Transfer learning for short-term wind speed prediction with deep neural networks

As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical parad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy Jg. 85; S. 83 - 95
Hauptverfasser: Hu, Qinghua, Zhang, Rujia, Zhou, Yucan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2016
Schlagworte:
ISSN:0960-1481, 1879-0682
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique. •An interesting trial is proposed for transferring information from data-rich farms to a newly-built farm.•We construct a transfer learning framework for wind speed prediction based on deep neural networks.•A collection of experiments are described for showing the effectiveness of the proposed technique.
AbstractList As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique. •An interesting trial is proposed for transferring information from data-rich farms to a newly-built farm.•We construct a transfer learning framework for wind speed prediction based on deep neural networks.•A collection of experiments are described for showing the effectiveness of the proposed technique.
As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique.
Author Zhou, Yucan
Hu, Qinghua
Zhang, Rujia
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0000-0001-7765-8095
  surname: Hu
  fullname: Hu, Qinghua
  email: huqinghua@tju.edu.cn
– sequence: 2
  givenname: Rujia
  orcidid: 0000-0003-3221-9034
  surname: Zhang
  fullname: Zhang, Rujia
– sequence: 3
  givenname: Yucan
  surname: Zhou
  fullname: Zhou, Yucan
BookMark eNqFkDFPHDEQha0IpByQf5BiyzS7Ga_XPpMiEkKQICGFAmrLa88GX_bszdgH4t_j06WiIJrijUbvPWm-E3YUU0TGPnPoOHD1ddMRxjpdD1x2oDoQwwe24np93oLS_RFbwbmClg-af2QnOW-gGvV6WLG7e7IxT0jNjJZiiL-bKVGTHxOVtiBtm-cQfZMXRN8shD64ElKs1_LYeMSlibgjO1cpz4n-5DN2PNk546d_esoerq_uL3-2t79-3Fxe3LZOaCjt2EuJAsEjH9CO0mmUwiuB_ehQ62n0AMprJ2E9jTjYuvfCylGMikuntDhlXw69C6W_O8zFbEN2OM82Ytpl0wOA5HKtRbV-O1gdpZwJJ-NCsfs3CtkwGw5mj9FszAGj2WM0oEzFWMPDm_BCYWvp5X-x74cYVgZPAclkFzC6CpDQFeNTeL_gFcRokpU
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110206
crossref_primary_10_1016_j_eswa_2017_04_017
crossref_primary_10_1016_j_jprocont_2025_103408
crossref_primary_10_1109_ACCESS_2024_3413948
crossref_primary_10_1016_j_apenergy_2021_117509
crossref_primary_10_1016_j_enconman_2020_112824
crossref_primary_10_1155_2021_9627776
crossref_primary_10_1016_j_renene_2025_123478
crossref_primary_10_1016_j_apenergy_2017_11_071
crossref_primary_10_1049_cit2_12076
crossref_primary_10_1002_er_5331
crossref_primary_10_3390_math10111824
crossref_primary_10_1016_j_optcom_2019_124674
crossref_primary_10_1016_j_apenergy_2016_11_111
crossref_primary_10_1088_1742_6596_1964_5_052004
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1016_j_enconman_2018_07_070
crossref_primary_10_1109_ACCESS_2021_3110288
crossref_primary_10_1109_JSTARS_2025_3557956
crossref_primary_10_1016_j_compchemeng_2023_108172
crossref_primary_10_1016_j_renene_2021_11_072
crossref_primary_10_1016_j_enganabound_2023_06_003
crossref_primary_10_1109_ACCESS_2019_2913898
crossref_primary_10_1016_j_jclepro_2022_135414
crossref_primary_10_1016_j_energy_2022_123761
crossref_primary_10_1016_j_rser_2016_07_059
crossref_primary_10_1145_3586006
crossref_primary_10_1109_TSTE_2019_2897136
crossref_primary_10_1109_TPWRS_2019_2924294
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1016_j_renene_2022_07_125
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1016_j_energy_2020_119356
crossref_primary_10_1016_j_renene_2021_12_110
crossref_primary_10_1155_2016_4896854
crossref_primary_10_1016_j_autcon_2020_103387
crossref_primary_10_1016_j_isatra_2020_06_005
crossref_primary_10_1016_j_jag_2022_102924
crossref_primary_10_1016_j_jobe_2020_101996
crossref_primary_10_1155_2016_9293529
crossref_primary_10_3390_en18174571
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1016_j_apenergy_2017_09_043
crossref_primary_10_1016_j_epsr_2025_111702
crossref_primary_10_1080_15567036_2019_1632980
crossref_primary_10_1109_TETC_2021_3085337
crossref_primary_10_3390_electronics11244125
crossref_primary_10_3390_rs13081456
crossref_primary_10_1080_00140139_2023_2221411
crossref_primary_10_3390_su10124779
crossref_primary_10_1016_j_energy_2022_123785
crossref_primary_10_1016_j_eswa_2022_117704
crossref_primary_10_1007_s12145_024_01493_2
crossref_primary_10_3390_app13148332
crossref_primary_10_3390_su15119131
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1016_j_artmed_2019_03_005
crossref_primary_10_1155_2022_5722770
crossref_primary_10_3390_en11040705
crossref_primary_10_3390_en9120989
crossref_primary_10_1002_er_4333
crossref_primary_10_1016_j_ins_2020_03_019
crossref_primary_10_3390_e22060629
crossref_primary_10_1016_j_scitotenv_2022_154223
crossref_primary_10_1016_j_enconman_2018_11_006
crossref_primary_10_1080_0951192X_2017_1363410
crossref_primary_10_1016_j_seta_2019_100601
crossref_primary_10_1002_ese3_1968
crossref_primary_10_1016_j_oceaneng_2018_07_060
crossref_primary_10_1680_jcien_20_00025
crossref_primary_10_1109_ACCESS_2019_2901920
crossref_primary_10_1109_ACCESS_2020_3007163
crossref_primary_10_1007_s11356_022_21904_5
crossref_primary_10_1016_j_enconman_2018_03_098
crossref_primary_10_1016_j_knosys_2021_107976
crossref_primary_10_1016_j_rser_2019_109387
crossref_primary_10_1016_j_energy_2018_09_118
crossref_primary_10_1007_s00521_019_04152_6
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1109_ACCESS_2022_3170685
crossref_primary_10_1016_j_jweia_2022_105237
crossref_primary_10_1007_s00521_022_07322_1
crossref_primary_10_1016_j_enconman_2021_113944
crossref_primary_10_4018_IJGHPC_2017010106
crossref_primary_10_1002_er_6055
crossref_primary_10_1016_j_apenergy_2024_124631
crossref_primary_10_1016_j_enconman_2021_114002
crossref_primary_10_1109_JIOT_2019_2913176
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1177_0309524X19882431
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1002_we_2574
crossref_primary_10_1016_j_renene_2022_10_018
crossref_primary_10_1016_j_neucom_2025_129491
crossref_primary_10_3389_fenrg_2021_780928
crossref_primary_10_1016_j_energy_2020_119713
crossref_primary_10_1016_j_energy_2021_120904
crossref_primary_10_1155_2021_6638130
crossref_primary_10_1109_ACCESS_2024_3492707
crossref_primary_10_3389_fmars_2025_1495822
crossref_primary_10_1016_j_eswa_2022_117194
crossref_primary_10_3390_su13010104
crossref_primary_10_1016_j_apm_2018_10_019
crossref_primary_10_1109_ACCESS_2025_3551798
crossref_primary_10_3390_en13081881
crossref_primary_10_3390_electronics12051188
crossref_primary_10_1016_j_geoen_2024_212747
crossref_primary_10_1016_j_enconman_2018_01_010
crossref_primary_10_3389_fenrg_2022_901767
crossref_primary_10_3389_fenvs_2022_855694
crossref_primary_10_3390_app10041295
crossref_primary_10_1016_j_enconman_2017_10_014
crossref_primary_10_1016_j_apenergy_2020_116167
crossref_primary_10_1016_j_enconman_2019_112345
crossref_primary_10_1016_j_eswa_2020_113477
crossref_primary_10_1109_LGRS_2019_2931063
crossref_primary_10_1016_j_egyr_2022_03_013
crossref_primary_10_1016_j_neucom_2016_12_038
crossref_primary_10_1016_j_renene_2020_03_098
crossref_primary_10_1016_j_egyr_2024_03_059
crossref_primary_10_1007_s10618_019_00619_1
crossref_primary_10_1109_ACCESS_2020_3031958
crossref_primary_10_1016_j_energy_2022_125888
crossref_primary_10_1016_j_asoc_2021_108031
crossref_primary_10_1016_j_energy_2021_122630
crossref_primary_10_1016_j_measurement_2021_109631
crossref_primary_10_1016_j_atmosenv_2019_116885
crossref_primary_10_1016_j_enconman_2017_10_008
crossref_primary_10_1016_j_ijepes_2022_108143
crossref_primary_10_1016_j_ins_2024_121126
crossref_primary_10_1371_journal_pone_0296486
crossref_primary_10_1016_j_epsr_2022_108765
crossref_primary_10_3390_en10122001
crossref_primary_10_1049_rpg2_12085
crossref_primary_10_1016_j_egyr_2024_06_006
crossref_primary_10_1007_s12555_015_0463_7
crossref_primary_10_1016_j_renene_2019_06_047
crossref_primary_10_1016_j_renene_2020_09_032
crossref_primary_10_1016_j_rser_2021_111051
crossref_primary_10_1016_j_est_2025_117450
crossref_primary_10_1016_j_renene_2020_09_031
crossref_primary_10_1016_j_oceaneng_2022_113048
crossref_primary_10_3389_fenrg_2022_928063
crossref_primary_10_1016_j_rser_2016_09_063
crossref_primary_10_1109_TIM_2023_3324005
crossref_primary_10_3390_atmos13050813
crossref_primary_10_1016_j_enbuild_2023_112826
crossref_primary_10_1016_j_enconman_2019_112418
crossref_primary_10_1038_s41598_025_16664_4
crossref_primary_10_1109_ACCESS_2021_3129601
crossref_primary_10_3390_en15082907
crossref_primary_10_3390_en16052457
crossref_primary_10_1109_JSEN_2019_2925845
crossref_primary_10_1016_j_cie_2020_107015
crossref_primary_10_3390_s19081826
crossref_primary_10_1109_ACCESS_2025_3551737
crossref_primary_10_1088_1361_6552_adb473
crossref_primary_10_1007_s10690_024_09463_w
crossref_primary_10_1016_j_enbuild_2021_110998
crossref_primary_10_1016_j_energy_2025_135512
crossref_primary_10_1016_j_suscom_2022_100709
crossref_primary_10_1155_2024_7310206
crossref_primary_10_1016_j_cageo_2021_104991
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_1016_j_apenergy_2022_118729
crossref_primary_10_3390_app9091844
crossref_primary_10_1016_j_ijepes_2019_105650
crossref_primary_10_1016_j_enconman_2020_113098
crossref_primary_10_1109_ACCESS_2024_3507154
crossref_primary_10_1016_j_jhydrol_2021_126698
crossref_primary_10_1016_j_renene_2020_08_125
crossref_primary_10_1016_j_energy_2021_121328
crossref_primary_10_3390_electronics8020122
crossref_primary_10_1016_j_precisioneng_2021_08_010
crossref_primary_10_1109_ACCESS_2018_2886078
crossref_primary_10_1177_0958305X18787258
crossref_primary_10_1016_j_chaos_2023_113994
crossref_primary_10_1177_1687814019897212
crossref_primary_10_1109_ACCESS_2019_2951750
crossref_primary_10_3390_w14081300
crossref_primary_10_1109_TNNLS_2020_2979486
crossref_primary_10_1016_j_neucom_2018_02_062
crossref_primary_10_1016_j_petrol_2019_04_016
crossref_primary_10_3390_en16165926
crossref_primary_10_1016_j_apenergy_2025_126606
crossref_primary_10_1108_EC_06_2021_0353
crossref_primary_10_3390_en17164174
crossref_primary_10_1002_widm_1430
crossref_primary_10_1016_j_ins_2021_12_061
crossref_primary_10_1515_tjj_2018_0047
crossref_primary_10_1007_s42044_020_00065_z
crossref_primary_10_1016_j_apenergy_2016_08_108
crossref_primary_10_1080_08839514_2021_1922850
crossref_primary_10_1007_s00521_022_07328_9
crossref_primary_10_1109_ACCESS_2019_2963742
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_1016_j_renene_2023_119399
crossref_primary_10_1177_0954406217752746
crossref_primary_10_3390_su14084832
crossref_primary_10_1109_TCYB_2022_3164412
crossref_primary_10_3846_jcem_2021_14649
crossref_primary_10_1016_j_trc_2021_102977
crossref_primary_10_1002_2050_7038_12322
crossref_primary_10_1016_j_epsr_2022_108174
crossref_primary_10_1016_j_tej_2020_106883
crossref_primary_10_1016_j_artint_2019_103176
crossref_primary_10_1155_2020_5462040
crossref_primary_10_1175_MWR_D_18_0391_1
crossref_primary_10_3233_JIFS_211607
crossref_primary_10_1016_j_renene_2016_07_013
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_1007_s12145_023_00952_6
crossref_primary_10_1016_j_jclepro_2021_128566
crossref_primary_10_1038_s41598_019_41316_9
crossref_primary_10_3390_machines7040069
crossref_primary_10_1016_j_ins_2019_03_061
crossref_primary_10_1002_ese3_1562
crossref_primary_10_1016_j_compind_2018_12_004
crossref_primary_10_1109_TITS_2021_3058608
crossref_primary_10_1016_j_apenergy_2024_122631
crossref_primary_10_1088_1361_6501_acf7e0
crossref_primary_10_1016_j_infsof_2017_11_008
crossref_primary_10_1016_j_renene_2024_121639
crossref_primary_10_1016_j_jclepro_2022_130943
crossref_primary_10_3390_en15176287
crossref_primary_10_1016_j_apenergy_2018_07_084
crossref_primary_10_1002_ente_202400990
crossref_primary_10_3389_fenrg_2022_1055683
crossref_primary_10_3390_agriculture12030318
crossref_primary_10_1029_2021WR031590
crossref_primary_10_1002_acs_3721
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1016_j_apenergy_2021_116851
crossref_primary_10_1109_TASE_2018_2865663
crossref_primary_10_1109_TPWRS_2024_3443105
crossref_primary_10_1016_j_energy_2025_136356
crossref_primary_10_1016_j_jobe_2025_113201
crossref_primary_10_3390_atmos12070924
crossref_primary_10_1016_j_scitotenv_2019_135771
crossref_primary_10_3389_fenrg_2023_1345004
crossref_primary_10_1016_j_apenergy_2023_122185
crossref_primary_10_1016_j_buildenv_2025_112726
crossref_primary_10_3390_atmos10110684
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1038_s41598_025_94987_y
crossref_primary_10_1016_j_enconman_2016_06_053
crossref_primary_10_1016_j_renene_2023_119054
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_renene_2020_04_132
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1016_j_energy_2023_129496
crossref_primary_10_1016_j_solener_2018_05_089
crossref_primary_10_1109_TGRS_2025_3541545
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_1016_j_asoc_2017_05_031
crossref_primary_10_1016_j_energy_2021_121808
crossref_primary_10_1007_s10586_016_0554_0
crossref_primary_10_1016_j_egyr_2020_12_010
crossref_primary_10_1038_s41598_023_28703_z
crossref_primary_10_1016_j_energy_2020_117846
crossref_primary_10_1145_3411811
crossref_primary_10_3390_su15097087
crossref_primary_10_1016_j_ijforecast_2024_12_003
crossref_primary_10_1109_TSM_2017_2787550
crossref_primary_10_1016_j_neucom_2023_126435
crossref_primary_10_3390_s16101701
crossref_primary_10_1016_j_enconman_2019_02_045
crossref_primary_10_1016_j_epsr_2022_108706
crossref_primary_10_1016_j_enconman_2022_115590
crossref_primary_10_3390_en11112976
crossref_primary_10_1016_j_neunet_2021_01_001
crossref_primary_10_3390_app9091794
crossref_primary_10_1016_j_conengprac_2019_04_007
crossref_primary_10_1109_JSYST_2021_3065566
crossref_primary_10_1109_ACCESS_2019_2950341
crossref_primary_10_1088_1361_6501_aaaca6
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1016_j_energy_2017_07_034
crossref_primary_10_1016_j_fcr_2022_108730
crossref_primary_10_1016_j_energy_2021_121271
crossref_primary_10_1016_j_enconman_2018_04_021
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1016_j_energy_2020_119322
crossref_primary_10_1109_ACCESS_2019_2929542
crossref_primary_10_3390_en15124334
crossref_primary_10_3390_en16104171
crossref_primary_10_1007_s11042_023_17635_5
crossref_primary_10_1111_coin_12236
crossref_primary_10_3389_fenrg_2021_799039
crossref_primary_10_1016_j_asoc_2018_03_042
crossref_primary_10_1049_iet_rpg_2018_5203
crossref_primary_10_1016_j_enconman_2021_114737
crossref_primary_10_4018_IJAMC_298314
crossref_primary_10_1007_s11042_017_5380_8
crossref_primary_10_1002_er_6679
crossref_primary_10_1088_1742_6596_1997_1_012024
crossref_primary_10_1088_1742_6596_1997_1_012023
crossref_primary_10_2166_hydro_2019_084
crossref_primary_10_1088_1757_899X_490_7_072050
crossref_primary_10_1016_j_apenergy_2024_122838
crossref_primary_10_1145_3649448
Cites_doi 10.1016/j.neucom.2008.09.010
10.1016/j.renene.2010.04.022
10.1002/we.411
10.1109/TPWRS.2014.2299801
10.1016/j.energy.2010.12.063
10.1016/S0167-6105(98)00192-5
10.1109/TPWRS.2011.2160295
10.1016/j.eswa.2010.09.067
10.1016/j.enconman.2010.11.007
10.1016/j.renene.2006.12.001
10.1109/TSMCB.2011.2168604
10.1016/j.jweia.2010.02.003
10.1016/j.renene.2007.06.013
10.1016/j.apenergy.2009.12.013
10.1016/j.renene.2003.11.009
10.1109/TSTE.2012.2188049
10.1016/j.neucom.2005.02.003
10.1561/2200000006
10.1016/j.rser.2008.02.002
10.1109/TPWRS.2013.2282366
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2015.06.034
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 95
ExternalDocumentID 10_1016_j_renene_2015_06_034
S0960148115300574
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c380t-b255e3e0de14eab5c8e53d63e2bce88fbd006d8c507fbe4a6d823a5b3b615c683
ISICitedReferencesCount 364
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363344800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Wed Oct 01 14:48:55 EDT 2025
Tue Nov 18 22:32:39 EST 2025
Sat Nov 29 06:21:17 EST 2025
Fri Feb 23 02:20:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wind speed prediction
Deep neural networks
Transfer learning
Stacked denoising autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-b255e3e0de14eab5c8e53d63e2bce88fbd006d8c507fbe4a6d823a5b3b615c683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3221-9034
0000-0001-7765-8095
PQID 2000515783
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2000515783
crossref_citationtrail_10_1016_j_renene_2015_06_034
crossref_primary_10_1016_j_renene_2015_06_034
elsevier_sciencedirect_doi_10_1016_j_renene_2015_06_034
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ortiz Garcia, Salcedo Sanz, Perez Bellido, Gascon Moreno, Portilla Figueras, Prieto (bib17) 2011; 14
Hocaoglu, Gerek, Kurban (bib32) 2010; 98
Carolin Mabel, Fernandez (bib14) 2008; 33
Glorot, Bordes, Bengio (bib26) 2011
Yang, Xiao, Chen (bib2) 2005; 25
Mohandes, Halawani, Rehman, Hussain (bib18) 2004; 29
Lei, Shiyan, Chuanwen, Hongling, Yan (bib7) 2009; 13
Haque, Nehrir, Mandal (bib24) 2014; 29
Deng, Yu (bib35) 2013
Li, Shi (bib15) 2010; 87
Landberg (bib8) 1999; 80
Togelou, Sideratos, Hatziargyriou (bib25) 2012; 3
Focken, Jahn, Schaller (bib6) 2009
Thomas, Ganapathy, Hermansky (bib28) 2012
Guo, Zhao, Zhang, Wang (bib21) 2011; 36
Mesnil, Dauphin, Glorot, Rifai, Bengio, Goodfellow, Lavoie, Muller, Desjardins, Warde Farley (bib36) 2012
Vu, Imseng, Povey, Motlicek, Schultz, Bourlard (bib31) 2014
Manwell, McGowan, Rogers (bib1) 2010
Barbounis, Theocharis (bib13) 2006; 69
Salcedo Sanz, Perez Bellido, Portilla Figueras, Prieto (bib19) 2011; 38
Zhou, Shi, Li (bib20) 2011; 52
Salcedo Sanz, Perez Bellido, Ortiz Garcia, Portilla Figueras, Prieto, Correoso (bib16) 2009; 72
Bilgili, Sahin, Yasar (bib12) 2007; 32
Amaral, Silva, Alexandre, Marques, Santos (bib34) 2014
Vincent, Larochelle, Bengio, Manzagol (bib37) 2008
Cadenas, Rivera (bib22) 2010; 35
Khalid, Savkin (bib11) 2012; 27
Huang, Li, Yu, Deng, Gong (bib29) 2013
Huang, Zhou, Ding, Zhang (bib39) 2012; 42
Bengio (bib38) 2009; 2
Guoyang, Yang, Shasha (bib10) 2005; 181
Hocaoglu, Kurban (bib3) 2007
Plahl, Schluter, Ney (bib27) 2011
Giebel, Landberg, Badger, Sattler, Feddersen, Nielsen, Nielsen, Madsen (bib4) 2003
Giebel, Landberg, Bjerge, Donovan, Juhl, Gram Hansen, Waldl, Pahlke, Giebhardt, Rebbeck (bib5) 2003
Chen, Qian, Nabney, Meng (bib23) 2014; 29
Ciresan, Meier, Schmidhuber (bib33) 2012
Heigold, Vanhoucke, Senior, Nguyen, Ranzato, Devin, Dean (bib30) 2013
Giebel, Brownsword, Kariniotakis, Denhard, Draxl (bib9) 2011
Mohandes (10.1016/j.renene.2015.06.034_bib18) 2004; 29
Chen (10.1016/j.renene.2015.06.034_bib23) 2014; 29
Heigold (10.1016/j.renene.2015.06.034_bib30) 2013
Landberg (10.1016/j.renene.2015.06.034_bib8) 1999; 80
Giebel (10.1016/j.renene.2015.06.034_bib5) 2003
Vu (10.1016/j.renene.2015.06.034_bib31) 2014
Huang (10.1016/j.renene.2015.06.034_bib39) 2012; 42
Focken (10.1016/j.renene.2015.06.034_bib6) 2009
Huang (10.1016/j.renene.2015.06.034_bib29) 2013
Hocaoglu (10.1016/j.renene.2015.06.034_bib3) 2007
Guo (10.1016/j.renene.2015.06.034_bib21) 2011; 36
Haque (10.1016/j.renene.2015.06.034_bib24) 2014; 29
Ortiz Garcia (10.1016/j.renene.2015.06.034_bib17) 2011; 14
Giebel (10.1016/j.renene.2015.06.034_bib9) 2011
Bengio (10.1016/j.renene.2015.06.034_bib38) 2009; 2
Yang (10.1016/j.renene.2015.06.034_bib2) 2005; 25
Deng (10.1016/j.renene.2015.06.034_bib35) 2013
Carolin Mabel (10.1016/j.renene.2015.06.034_bib14) 2008; 33
Li (10.1016/j.renene.2015.06.034_bib15) 2010; 87
Hocaoglu (10.1016/j.renene.2015.06.034_bib32) 2010; 98
Salcedo Sanz (10.1016/j.renene.2015.06.034_bib19) 2011; 38
Vincent (10.1016/j.renene.2015.06.034_bib37) 2008
Khalid (10.1016/j.renene.2015.06.034_bib11) 2012; 27
Togelou (10.1016/j.renene.2015.06.034_bib25) 2012; 3
Plahl (10.1016/j.renene.2015.06.034_bib27) 2011
Thomas (10.1016/j.renene.2015.06.034_bib28) 2012
Lei (10.1016/j.renene.2015.06.034_bib7) 2009; 13
Mesnil (10.1016/j.renene.2015.06.034_bib36) 2012
Giebel (10.1016/j.renene.2015.06.034_bib4) 2003
Salcedo Sanz (10.1016/j.renene.2015.06.034_bib16) 2009; 72
Cadenas (10.1016/j.renene.2015.06.034_bib22) 2010; 35
Glorot (10.1016/j.renene.2015.06.034_bib26) 2011
Ciresan (10.1016/j.renene.2015.06.034_bib33) 2012
Guoyang (10.1016/j.renene.2015.06.034_bib10) 2005; 181
Barbounis (10.1016/j.renene.2015.06.034_bib13) 2006; 69
Zhou (10.1016/j.renene.2015.06.034_bib20) 2011; 52
Manwell (10.1016/j.renene.2015.06.034_bib1) 2010
Bilgili (10.1016/j.renene.2015.06.034_bib12) 2007; 32
Amaral (10.1016/j.renene.2015.06.034_bib34) 2014
References_xml – volume: 69
  start-page: 466
  year: 2006
  end-page: 496
  ident: bib13
  article-title: Locally recurrent neural networks for long-term wind speed and power prediction
  publication-title: Neurocomputing
– start-page: 4269
  year: 2012
  end-page: 4272
  ident: bib28
  article-title: Multilingual MLP features for low-resource LVCSR systems
  publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: bib39
  article-title: Extreme learning machine for regression and multiclass classification, IEEE Trans
  publication-title: Syst. Man, Cybern. Part B: Cybern.
– volume: 14
  start-page: 193
  year: 2011
  end-page: 207
  ident: bib17
  article-title: Short-term wind speed prediction in wind farms based on banks of support vector machines
  publication-title: Wind Energy
– start-page: 290
  year: 2014
  end-page: 300
  ident: bib34
  article-title: Transfer learning using rotated image data to improve deep neural network performance
  publication-title: Image Analysis and Recognition
– volume: 181
  start-page: 4
  year: 2005
  end-page: 21
  ident: bib10
  article-title: Discussion about short-term forecast of wind speed on wind farm
  publication-title: Jilin Electr. Power
– volume: 87
  start-page: 2313
  year: 2010
  end-page: 2320
  ident: bib15
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy
– volume: 13
  start-page: 915
  year: 2009
  end-page: 920
  ident: bib7
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  start-page: 986
  year: 2008
  end-page: 992
  ident: bib14
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew. Energy
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: bib18
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
– year: 2010
  ident: bib1
  article-title: Wind Energy Explained: Theory, Design and Application
– volume: 29
  start-page: 656
  year: 2014
  end-page: 665
  ident: bib23
  article-title: Wind power forecasts using Gaussian processes and numerical weather prediction
  publication-title: IEEE Trans. Power Syst.
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: bib20
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
– start-page: 97
  year: 2012
  end-page: 110
  ident: bib36
  article-title: Unsupervised and transfer learning challenge: a deep learning approach
  publication-title: Proc. ICML Unsupervised and Transfer Learning
– volume: 80
  start-page: 207
  year: 1999
  end-page: 220
  ident: bib8
  article-title: Short-term prediction of the power production from wind farms
  publication-title: Wind Eng. Industrial Aerodynamics
– start-page: 7639
  year: 2014
  end-page: 7643
  ident: bib31
  article-title: Multilingual deep neural network based acoustic modeling for rapid language adaptation
  publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
– volume: 32
  start-page: 2350
  year: 2007
  end-page: 2360
  ident: bib12
  article-title: Application of artificial neural networks for the wind speed prediction of target station using reference stations data
  publication-title: Renew. Energy
– volume: 38
  start-page: 4052
  year: 2011
  end-page: 4057
  ident: bib19
  article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 579
  year: 2012
  end-page: 586
  ident: bib11
  article-title: A method for short-term wind power prediction with multiple observation points
  publication-title: IEEE Trans. Power Syst.
– volume: 25
  start-page: 1
  year: 2005
  ident: bib2
  article-title: Wind speed and generated power forecasting in wind farm
  publication-title: Chin. Soc. Electr. Eng.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib37
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proc. Inter. Conf. Machine Learning
– start-page: 7304
  year: 2013
  end-page: 7308
  ident: bib29
  article-title: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers
  publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
– start-page: 14
  year: 2009
  end-page: 15
  ident: bib6
  article-title: Transformer congestion forecast based on highly localized wind power
  publication-title: Talk on the 8th International Workshop on Large-scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Farms, Bremen
– volume: 3
  start-page: 416
  year: 2012
  end-page: 421
  ident: bib25
  article-title: Wind power forecasting in the absence of historical data
  publication-title: IEEE Trans. Sustain. Energy
– year: 2003
  ident: bib4
  article-title: Using ensemble forecasting for wind power
  publication-title: Proc. Conf. European Wind Energy Association, Madrid, Spain
– volume: 2
  year: 2009
  ident: bib38
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– year: 2003
  ident: bib5
  article-title: Cleverfarm-First results from an intelligent wind farm
  publication-title: Proc. Conf. European Wind Energy Association, Madrid, Spain
– start-page: 513
  year: 2011
  end-page: 520
  ident: bib26
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proc. 28th Int. Conf. Machine Learning
– start-page: 371
  year: 2011
  end-page: 376
  ident: bib27
  article-title: Cross-lingual portability of Chinese and English neural network features for French and German LVCSR
  publication-title: IEEE Workshop on Automatic Speech Recognition and Understanding
– volume: 36
  start-page: 1668
  year: 2011
  end-page: 1679
  ident: bib21
  article-title: A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
  publication-title: Energy
– volume: 35
  start-page: 2732
  year: 2010
  end-page: 2738
  ident: bib22
  article-title: Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model
  publication-title: Rnewable Energy
– volume: 29
  start-page: 1663
  year: 2014
  end-page: 1672
  ident: bib24
  article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib33
  article-title: Transfer learning for Latin and Chinese characters with deep neural networks
  publication-title: Proc. IEEE Int. Conf. Neural Networks
– start-page: 107
  year: 2007
  end-page: 114
  ident: bib3
  article-title: The effect of missing wind speed data on wind power estimation
  publication-title: Intelligent Data Engineering and Automated Learning
– year: 2013
  ident: bib35
  article-title: Deep Learning for Signal and Information Processing
– volume: 72
  start-page: 1336
  year: 2009
  end-page: 1341
  ident: bib16
  article-title: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
  publication-title: Neurocomputing
– start-page: 8619
  year: 2013
  end-page: 8623
  ident: bib30
  article-title: Multilingual acoustic models using distributed deep neural networks
  publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing
– volume: 98
  start-page: 472
  year: 2010
  end-page: 481
  ident: bib32
  article-title: A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
  publication-title: Wind Eng. Industrial Aerodynamics
– year: 2011
  ident: bib9
  article-title: The state-of-the-art in short-term prediction of wind power: A literature overview
  publication-title: ANEMOS. Plus
– volume: 72
  start-page: 1336
  issue: 4
  year: 2009
  ident: 10.1016/j.renene.2015.06.034_bib16
  article-title: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.010
– volume: 35
  start-page: 2732
  issue: 12
  year: 2010
  ident: 10.1016/j.renene.2015.06.034_bib22
  article-title: Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model
  publication-title: Rnewable Energy
  doi: 10.1016/j.renene.2010.04.022
– volume: 14
  start-page: 193
  issue: 2
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib17
  article-title: Short-term wind speed prediction in wind farms based on banks of support vector machines
  publication-title: Wind Energy
  doi: 10.1002/we.411
– start-page: 7304
  year: 2013
  ident: 10.1016/j.renene.2015.06.034_bib29
  article-title: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers
– start-page: 8619
  year: 2013
  ident: 10.1016/j.renene.2015.06.034_bib30
  article-title: Multilingual acoustic models using distributed deep neural networks
– year: 2010
  ident: 10.1016/j.renene.2015.06.034_bib1
– start-page: 14
  year: 2009
  ident: 10.1016/j.renene.2015.06.034_bib6
  article-title: Transformer congestion forecast based on highly localized wind power
– start-page: 1
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib33
  article-title: Transfer learning for Latin and Chinese characters with deep neural networks
– year: 2003
  ident: 10.1016/j.renene.2015.06.034_bib4
  article-title: Using ensemble forecasting for wind power
– volume: 29
  start-page: 1663
  issue: 4
  year: 2014
  ident: 10.1016/j.renene.2015.06.034_bib24
  article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2299801
– volume: 36
  start-page: 1668
  issue: 3
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib21
  article-title: A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
  publication-title: Energy
  doi: 10.1016/j.energy.2010.12.063
– start-page: 97
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib36
  article-title: Unsupervised and transfer learning challenge: a deep learning approach
– year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib9
  article-title: The state-of-the-art in short-term prediction of wind power: A literature overview
– volume: 80
  start-page: 207
  issue: 1
  year: 1999
  ident: 10.1016/j.renene.2015.06.034_bib8
  article-title: Short-term prediction of the power production from wind farms
  publication-title: Wind Eng. Industrial Aerodynamics
  doi: 10.1016/S0167-6105(98)00192-5
– volume: 27
  start-page: 579
  issue: 2
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib11
  article-title: A method for short-term wind power prediction with multiple observation points
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2160295
– volume: 38
  start-page: 4052
  issue: 4
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib19
  article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.067
– volume: 52
  start-page: 1990
  issue: 4
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib20
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.11.007
– volume: 32
  start-page: 2350
  issue: 14
  year: 2007
  ident: 10.1016/j.renene.2015.06.034_bib12
  article-title: Application of artificial neural networks for the wind speed prediction of target station using reference stations data
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2006.12.001
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib39
  article-title: Extreme learning machine for regression and multiclass classification, IEEE Trans
  publication-title: Syst. Man, Cybern. Part B: Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– year: 2003
  ident: 10.1016/j.renene.2015.06.034_bib5
  article-title: Cleverfarm-First results from an intelligent wind farm
– volume: 98
  start-page: 472
  issue: 8
  year: 2010
  ident: 10.1016/j.renene.2015.06.034_bib32
  article-title: A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models
  publication-title: Wind Eng. Industrial Aerodynamics
  doi: 10.1016/j.jweia.2010.02.003
– volume: 33
  start-page: 986
  issue: 5
  year: 2008
  ident: 10.1016/j.renene.2015.06.034_bib14
  article-title: Analysis of wind power generation and prediction using ANN: a case study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2007.06.013
– start-page: 371
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib27
  article-title: Cross-lingual portability of Chinese and English neural network features for French and German LVCSR
– volume: 87
  start-page: 2313
  issue: 7
  year: 2010
  ident: 10.1016/j.renene.2015.06.034_bib15
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.013
– start-page: 290
  year: 2014
  ident: 10.1016/j.renene.2015.06.034_bib34
  article-title: Transfer learning using rotated image data to improve deep neural network performance
– year: 2013
  ident: 10.1016/j.renene.2015.06.034_bib35
– volume: 181
  start-page: 4
  issue: 5
  year: 2005
  ident: 10.1016/j.renene.2015.06.034_bib10
  article-title: Discussion about short-term forecast of wind speed on wind farm
  publication-title: Jilin Electr. Power
– start-page: 4269
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib28
  article-title: Multilingual MLP features for low-resource LVCSR systems
– volume: 29
  start-page: 939
  issue: 6
  year: 2004
  ident: 10.1016/j.renene.2015.06.034_bib18
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 3
  start-page: 416
  issue: 3
  year: 2012
  ident: 10.1016/j.renene.2015.06.034_bib25
  article-title: Wind power forecasting in the absence of historical data
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2012.2188049
– volume: 25
  start-page: 1
  issue: 11
  year: 2005
  ident: 10.1016/j.renene.2015.06.034_bib2
  article-title: Wind speed and generated power forecasting in wind farm
  publication-title: Chin. Soc. Electr. Eng.
– start-page: 513
  year: 2011
  ident: 10.1016/j.renene.2015.06.034_bib26
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
– start-page: 7639
  year: 2014
  ident: 10.1016/j.renene.2015.06.034_bib31
  article-title: Multilingual deep neural network based acoustic modeling for rapid language adaptation
– volume: 69
  start-page: 466
  issue: 4
  year: 2006
  ident: 10.1016/j.renene.2015.06.034_bib13
  article-title: Locally recurrent neural networks for long-term wind speed and power prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.02.003
– volume: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.renene.2015.06.034_bib38
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 13
  start-page: 915
  issue: 4
  year: 2009
  ident: 10.1016/j.renene.2015.06.034_bib7
  article-title: A review on the forecasting of wind speed and generated power
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2008.02.002
– volume: 29
  start-page: 656
  issue: 2
  year: 2014
  ident: 10.1016/j.renene.2015.06.034_bib23
  article-title: Wind power forecasts using Gaussian processes and numerical weather prediction
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2282366
– start-page: 1096
  year: 2008
  ident: 10.1016/j.renene.2015.06.034_bib37
  article-title: Extracting and composing robust features with denoising autoencoders
– start-page: 107
  year: 2007
  ident: 10.1016/j.renene.2015.06.034_bib3
  article-title: The effect of missing wind speed data on wind power estimation
SSID ssj0015874
Score 2.6173234
Snippet As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 83
SubjectTerms Deep neural networks
learning
neural networks
prediction
Stacked denoising autoencoder
Transfer learning
uncertainty
weather forecasting
wind farms
wind power
wind speed
Wind speed prediction
Title Transfer learning for short-term wind speed prediction with deep neural networks
URI https://dx.doi.org/10.1016/j.renene.2015.06.034
https://www.proquest.com/docview/2000515783
Volume 85
WOSCitedRecordID wos000363344800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMfF1u6wHcZ-su4XGoxdgoodWZZ8LCNlGyXrSgrZyViyTBOK48Vx2z-_T78cb2W0O-xijCLHQR_l6elJel-EPkZlEUNHSAgvGSNJknFSyEzCrLViWZmUUjEnNsGnUzGfZ8dejLO1cgK8rsXVVdb8V9RQBrDN0dl_wN1_KRTAPUCHK2CH693AW1dUr4MghNso2Z6Bn02MHR5dLkysvIFhy2QIKBdOLNwGZEutm5FJcQngardBvB26rydgGS_tYSttzwxuO4VB9QNedtb1dr6PRZ90y8WgdGUr_-yU75g-5hAPYw4-eJhGBCZS8dCOCjZq9gUlGRsYRKdS44dW98kNo-3iB8t9k8OzNqlLY2Zzqvoo5285sqff88PTo6N8NpnPPjW_iJEPM8vsXkvlPtodc5aBeds9-DqZf-sXlJhwCbnDDw-nKO1Wv5sv_puX8sd4bZ2Q2RP02M8e8IGj_hTd0_Uz9GiQU_I5Og78ceCPgT_e8seGP7b88ZY_Nvyx4Y8dfxz4v0Cnh5PZ5y_Ey2YQRUW0IRJmiZrqqNRxogvJlNCMlinVY6m0EJUswdKWQsFMoJI6KeB-TAsmqQTvVqWCvkQ79arWrxBOaJVyHo8jKVUieSQyVRSRpJVkcRWneg_R0Ey58jnljbTJeR42Dy5z17i5adzc7KGkyR4i_VONy6lyS30eCOTeL3T-Xg496JYnPwRgOZhNsxZW1HrVtUZ91agbcUFf36HOG_Rw-zd4i3Y2606_Qw_UxWbRrt_7vnYNrciSWg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+learning+for+short-term+wind+speed+prediction+with+deep+neural+networks&rft.jtitle=Renewable+energy&rft.au=Hu%2C+Qinghua&rft.au=Zhang%2C+Rujia&rft.au=Zhou%2C+Yucan&rft.date=2016-01-01&rft.issn=0960-1481&rft.volume=85+p.83-95&rft.spage=83&rft.epage=95&rft_id=info:doi/10.1016%2Fj.renene.2015.06.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon