Transfer learning for short-term wind speed prediction with deep neural networks
As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical parad...
Gespeichert in:
| Veröffentlicht in: | Renewable energy Jg. 85; S. 83 - 95 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2016
|
| Schlagworte: | |
| ISSN: | 0960-1481, 1879-0682 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique.
•An interesting trial is proposed for transferring information from data-rich farms to a newly-built farm.•We construct a transfer learning framework for wind speed prediction based on deep neural networks.•A collection of experiments are described for showing the effectiveness of the proposed technique. |
|---|---|
| AbstractList | As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique.
•An interesting trial is proposed for transferring information from data-rich farms to a newly-built farm.•We construct a transfer learning framework for wind speed prediction based on deep neural networks.•A collection of experiments are described for showing the effectiveness of the proposed technique. As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an accurate forecasting model for large-scale wind power penetration. Numerical weather prediction (NWP) and data-driven modeling are two typical paradigms. NWP is usually unavailable or spatially insufficient. Data-driven modeling is an effective candidate. As to some newly-built wind farms, sufficient historical data is not available for training an accurate model, while some older wind farms may have long-term wind speed records. A question arises regarding whether the prediction model trained by data coming from older farms is also effective for a newly-built farm. In this paper, we propose an interesting trial of transferring the information obtained from data-rich farms to a newly-built farm. It is well known that deep learning can extract a high-level representation of raw data. We introduce deep neural networks, trained by data from data-rich farms, to extract wind speed patterns, and then finely tune the mapping with data coming from newly-built farms. In this way, the trained network transfers information from one farm to another. The experimental results show that prediction errors are significantly reduced using the proposed technique. |
| Author | Zhou, Yucan Hu, Qinghua Zhang, Rujia |
| Author_xml | – sequence: 1 givenname: Qinghua orcidid: 0000-0001-7765-8095 surname: Hu fullname: Hu, Qinghua email: huqinghua@tju.edu.cn – sequence: 2 givenname: Rujia orcidid: 0000-0003-3221-9034 surname: Zhang fullname: Zhang, Rujia – sequence: 3 givenname: Yucan surname: Zhou fullname: Zhou, Yucan |
| BookMark | eNqFkDFPHDEQha0IpByQf5BiyzS7Ga_XPpMiEkKQICGFAmrLa88GX_bszdgH4t_j06WiIJrijUbvPWm-E3YUU0TGPnPoOHD1ddMRxjpdD1x2oDoQwwe24np93oLS_RFbwbmClg-af2QnOW-gGvV6WLG7e7IxT0jNjJZiiL-bKVGTHxOVtiBtm-cQfZMXRN8shD64ElKs1_LYeMSlibgjO1cpz4n-5DN2PNk546d_esoerq_uL3-2t79-3Fxe3LZOaCjt2EuJAsEjH9CO0mmUwiuB_ehQ62n0AMprJ2E9jTjYuvfCylGMikuntDhlXw69C6W_O8zFbEN2OM82Ytpl0wOA5HKtRbV-O1gdpZwJJ-NCsfs3CtkwGw5mj9FszAGj2WM0oEzFWMPDm_BCYWvp5X-x74cYVgZPAclkFzC6CpDQFeNTeL_gFcRokpU |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2024_110206 crossref_primary_10_1016_j_eswa_2017_04_017 crossref_primary_10_1016_j_jprocont_2025_103408 crossref_primary_10_1109_ACCESS_2024_3413948 crossref_primary_10_1016_j_apenergy_2021_117509 crossref_primary_10_1016_j_enconman_2020_112824 crossref_primary_10_1155_2021_9627776 crossref_primary_10_1016_j_renene_2025_123478 crossref_primary_10_1016_j_apenergy_2017_11_071 crossref_primary_10_1049_cit2_12076 crossref_primary_10_1002_er_5331 crossref_primary_10_3390_math10111824 crossref_primary_10_1016_j_optcom_2019_124674 crossref_primary_10_1016_j_apenergy_2016_11_111 crossref_primary_10_1088_1742_6596_1964_5_052004 crossref_primary_10_1016_j_asoc_2020_106463 crossref_primary_10_1016_j_enconman_2018_07_070 crossref_primary_10_1109_ACCESS_2021_3110288 crossref_primary_10_1109_JSTARS_2025_3557956 crossref_primary_10_1016_j_compchemeng_2023_108172 crossref_primary_10_1016_j_renene_2021_11_072 crossref_primary_10_1016_j_enganabound_2023_06_003 crossref_primary_10_1109_ACCESS_2019_2913898 crossref_primary_10_1016_j_jclepro_2022_135414 crossref_primary_10_1016_j_energy_2022_123761 crossref_primary_10_1016_j_rser_2016_07_059 crossref_primary_10_1145_3586006 crossref_primary_10_1109_TSTE_2019_2897136 crossref_primary_10_1109_TPWRS_2019_2924294 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_1016_j_renene_2022_07_125 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_1016_j_energy_2020_119356 crossref_primary_10_1016_j_renene_2021_12_110 crossref_primary_10_1155_2016_4896854 crossref_primary_10_1016_j_autcon_2020_103387 crossref_primary_10_1016_j_isatra_2020_06_005 crossref_primary_10_1016_j_jag_2022_102924 crossref_primary_10_1016_j_jobe_2020_101996 crossref_primary_10_1155_2016_9293529 crossref_primary_10_3390_en18174571 crossref_primary_10_1016_j_jclepro_2020_124628 crossref_primary_10_1016_j_apenergy_2017_09_043 crossref_primary_10_1016_j_epsr_2025_111702 crossref_primary_10_1080_15567036_2019_1632980 crossref_primary_10_1109_TETC_2021_3085337 crossref_primary_10_3390_electronics11244125 crossref_primary_10_3390_rs13081456 crossref_primary_10_1080_00140139_2023_2221411 crossref_primary_10_3390_su10124779 crossref_primary_10_1016_j_energy_2022_123785 crossref_primary_10_1016_j_eswa_2022_117704 crossref_primary_10_1007_s12145_024_01493_2 crossref_primary_10_3390_app13148332 crossref_primary_10_3390_su15119131 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1016_j_artmed_2019_03_005 crossref_primary_10_1155_2022_5722770 crossref_primary_10_3390_en11040705 crossref_primary_10_3390_en9120989 crossref_primary_10_1002_er_4333 crossref_primary_10_1016_j_ins_2020_03_019 crossref_primary_10_3390_e22060629 crossref_primary_10_1016_j_scitotenv_2022_154223 crossref_primary_10_1016_j_enconman_2018_11_006 crossref_primary_10_1080_0951192X_2017_1363410 crossref_primary_10_1016_j_seta_2019_100601 crossref_primary_10_1002_ese3_1968 crossref_primary_10_1016_j_oceaneng_2018_07_060 crossref_primary_10_1680_jcien_20_00025 crossref_primary_10_1109_ACCESS_2019_2901920 crossref_primary_10_1109_ACCESS_2020_3007163 crossref_primary_10_1007_s11356_022_21904_5 crossref_primary_10_1016_j_enconman_2018_03_098 crossref_primary_10_1016_j_knosys_2021_107976 crossref_primary_10_1016_j_rser_2019_109387 crossref_primary_10_1016_j_energy_2018_09_118 crossref_primary_10_1007_s00521_019_04152_6 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1109_ACCESS_2022_3170685 crossref_primary_10_1016_j_jweia_2022_105237 crossref_primary_10_1007_s00521_022_07322_1 crossref_primary_10_1016_j_enconman_2021_113944 crossref_primary_10_4018_IJGHPC_2017010106 crossref_primary_10_1002_er_6055 crossref_primary_10_1016_j_apenergy_2024_124631 crossref_primary_10_1016_j_enconman_2021_114002 crossref_primary_10_1109_JIOT_2019_2913176 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1177_0309524X19882431 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1002_we_2574 crossref_primary_10_1016_j_renene_2022_10_018 crossref_primary_10_1016_j_neucom_2025_129491 crossref_primary_10_3389_fenrg_2021_780928 crossref_primary_10_1016_j_energy_2020_119713 crossref_primary_10_1016_j_energy_2021_120904 crossref_primary_10_1155_2021_6638130 crossref_primary_10_1109_ACCESS_2024_3492707 crossref_primary_10_3389_fmars_2025_1495822 crossref_primary_10_1016_j_eswa_2022_117194 crossref_primary_10_3390_su13010104 crossref_primary_10_1016_j_apm_2018_10_019 crossref_primary_10_1109_ACCESS_2025_3551798 crossref_primary_10_3390_en13081881 crossref_primary_10_3390_electronics12051188 crossref_primary_10_1016_j_geoen_2024_212747 crossref_primary_10_1016_j_enconman_2018_01_010 crossref_primary_10_3389_fenrg_2022_901767 crossref_primary_10_3389_fenvs_2022_855694 crossref_primary_10_3390_app10041295 crossref_primary_10_1016_j_enconman_2017_10_014 crossref_primary_10_1016_j_apenergy_2020_116167 crossref_primary_10_1016_j_enconman_2019_112345 crossref_primary_10_1016_j_eswa_2020_113477 crossref_primary_10_1109_LGRS_2019_2931063 crossref_primary_10_1016_j_egyr_2022_03_013 crossref_primary_10_1016_j_neucom_2016_12_038 crossref_primary_10_1016_j_renene_2020_03_098 crossref_primary_10_1016_j_egyr_2024_03_059 crossref_primary_10_1007_s10618_019_00619_1 crossref_primary_10_1109_ACCESS_2020_3031958 crossref_primary_10_1016_j_energy_2022_125888 crossref_primary_10_1016_j_asoc_2021_108031 crossref_primary_10_1016_j_energy_2021_122630 crossref_primary_10_1016_j_measurement_2021_109631 crossref_primary_10_1016_j_atmosenv_2019_116885 crossref_primary_10_1016_j_enconman_2017_10_008 crossref_primary_10_1016_j_ijepes_2022_108143 crossref_primary_10_1016_j_ins_2024_121126 crossref_primary_10_1371_journal_pone_0296486 crossref_primary_10_1016_j_epsr_2022_108765 crossref_primary_10_3390_en10122001 crossref_primary_10_1049_rpg2_12085 crossref_primary_10_1016_j_egyr_2024_06_006 crossref_primary_10_1007_s12555_015_0463_7 crossref_primary_10_1016_j_renene_2019_06_047 crossref_primary_10_1016_j_renene_2020_09_032 crossref_primary_10_1016_j_rser_2021_111051 crossref_primary_10_1016_j_est_2025_117450 crossref_primary_10_1016_j_renene_2020_09_031 crossref_primary_10_1016_j_oceaneng_2022_113048 crossref_primary_10_3389_fenrg_2022_928063 crossref_primary_10_1016_j_rser_2016_09_063 crossref_primary_10_1109_TIM_2023_3324005 crossref_primary_10_3390_atmos13050813 crossref_primary_10_1016_j_enbuild_2023_112826 crossref_primary_10_1016_j_enconman_2019_112418 crossref_primary_10_1038_s41598_025_16664_4 crossref_primary_10_1109_ACCESS_2021_3129601 crossref_primary_10_3390_en15082907 crossref_primary_10_3390_en16052457 crossref_primary_10_1109_JSEN_2019_2925845 crossref_primary_10_1016_j_cie_2020_107015 crossref_primary_10_3390_s19081826 crossref_primary_10_1109_ACCESS_2025_3551737 crossref_primary_10_1088_1361_6552_adb473 crossref_primary_10_1007_s10690_024_09463_w crossref_primary_10_1016_j_enbuild_2021_110998 crossref_primary_10_1016_j_energy_2025_135512 crossref_primary_10_1016_j_suscom_2022_100709 crossref_primary_10_1155_2024_7310206 crossref_primary_10_1016_j_cageo_2021_104991 crossref_primary_10_1016_j_enconman_2019_111799 crossref_primary_10_1016_j_apenergy_2022_118729 crossref_primary_10_3390_app9091844 crossref_primary_10_1016_j_ijepes_2019_105650 crossref_primary_10_1016_j_enconman_2020_113098 crossref_primary_10_1109_ACCESS_2024_3507154 crossref_primary_10_1016_j_jhydrol_2021_126698 crossref_primary_10_1016_j_renene_2020_08_125 crossref_primary_10_1016_j_energy_2021_121328 crossref_primary_10_3390_electronics8020122 crossref_primary_10_1016_j_precisioneng_2021_08_010 crossref_primary_10_1109_ACCESS_2018_2886078 crossref_primary_10_1177_0958305X18787258 crossref_primary_10_1016_j_chaos_2023_113994 crossref_primary_10_1177_1687814019897212 crossref_primary_10_1109_ACCESS_2019_2951750 crossref_primary_10_3390_w14081300 crossref_primary_10_1109_TNNLS_2020_2979486 crossref_primary_10_1016_j_neucom_2018_02_062 crossref_primary_10_1016_j_petrol_2019_04_016 crossref_primary_10_3390_en16165926 crossref_primary_10_1016_j_apenergy_2025_126606 crossref_primary_10_1108_EC_06_2021_0353 crossref_primary_10_3390_en17164174 crossref_primary_10_1002_widm_1430 crossref_primary_10_1016_j_ins_2021_12_061 crossref_primary_10_1515_tjj_2018_0047 crossref_primary_10_1007_s42044_020_00065_z crossref_primary_10_1016_j_apenergy_2016_08_108 crossref_primary_10_1080_08839514_2021_1922850 crossref_primary_10_1007_s00521_022_07328_9 crossref_primary_10_1109_ACCESS_2019_2963742 crossref_primary_10_1109_TNNLS_2023_3290974 crossref_primary_10_1016_j_renene_2023_119399 crossref_primary_10_1177_0954406217752746 crossref_primary_10_3390_su14084832 crossref_primary_10_1109_TCYB_2022_3164412 crossref_primary_10_3846_jcem_2021_14649 crossref_primary_10_1016_j_trc_2021_102977 crossref_primary_10_1002_2050_7038_12322 crossref_primary_10_1016_j_epsr_2022_108174 crossref_primary_10_1016_j_tej_2020_106883 crossref_primary_10_1016_j_artint_2019_103176 crossref_primary_10_1155_2020_5462040 crossref_primary_10_1175_MWR_D_18_0391_1 crossref_primary_10_3233_JIFS_211607 crossref_primary_10_1016_j_renene_2016_07_013 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_1007_s12145_023_00952_6 crossref_primary_10_1016_j_jclepro_2021_128566 crossref_primary_10_1038_s41598_019_41316_9 crossref_primary_10_3390_machines7040069 crossref_primary_10_1016_j_ins_2019_03_061 crossref_primary_10_1002_ese3_1562 crossref_primary_10_1016_j_compind_2018_12_004 crossref_primary_10_1109_TITS_2021_3058608 crossref_primary_10_1016_j_apenergy_2024_122631 crossref_primary_10_1088_1361_6501_acf7e0 crossref_primary_10_1016_j_infsof_2017_11_008 crossref_primary_10_1016_j_renene_2024_121639 crossref_primary_10_1016_j_jclepro_2022_130943 crossref_primary_10_3390_en15176287 crossref_primary_10_1016_j_apenergy_2018_07_084 crossref_primary_10_1002_ente_202400990 crossref_primary_10_3389_fenrg_2022_1055683 crossref_primary_10_3390_agriculture12030318 crossref_primary_10_1029_2021WR031590 crossref_primary_10_1002_acs_3721 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1016_j_apenergy_2021_116851 crossref_primary_10_1109_TASE_2018_2865663 crossref_primary_10_1109_TPWRS_2024_3443105 crossref_primary_10_1016_j_energy_2025_136356 crossref_primary_10_1016_j_jobe_2025_113201 crossref_primary_10_3390_atmos12070924 crossref_primary_10_1016_j_scitotenv_2019_135771 crossref_primary_10_3389_fenrg_2023_1345004 crossref_primary_10_1016_j_apenergy_2023_122185 crossref_primary_10_1016_j_buildenv_2025_112726 crossref_primary_10_3390_atmos10110684 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_1038_s41598_025_94987_y crossref_primary_10_1016_j_enconman_2016_06_053 crossref_primary_10_1016_j_renene_2023_119054 crossref_primary_10_1016_j_apenergy_2019_113686 crossref_primary_10_1016_j_renene_2020_04_132 crossref_primary_10_1016_j_apenergy_2019_04_188 crossref_primary_10_1016_j_enconman_2019_05_020 crossref_primary_10_1016_j_energy_2023_129496 crossref_primary_10_1016_j_solener_2018_05_089 crossref_primary_10_1109_TGRS_2025_3541545 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1016_j_asoc_2017_05_031 crossref_primary_10_1016_j_energy_2021_121808 crossref_primary_10_1007_s10586_016_0554_0 crossref_primary_10_1016_j_egyr_2020_12_010 crossref_primary_10_1038_s41598_023_28703_z crossref_primary_10_1016_j_energy_2020_117846 crossref_primary_10_1145_3411811 crossref_primary_10_3390_su15097087 crossref_primary_10_1016_j_ijforecast_2024_12_003 crossref_primary_10_1109_TSM_2017_2787550 crossref_primary_10_1016_j_neucom_2023_126435 crossref_primary_10_3390_s16101701 crossref_primary_10_1016_j_enconman_2019_02_045 crossref_primary_10_1016_j_epsr_2022_108706 crossref_primary_10_1016_j_enconman_2022_115590 crossref_primary_10_3390_en11112976 crossref_primary_10_1016_j_neunet_2021_01_001 crossref_primary_10_3390_app9091794 crossref_primary_10_1016_j_conengprac_2019_04_007 crossref_primary_10_1109_JSYST_2021_3065566 crossref_primary_10_1109_ACCESS_2019_2950341 crossref_primary_10_1088_1361_6501_aaaca6 crossref_primary_10_1016_j_enconman_2020_113456 crossref_primary_10_1016_j_energy_2017_07_034 crossref_primary_10_1016_j_fcr_2022_108730 crossref_primary_10_1016_j_energy_2021_121271 crossref_primary_10_1016_j_enconman_2018_04_021 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_1016_j_energy_2020_119322 crossref_primary_10_1109_ACCESS_2019_2929542 crossref_primary_10_3390_en15124334 crossref_primary_10_3390_en16104171 crossref_primary_10_1007_s11042_023_17635_5 crossref_primary_10_1111_coin_12236 crossref_primary_10_3389_fenrg_2021_799039 crossref_primary_10_1016_j_asoc_2018_03_042 crossref_primary_10_1049_iet_rpg_2018_5203 crossref_primary_10_1016_j_enconman_2021_114737 crossref_primary_10_4018_IJAMC_298314 crossref_primary_10_1007_s11042_017_5380_8 crossref_primary_10_1002_er_6679 crossref_primary_10_1088_1742_6596_1997_1_012024 crossref_primary_10_1088_1742_6596_1997_1_012023 crossref_primary_10_2166_hydro_2019_084 crossref_primary_10_1088_1757_899X_490_7_072050 crossref_primary_10_1016_j_apenergy_2024_122838 crossref_primary_10_1145_3649448 |
| Cites_doi | 10.1016/j.neucom.2008.09.010 10.1016/j.renene.2010.04.022 10.1002/we.411 10.1109/TPWRS.2014.2299801 10.1016/j.energy.2010.12.063 10.1016/S0167-6105(98)00192-5 10.1109/TPWRS.2011.2160295 10.1016/j.eswa.2010.09.067 10.1016/j.enconman.2010.11.007 10.1016/j.renene.2006.12.001 10.1109/TSMCB.2011.2168604 10.1016/j.jweia.2010.02.003 10.1016/j.renene.2007.06.013 10.1016/j.apenergy.2009.12.013 10.1016/j.renene.2003.11.009 10.1109/TSTE.2012.2188049 10.1016/j.neucom.2005.02.003 10.1561/2200000006 10.1016/j.rser.2008.02.002 10.1109/TPWRS.2013.2282366 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2015.06.034 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 95 |
| ExternalDocumentID | 10_1016_j_renene_2015_06_034 S0960148115300574 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c380t-b255e3e0de14eab5c8e53d63e2bce88fbd006d8c507fbe4a6d823a5b3b615c683 |
| ISICitedReferencesCount | 364 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363344800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 |
| IngestDate | Wed Oct 01 14:48:55 EDT 2025 Tue Nov 18 22:32:39 EST 2025 Sat Nov 29 06:21:17 EST 2025 Fri Feb 23 02:20:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wind speed prediction Deep neural networks Transfer learning Stacked denoising autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-b255e3e0de14eab5c8e53d63e2bce88fbd006d8c507fbe4a6d823a5b3b615c683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3221-9034 0000-0001-7765-8095 |
| PQID | 2000515783 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2000515783 crossref_citationtrail_10_1016_j_renene_2015_06_034 crossref_primary_10_1016_j_renene_2015_06_034 elsevier_sciencedirect_doi_10_1016_j_renene_2015_06_034 |
| PublicationCentury | 2000 |
| PublicationDate | January 2016 2016-01-00 20160101 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ortiz Garcia, Salcedo Sanz, Perez Bellido, Gascon Moreno, Portilla Figueras, Prieto (bib17) 2011; 14 Hocaoglu, Gerek, Kurban (bib32) 2010; 98 Carolin Mabel, Fernandez (bib14) 2008; 33 Glorot, Bordes, Bengio (bib26) 2011 Yang, Xiao, Chen (bib2) 2005; 25 Mohandes, Halawani, Rehman, Hussain (bib18) 2004; 29 Lei, Shiyan, Chuanwen, Hongling, Yan (bib7) 2009; 13 Haque, Nehrir, Mandal (bib24) 2014; 29 Deng, Yu (bib35) 2013 Li, Shi (bib15) 2010; 87 Landberg (bib8) 1999; 80 Togelou, Sideratos, Hatziargyriou (bib25) 2012; 3 Focken, Jahn, Schaller (bib6) 2009 Thomas, Ganapathy, Hermansky (bib28) 2012 Guo, Zhao, Zhang, Wang (bib21) 2011; 36 Mesnil, Dauphin, Glorot, Rifai, Bengio, Goodfellow, Lavoie, Muller, Desjardins, Warde Farley (bib36) 2012 Vu, Imseng, Povey, Motlicek, Schultz, Bourlard (bib31) 2014 Manwell, McGowan, Rogers (bib1) 2010 Barbounis, Theocharis (bib13) 2006; 69 Salcedo Sanz, Perez Bellido, Portilla Figueras, Prieto (bib19) 2011; 38 Zhou, Shi, Li (bib20) 2011; 52 Salcedo Sanz, Perez Bellido, Ortiz Garcia, Portilla Figueras, Prieto, Correoso (bib16) 2009; 72 Bilgili, Sahin, Yasar (bib12) 2007; 32 Amaral, Silva, Alexandre, Marques, Santos (bib34) 2014 Vincent, Larochelle, Bengio, Manzagol (bib37) 2008 Cadenas, Rivera (bib22) 2010; 35 Khalid, Savkin (bib11) 2012; 27 Huang, Li, Yu, Deng, Gong (bib29) 2013 Huang, Zhou, Ding, Zhang (bib39) 2012; 42 Bengio (bib38) 2009; 2 Guoyang, Yang, Shasha (bib10) 2005; 181 Hocaoglu, Kurban (bib3) 2007 Plahl, Schluter, Ney (bib27) 2011 Giebel, Landberg, Badger, Sattler, Feddersen, Nielsen, Nielsen, Madsen (bib4) 2003 Giebel, Landberg, Bjerge, Donovan, Juhl, Gram Hansen, Waldl, Pahlke, Giebhardt, Rebbeck (bib5) 2003 Chen, Qian, Nabney, Meng (bib23) 2014; 29 Ciresan, Meier, Schmidhuber (bib33) 2012 Heigold, Vanhoucke, Senior, Nguyen, Ranzato, Devin, Dean (bib30) 2013 Giebel, Brownsword, Kariniotakis, Denhard, Draxl (bib9) 2011 Mohandes (10.1016/j.renene.2015.06.034_bib18) 2004; 29 Chen (10.1016/j.renene.2015.06.034_bib23) 2014; 29 Heigold (10.1016/j.renene.2015.06.034_bib30) 2013 Landberg (10.1016/j.renene.2015.06.034_bib8) 1999; 80 Giebel (10.1016/j.renene.2015.06.034_bib5) 2003 Vu (10.1016/j.renene.2015.06.034_bib31) 2014 Huang (10.1016/j.renene.2015.06.034_bib39) 2012; 42 Focken (10.1016/j.renene.2015.06.034_bib6) 2009 Huang (10.1016/j.renene.2015.06.034_bib29) 2013 Hocaoglu (10.1016/j.renene.2015.06.034_bib3) 2007 Guo (10.1016/j.renene.2015.06.034_bib21) 2011; 36 Haque (10.1016/j.renene.2015.06.034_bib24) 2014; 29 Ortiz Garcia (10.1016/j.renene.2015.06.034_bib17) 2011; 14 Giebel (10.1016/j.renene.2015.06.034_bib9) 2011 Bengio (10.1016/j.renene.2015.06.034_bib38) 2009; 2 Yang (10.1016/j.renene.2015.06.034_bib2) 2005; 25 Deng (10.1016/j.renene.2015.06.034_bib35) 2013 Carolin Mabel (10.1016/j.renene.2015.06.034_bib14) 2008; 33 Li (10.1016/j.renene.2015.06.034_bib15) 2010; 87 Hocaoglu (10.1016/j.renene.2015.06.034_bib32) 2010; 98 Salcedo Sanz (10.1016/j.renene.2015.06.034_bib19) 2011; 38 Vincent (10.1016/j.renene.2015.06.034_bib37) 2008 Khalid (10.1016/j.renene.2015.06.034_bib11) 2012; 27 Togelou (10.1016/j.renene.2015.06.034_bib25) 2012; 3 Plahl (10.1016/j.renene.2015.06.034_bib27) 2011 Thomas (10.1016/j.renene.2015.06.034_bib28) 2012 Lei (10.1016/j.renene.2015.06.034_bib7) 2009; 13 Mesnil (10.1016/j.renene.2015.06.034_bib36) 2012 Giebel (10.1016/j.renene.2015.06.034_bib4) 2003 Salcedo Sanz (10.1016/j.renene.2015.06.034_bib16) 2009; 72 Cadenas (10.1016/j.renene.2015.06.034_bib22) 2010; 35 Glorot (10.1016/j.renene.2015.06.034_bib26) 2011 Ciresan (10.1016/j.renene.2015.06.034_bib33) 2012 Guoyang (10.1016/j.renene.2015.06.034_bib10) 2005; 181 Barbounis (10.1016/j.renene.2015.06.034_bib13) 2006; 69 Zhou (10.1016/j.renene.2015.06.034_bib20) 2011; 52 Manwell (10.1016/j.renene.2015.06.034_bib1) 2010 Bilgili (10.1016/j.renene.2015.06.034_bib12) 2007; 32 Amaral (10.1016/j.renene.2015.06.034_bib34) 2014 |
| References_xml | – volume: 69 start-page: 466 year: 2006 end-page: 496 ident: bib13 article-title: Locally recurrent neural networks for long-term wind speed and power prediction publication-title: Neurocomputing – start-page: 4269 year: 2012 end-page: 4272 ident: bib28 article-title: Multilingual MLP features for low-resource LVCSR systems publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: bib39 article-title: Extreme learning machine for regression and multiclass classification, IEEE Trans publication-title: Syst. Man, Cybern. Part B: Cybern. – volume: 14 start-page: 193 year: 2011 end-page: 207 ident: bib17 article-title: Short-term wind speed prediction in wind farms based on banks of support vector machines publication-title: Wind Energy – start-page: 290 year: 2014 end-page: 300 ident: bib34 article-title: Transfer learning using rotated image data to improve deep neural network performance publication-title: Image Analysis and Recognition – volume: 181 start-page: 4 year: 2005 end-page: 21 ident: bib10 article-title: Discussion about short-term forecast of wind speed on wind farm publication-title: Jilin Electr. Power – volume: 87 start-page: 2313 year: 2010 end-page: 2320 ident: bib15 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy – volume: 13 start-page: 915 year: 2009 end-page: 920 ident: bib7 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew. Sustain. Energy Rev. – volume: 33 start-page: 986 year: 2008 end-page: 992 ident: bib14 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew. Energy – volume: 29 start-page: 939 year: 2004 end-page: 947 ident: bib18 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy – year: 2010 ident: bib1 article-title: Wind Energy Explained: Theory, Design and Application – volume: 29 start-page: 656 year: 2014 end-page: 665 ident: bib23 article-title: Wind power forecasts using Gaussian processes and numerical weather prediction publication-title: IEEE Trans. Power Syst. – volume: 52 start-page: 1990 year: 2011 end-page: 1998 ident: bib20 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manag. – start-page: 97 year: 2012 end-page: 110 ident: bib36 article-title: Unsupervised and transfer learning challenge: a deep learning approach publication-title: Proc. ICML Unsupervised and Transfer Learning – volume: 80 start-page: 207 year: 1999 end-page: 220 ident: bib8 article-title: Short-term prediction of the power production from wind farms publication-title: Wind Eng. Industrial Aerodynamics – start-page: 7639 year: 2014 end-page: 7643 ident: bib31 article-title: Multilingual deep neural network based acoustic modeling for rapid language adaptation publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing – volume: 32 start-page: 2350 year: 2007 end-page: 2360 ident: bib12 article-title: Application of artificial neural networks for the wind speed prediction of target station using reference stations data publication-title: Renew. Energy – volume: 38 start-page: 4052 year: 2011 end-page: 4057 ident: bib19 article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms publication-title: Expert Syst. Appl. – volume: 27 start-page: 579 year: 2012 end-page: 586 ident: bib11 article-title: A method for short-term wind power prediction with multiple observation points publication-title: IEEE Trans. Power Syst. – volume: 25 start-page: 1 year: 2005 ident: bib2 article-title: Wind speed and generated power forecasting in wind farm publication-title: Chin. Soc. Electr. Eng. – start-page: 1096 year: 2008 end-page: 1103 ident: bib37 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proc. Inter. Conf. Machine Learning – start-page: 7304 year: 2013 end-page: 7308 ident: bib29 article-title: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing – start-page: 14 year: 2009 end-page: 15 ident: bib6 article-title: Transformer congestion forecast based on highly localized wind power publication-title: Talk on the 8th International Workshop on Large-scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Farms, Bremen – volume: 3 start-page: 416 year: 2012 end-page: 421 ident: bib25 article-title: Wind power forecasting in the absence of historical data publication-title: IEEE Trans. Sustain. Energy – year: 2003 ident: bib4 article-title: Using ensemble forecasting for wind power publication-title: Proc. Conf. European Wind Energy Association, Madrid, Spain – volume: 2 year: 2009 ident: bib38 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – year: 2003 ident: bib5 article-title: Cleverfarm-First results from an intelligent wind farm publication-title: Proc. Conf. European Wind Energy Association, Madrid, Spain – start-page: 513 year: 2011 end-page: 520 ident: bib26 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach publication-title: Proc. 28th Int. Conf. Machine Learning – start-page: 371 year: 2011 end-page: 376 ident: bib27 article-title: Cross-lingual portability of Chinese and English neural network features for French and German LVCSR publication-title: IEEE Workshop on Automatic Speech Recognition and Understanding – volume: 36 start-page: 1668 year: 2011 end-page: 1679 ident: bib21 article-title: A corrected hybrid approach for wind speed prediction in Hexi Corridor of China publication-title: Energy – volume: 35 start-page: 2732 year: 2010 end-page: 2738 ident: bib22 article-title: Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model publication-title: Rnewable Energy – volume: 29 start-page: 1663 year: 2014 end-page: 1672 ident: bib24 article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2012 end-page: 6 ident: bib33 article-title: Transfer learning for Latin and Chinese characters with deep neural networks publication-title: Proc. IEEE Int. Conf. Neural Networks – start-page: 107 year: 2007 end-page: 114 ident: bib3 article-title: The effect of missing wind speed data on wind power estimation publication-title: Intelligent Data Engineering and Automated Learning – year: 2013 ident: bib35 article-title: Deep Learning for Signal and Information Processing – volume: 72 start-page: 1336 year: 2009 end-page: 1341 ident: bib16 article-title: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks publication-title: Neurocomputing – start-page: 8619 year: 2013 end-page: 8623 ident: bib30 article-title: Multilingual acoustic models using distributed deep neural networks publication-title: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing – volume: 98 start-page: 472 year: 2010 end-page: 481 ident: bib32 article-title: A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models publication-title: Wind Eng. Industrial Aerodynamics – year: 2011 ident: bib9 article-title: The state-of-the-art in short-term prediction of wind power: A literature overview publication-title: ANEMOS. Plus – volume: 72 start-page: 1336 issue: 4 year: 2009 ident: 10.1016/j.renene.2015.06.034_bib16 article-title: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.010 – volume: 35 start-page: 2732 issue: 12 year: 2010 ident: 10.1016/j.renene.2015.06.034_bib22 article-title: Wind speed forecasting in three different regions of mexico, using a hybrid ARI-MACANN model publication-title: Rnewable Energy doi: 10.1016/j.renene.2010.04.022 – volume: 14 start-page: 193 issue: 2 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib17 article-title: Short-term wind speed prediction in wind farms based on banks of support vector machines publication-title: Wind Energy doi: 10.1002/we.411 – start-page: 7304 year: 2013 ident: 10.1016/j.renene.2015.06.034_bib29 article-title: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers – start-page: 8619 year: 2013 ident: 10.1016/j.renene.2015.06.034_bib30 article-title: Multilingual acoustic models using distributed deep neural networks – year: 2010 ident: 10.1016/j.renene.2015.06.034_bib1 – start-page: 14 year: 2009 ident: 10.1016/j.renene.2015.06.034_bib6 article-title: Transformer congestion forecast based on highly localized wind power – start-page: 1 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib33 article-title: Transfer learning for Latin and Chinese characters with deep neural networks – year: 2003 ident: 10.1016/j.renene.2015.06.034_bib4 article-title: Using ensemble forecasting for wind power – volume: 29 start-page: 1663 issue: 4 year: 2014 ident: 10.1016/j.renene.2015.06.034_bib24 article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2299801 – volume: 36 start-page: 1668 issue: 3 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib21 article-title: A corrected hybrid approach for wind speed prediction in Hexi Corridor of China publication-title: Energy doi: 10.1016/j.energy.2010.12.063 – start-page: 97 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib36 article-title: Unsupervised and transfer learning challenge: a deep learning approach – year: 2011 ident: 10.1016/j.renene.2015.06.034_bib9 article-title: The state-of-the-art in short-term prediction of wind power: A literature overview – volume: 80 start-page: 207 issue: 1 year: 1999 ident: 10.1016/j.renene.2015.06.034_bib8 article-title: Short-term prediction of the power production from wind farms publication-title: Wind Eng. Industrial Aerodynamics doi: 10.1016/S0167-6105(98)00192-5 – volume: 27 start-page: 579 issue: 2 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib11 article-title: A method for short-term wind power prediction with multiple observation points publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2160295 – volume: 38 start-page: 4052 issue: 4 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib19 article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.067 – volume: 52 start-page: 1990 issue: 4 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib20 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.11.007 – volume: 32 start-page: 2350 issue: 14 year: 2007 ident: 10.1016/j.renene.2015.06.034_bib12 article-title: Application of artificial neural networks for the wind speed prediction of target station using reference stations data publication-title: Renew. Energy doi: 10.1016/j.renene.2006.12.001 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib39 article-title: Extreme learning machine for regression and multiclass classification, IEEE Trans publication-title: Syst. Man, Cybern. Part B: Cybern. doi: 10.1109/TSMCB.2011.2168604 – year: 2003 ident: 10.1016/j.renene.2015.06.034_bib5 article-title: Cleverfarm-First results from an intelligent wind farm – volume: 98 start-page: 472 issue: 8 year: 2010 ident: 10.1016/j.renene.2015.06.034_bib32 article-title: A novel wind speed modeling approach using atmospheric pressure observations and hidden Markov models publication-title: Wind Eng. Industrial Aerodynamics doi: 10.1016/j.jweia.2010.02.003 – volume: 33 start-page: 986 issue: 5 year: 2008 ident: 10.1016/j.renene.2015.06.034_bib14 article-title: Analysis of wind power generation and prediction using ANN: a case study publication-title: Renew. Energy doi: 10.1016/j.renene.2007.06.013 – start-page: 371 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib27 article-title: Cross-lingual portability of Chinese and English neural network features for French and German LVCSR – volume: 87 start-page: 2313 issue: 7 year: 2010 ident: 10.1016/j.renene.2015.06.034_bib15 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.013 – start-page: 290 year: 2014 ident: 10.1016/j.renene.2015.06.034_bib34 article-title: Transfer learning using rotated image data to improve deep neural network performance – year: 2013 ident: 10.1016/j.renene.2015.06.034_bib35 – volume: 181 start-page: 4 issue: 5 year: 2005 ident: 10.1016/j.renene.2015.06.034_bib10 article-title: Discussion about short-term forecast of wind speed on wind farm publication-title: Jilin Electr. Power – start-page: 4269 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib28 article-title: Multilingual MLP features for low-resource LVCSR systems – volume: 29 start-page: 939 issue: 6 year: 2004 ident: 10.1016/j.renene.2015.06.034_bib18 article-title: Support vector machines for wind speed prediction publication-title: Renew. Energy doi: 10.1016/j.renene.2003.11.009 – volume: 3 start-page: 416 issue: 3 year: 2012 ident: 10.1016/j.renene.2015.06.034_bib25 article-title: Wind power forecasting in the absence of historical data publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2012.2188049 – volume: 25 start-page: 1 issue: 11 year: 2005 ident: 10.1016/j.renene.2015.06.034_bib2 article-title: Wind speed and generated power forecasting in wind farm publication-title: Chin. Soc. Electr. Eng. – start-page: 513 year: 2011 ident: 10.1016/j.renene.2015.06.034_bib26 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach – start-page: 7639 year: 2014 ident: 10.1016/j.renene.2015.06.034_bib31 article-title: Multilingual deep neural network based acoustic modeling for rapid language adaptation – volume: 69 start-page: 466 issue: 4 year: 2006 ident: 10.1016/j.renene.2015.06.034_bib13 article-title: Locally recurrent neural networks for long-term wind speed and power prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.02.003 – volume: 2 issue: 1 year: 2009 ident: 10.1016/j.renene.2015.06.034_bib38 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 13 start-page: 915 issue: 4 year: 2009 ident: 10.1016/j.renene.2015.06.034_bib7 article-title: A review on the forecasting of wind speed and generated power publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2008.02.002 – volume: 29 start-page: 656 issue: 2 year: 2014 ident: 10.1016/j.renene.2015.06.034_bib23 article-title: Wind power forecasts using Gaussian processes and numerical weather prediction publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2282366 – start-page: 1096 year: 2008 ident: 10.1016/j.renene.2015.06.034_bib37 article-title: Extracting and composing robust features with denoising autoencoders – start-page: 107 year: 2007 ident: 10.1016/j.renene.2015.06.034_bib3 article-title: The effect of missing wind speed data on wind power estimation |
| SSID | ssj0015874 |
| Score | 2.6173234 |
| Snippet | As a type of clean and renewable energy source, wind power is widely used. However, owing to the uncertainty of wind speed, it is essential to build an... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 83 |
| SubjectTerms | Deep neural networks learning neural networks prediction Stacked denoising autoencoder Transfer learning uncertainty weather forecasting wind farms wind power wind speed Wind speed prediction |
| Title | Transfer learning for short-term wind speed prediction with deep neural networks |
| URI | https://dx.doi.org/10.1016/j.renene.2015.06.034 https://www.proquest.com/docview/2000515783 |
| Volume | 85 |
| WOSCitedRecordID | wos000363344800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMfF1u6wHcZ-su4XGoxdgoodWZZ8LCNlGyXrSgrZyViyTBOK48Vx2z-_T78cb2W0O-xijCLHQR_l6elJel-EPkZlEUNHSAgvGSNJknFSyEzCrLViWZmUUjEnNsGnUzGfZ8dejLO1cgK8rsXVVdb8V9RQBrDN0dl_wN1_KRTAPUCHK2CH693AW1dUr4MghNso2Z6Bn02MHR5dLkysvIFhy2QIKBdOLNwGZEutm5FJcQngardBvB26rydgGS_tYSttzwxuO4VB9QNedtb1dr6PRZ90y8WgdGUr_-yU75g-5hAPYw4-eJhGBCZS8dCOCjZq9gUlGRsYRKdS44dW98kNo-3iB8t9k8OzNqlLY2Zzqvoo5285sqff88PTo6N8NpnPPjW_iJEPM8vsXkvlPtodc5aBeds9-DqZf-sXlJhwCbnDDw-nKO1Wv5sv_puX8sd4bZ2Q2RP02M8e8IGj_hTd0_Uz9GiQU_I5Og78ceCPgT_e8seGP7b88ZY_Nvyx4Y8dfxz4v0Cnh5PZ5y_Ey2YQRUW0IRJmiZrqqNRxogvJlNCMlinVY6m0EJUswdKWQsFMoJI6KeB-TAsmqQTvVqWCvkQ79arWrxBOaJVyHo8jKVUieSQyVRSRpJVkcRWneg_R0Ey58jnljbTJeR42Dy5z17i5adzc7KGkyR4i_VONy6lyS30eCOTeL3T-Xg496JYnPwRgOZhNsxZW1HrVtUZ91agbcUFf36HOG_Rw-zd4i3Y2606_Qw_UxWbRrt_7vnYNrciSWg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+learning+for+short-term+wind+speed+prediction+with+deep+neural+networks&rft.jtitle=Renewable+energy&rft.au=Hu%2C+Qinghua&rft.au=Zhang%2C+Rujia&rft.au=Zhou%2C+Yucan&rft.date=2016-01-01&rft.issn=0960-1481&rft.volume=85+p.83-95&rft.spage=83&rft.epage=95&rft_id=info:doi/10.1016%2Fj.renene.2015.06.034&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |