br0500
  article-title: Interpolation and Approximation by Polynomials
  publication-title: CMS Books Math.
– volume: 2
  start-page: 435
  year: 2008
  end-page: 471
  ident: br0340
  article-title: Treelets an adaptive multi-scale basis for sparse unordered data
  publication-title: Ann. Appl. Stat.
– ident: 10.1016/j.acha.2010.04.005_br0570
– volume: 6
  start-page: e159
  issue: 7
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0550
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 41
  start-page: 3445
  issue: 12
  year: 1993
  ident: 10.1016/j.acha.2010.04.005_br0010
  article-title: Embedded image coding using zerotrees of wavelet coefficients
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258085
– volume: 81
  start-page: 425
  year: 1994
  ident: 10.1016/j.acha.2010.04.005_br0060
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 9
  start-page: 1532
  issue: 9
  year: 2000
  ident: 10.1016/j.acha.2010.04.005_br0070
  article-title: Adaptive wavelet thresholding for image denoising and compression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.862633
– volume: 388
  start-page: 770
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0280
  article-title: Exact reconstruction with directional wavelets on the sphere
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2008.13448.x
– volume: 57
  start-page: 219
  year: 2003
  ident: 10.1016/j.acha.2010.04.005_br0250
  article-title: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.10116
– volume: 262
  start-page: 895
  year: 2009
  ident: 10.1016/j.acha.2010.04.005_br0370
  article-title: Continuous wavelets on compact manifolds
  publication-title: Math. Z.
  doi: 10.1007/s00209-008-0405-7
– volume: 38
  start-page: 910
  issue: 2
  year: 1992
  ident: 10.1016/j.acha.2010.04.005_br0170
  article-title: Wavelet analysis and synthesis of fractional Brownian motion
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.119751
– volume: 50
  start-page: 2744
  issue: 11
  year: 2002
  ident: 10.1016/j.acha.2010.04.005_br0080
  article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.804091
– year: 1966
  ident: 10.1016/j.acha.2010.04.005_br0470
– volume: 74
  start-page: 1289
  issue: 8
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0410
  article-title: Towards a theoretical foundation for Laplacian-based manifold methods
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2007.08.006
– ident: 10.1016/j.acha.2010.04.005_br0180
  doi: 10.1109/ICCV.1999.790410
– volume: 2
  start-page: 435
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0340
  article-title: Treelets an adaptive multi-scale basis for sparse unordered data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS137
– volume: 15
  start-page: 1225
  issue: 6
  year: 1978
  ident: 10.1016/j.acha.2010.04.005_br0490
  article-title: Near-minimax polynomial approximation in an elliptical region
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715083
– volume: 12
  start-page: 1338
  year: 2003
  ident: 10.1016/j.acha.2010.04.005_br0090
  article-title: Image denoising using scale mixtures of Gaussians in the wavelet domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.818640
– volume: 101
  start-page: 8741
  issue: B4
  year: 1996
  ident: 10.1016/j.acha.2010.04.005_br0560
  article-title: A global, self-consistent, hierarchical, high-resolution shoreline database
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JB00104
– volume: 6
  start-page: 243
  issue: 3
  year: 1996
  ident: 10.1016/j.acha.2010.04.005_br0020
  article-title: A new, fast, and efficient image codec based on set partitioning in hierarchical trees
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.499834
– volume: 21
  start-page: 128
  issue: 1
  year: 2006
  ident: 10.1016/j.acha.2010.04.005_br0400
  article-title: From graph to manifold Laplacian: The convergence rate
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.03.004
– year: 2002
  ident: 10.1016/j.acha.2010.04.005_br0050
– volume: 19
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.acha.2010.04.005_br0100
  article-title: Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2004.12.004
– volume: 41
  start-page: 3331
  issue: 12
  year: 1993
  ident: 10.1016/j.acha.2010.04.005_br0510
  article-title: Acceleration of the frame algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258077
– volume: 35
  start-page: 195
  issue: 3
  year: 1994
  ident: 10.1016/j.acha.2010.04.005_br0110
  article-title: Filtering and deconvolution by the wavelet transform
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90211-9
– volume: 23
  start-page: 1472
  issue: 4
  year: 2004
  ident: 10.1016/j.acha.2010.04.005_br0540
  article-title: Integrated wavelet processing and spatial statistical testing of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.056
– year: 1992
  ident: 10.1016/j.acha.2010.04.005_br0430
– volume: 31
  start-page: 628
  issue: 4
  year: 1989
  ident: 10.1016/j.acha.2010.04.005_br0440
  article-title: Continuous and discrete wavelet transforms
  publication-title: SIAM Rev.
  doi: 10.1137/1031129
– volume: 12
  start-page: 295
  year: 1965
  ident: 10.1016/j.acha.2010.04.005_br0480
  article-title: A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321281.321282
– volume: 2
  start-page: 101
  issue: 2
  year: 1995
  ident: 10.1016/j.acha.2010.04.005_br0120
  article-title: Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1995.1008
– volume: 61
  start-page: 1173
  issue: 9
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0260
  article-title: Orthogonal bandlet bases for geometric images approximation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20242
– volume: 24
  start-page: 329
  issue: 3
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0360
  article-title: Diffusion polynomial frames on metric measure spaces
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2007.07.001
– volume: vol. 3559
  start-page: 470
  year: 2005
  ident: 10.1016/j.acha.2010.04.005_br0390
  article-title: From graphs to manifolds – weak and strong pointwise consistency of graph Laplacians
– volume: 7
  start-page: 473
  year: 2009
  ident: 10.1016/j.acha.2010.04.005_br0310
  article-title: Graph wavelet alignment kernels for drug virtual screening
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720009004187
– volume: 24
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.acha.2010.04.005_br0330
  article-title: The Haar wavelet transform of a dendrogram
  publication-title: J. Classification
  doi: 10.1007/s00357-007-0007-9
– year: 2003
  ident: 10.1016/j.acha.2010.04.005_br0500
  article-title: Interpolation and Approximation by Polynomials
  doi: 10.1007/b97417
– volume: 44
  start-page: 394
  issue: 5
  year: 1997
  ident: 10.1016/j.acha.2010.04.005_br0030
  article-title: Wavelet and wavelet packet compression of electrocardiograms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.568915
– year: 2007
  ident: 10.1016/j.acha.2010.04.005_br0450
– volume: 15
  start-page: 723
  issue: 4
  year: 1984
  ident: 10.1016/j.acha.2010.04.005_br0380
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0515056
– volume: 12
  start-page: 233
  issue: 3
  year: 1994
  ident: 10.1016/j.acha.2010.04.005_br0190
  article-title: Automated learning of decision rules for text categorization
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/183422.183423
– volume: 24
  start-page: 2455
  issue: 14
  year: 2003
  ident: 10.1016/j.acha.2010.04.005_br0160
  article-title: Rotation and scale invariant texture features using discrete wavelet packet transform
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00090-4
– volume: 8
  start-page: 1688
  issue: 12
  year: 1999
  ident: 10.1016/j.acha.2010.04.005_br0040
  article-title: Image compression via joint statistical characterization in the wavelet domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.806616
– volume: vol. 92
  year: 1997
  ident: 10.1016/j.acha.2010.04.005_br0200
  article-title: Spectral Graph Theory
– year: 1998
  ident: 10.1016/j.acha.2010.04.005_br0210
– volume: 10
  start-page: 234
  issue: 3
  year: 2001
  ident: 10.1016/j.acha.2010.04.005_br0240
  article-title: Complex wavelets for shift invariant analysis and filtering of signals
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.2000.0343
– volume: 46
  start-page: 1811
  issue: 5
  year: 2000
  ident: 10.1016/j.acha.2010.04.005_br0140
  article-title: A statistical multiscale framework for Poisson inverse problems
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.857793
– volume: 38
  start-page: 587
  issue: 2
  year: 1992
  ident: 10.1016/j.acha.2010.04.005_br0230
  article-title: Shiftable multi-scale transforms
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.119725
– ident: 10.1016/j.acha.2010.04.005_br0300
  doi: 10.1109/INFCOM.2003.1209207
– volume: 2
  start-page: 127
  issue: 2
  year: 1995
  ident: 10.1016/j.acha.2010.04.005_br0130
  article-title: A multiscale approach to sensor fusion and the solution of linear inverse problems
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1995.1009
– volume: 7
  start-page: 262
  issue: 3
  year: 1999
  ident: 10.1016/j.acha.2010.04.005_br0270
  article-title: Wavelets on the 2-sphere: A group-theoretical approach
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1999.0272
– volume: 6
  start-page: 137
  issue: 2
  year: 2008
  ident: 10.1016/j.acha.2010.04.005_br0290
  article-title: The continuous wavelet transform on conic sections
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S0219691308002288
– year: 1980
  ident: 10.1016/j.acha.2010.04.005_br0420
– volume: 18
  start-page: 59
  issue: 1
  year: 2000
  ident: 10.1016/j.acha.2010.04.005_br0520
  article-title: Complex denoising of MR data via wavelet analysis: Application for functional MRI
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/S0730-725X(99)00100-9
– volume: 21
  start-page: 53
  year: 2006
  ident: 10.1016/j.acha.2010.04.005_br0350
  article-title: Diffusion wavelets
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.004
– volume: 17
  start-page: 401
  issue: 2
  year: 1996
  ident: 10.1016/j.acha.2010.04.005_br0460
  article-title: A Jacobi–Davidson iteration method for linear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479894270427
– volume: 15
  start-page: 937
  issue: 4
  year: 2006
  ident: 10.1016/j.acha.2010.04.005_br0150
  article-title: Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863972
– volume: 17
  start-page: 142
  issue: 2
  year: 1998
  ident: 10.1016/j.acha.2010.04.005_br0530
  article-title: Statistical analysis of functional MRI data in the wavelet domain
  publication-title: IEEE Trans. Medical Imaging
  doi: 10.1109/42.700727
– volume: 31
  start-page: 532
  issue: 4
  year: 1983
  ident: 10.1016/j.acha.2010.04.005_br0220
  article-title: The Laplacian pyramid as a compact image code
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1983.1095851
– volume: 71
  start-page: 97
  issue: 1
  year: 2009
  ident: 10.1016/j.acha.2010.04.005_br0320
  article-title: Multiscale methods for data on graphs and irregular multidimensional situations
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2008.00672.x
SSID ssj0011459
Score 2.572381
Snippet We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Computer Science
Engineering Sciences
Graph theory
Overcomplete wavelet frames
Signal and Image Processing
Spectral graph theory
Wavelets
Title Wavelets on graphs via spectral graph theory
URI https://dx.doi.org/10.1016/j.acha.2010.04.005
https://inria.hal.science/inria-00541855
Volume 30
WOSCitedRecordID wos000286705400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5ByoEeEKtoWeRDb8bI4_EyPkaoULYKoQK5jWYLcQWTKEmj8u95szmmqBU9cLGScbzE73nme9v3EDqoSSO4UDirC-u6wTnPWknzTAvV1HVb1FQp12yiOT6mk0n7KYRiVq6dQGMMPT9vF_9V1DAGwrals9cQd39SGIDPIHTYgthh-0-C_8ZtLwkfBnB01Kt00_HUlVTaanw35gsY_wjpRjwaCt0WZ-voJ7Ts1q5RDg8MJkO3d2hL7HLj0_cv466vrmrm-0z_MqGqBNbfbaLtm2Un5mbjug2kn320_mc3dEHgQQ5WmDUB54BFm5PhtBrCLd3AuvVzJA4uDr_cYs87-9dM7p0Kp6BVMx4y8CzPebVdt2Ks_sJy1icZxvy1U2bPwew5WF4yx3i7UzRVS0doZ_z2cPKuDzvh0nXX6_9PqLLyCYEX7-QyJHNzFn3yDqOc3EV3gnGRjL1S3EM3tLmPdgeUk_DtY8_Tu3qAXkRlSeYm8cqSgLIkUVn8WOKV5SH68vrw5NVRFvpnZJLQfJ2JuirkFFdcV0oRQQCtlALgINV5rnSDp6rQspCcF5ZHjoPhLMRUcCqLRuWSE_IIjczc6McokQBMW8CWlCpegkUBVsWUALTjYP6rsiR7CMdnwWQgl7c9Tn6wy6Wwh9L-mIWnVrny11V8xCyAQw_6GGjMlccdgDz6C1g29aPxB9YZeOHtfkveVG3w_rVu5gm6vX0PnqLRenmmn6FbcrPuVsvnQat-A0A9jyk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelets+on+graphs+via+spectral+graph+theory&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Hammond%2C+David+K.&rft.au=Vandergheynst%2C+Pierre&rft.au=Gribonval%2C+R%C3%A9mi&rft.date=2011-03-01&rft.issn=1063-5203&rft.volume=30&rft.issue=2&rft.spage=129&rft.epage=150&rft_id=info:doi/10.1016%2Fj.acha.2010.04.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2010_04_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon