Dimension Reduction With Extreme Learning Machine

Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 25; H. 8; S. 3906 - 3918
Hauptverfasser: Kasun, Liyanaarachchi Lekamalage Chamara, Yang, Yan, Huang, Guang-Bin, Zhang, Zhengyou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
AbstractList Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of dimension reduction algorithms, such as principal component analysis (PCA), non-negative matrix factorization (NMF), random projection (RP), and auto-encoder (AE), is to reduce the noise or irrelevant information of the data. The features of PCA (eigenvectors) and linear AE are not able to represent data as parts (e.g. nose in a face image). On the other hand, NMF and non-linear AE are maimed by slow learning speed and RP only represents a subspace of original data. This paper introduces a dimension reduction framework which to some extend represents data as parts, has fast learning speed, and learns the between-class scatter subspace. To this end, this paper investigates a linear and non-linear dimension reduction framework referred to as extreme learning machine AE (ELM-AE) and sparse ELM-AE (SELM-AE). In contrast to tied weight AE, the hidden neurons in ELM-AE and SELM-AE need not be tuned, and their parameters (e.g, input weights in additive neurons) are initialized using orthogonal and sparse random weights, respectively. Experimental results on USPS handwritten digit recognition data set, CIFAR-10 object recognition, and NORB object recognition data set show the efficacy of linear and non-linear ELM-AE and SELM-AE in terms of discriminative capability, sparsity, training time, and normalized mean square error.
Author Yang, Yan
Kasun, Liyanaarachchi Lekamalage Chamara
Huang, Guang-Bin
Zhang, Zhengyou
Author_xml – sequence: 1
  givenname: Liyanaarachchi Lekamalage Chamara
  orcidid: 0000-0002-4078-3877
  surname: Kasun
  fullname: Kasun, Liyanaarachchi Lekamalage Chamara
  email: chamarak001@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  email: y.yang@nwpu.edu.cn
  organization: Energy Research Institute, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Guang-Bin
  surname: Huang
  fullname: Huang, Guang-Bin
  email: egbhuangg@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Zhengyou
  surname: Zhang
  fullname: Zhang, Zhengyou
  email: zhang@microsoft.com
  organization: Microsoft Corporation, Redmond, WA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27214902$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrHDEQhEWw8fseCISFXHyZdUujx-gY_IY1NsbGR6GRemOZHY0jzUDy76PxrnPwIeSkRnxVTVftk63YRyTkM4U5paBPHq7v5gyonDOhQEj9iexRzWkFwNlWmUGoSlGud8l-zi8AlAsqd8guU6z8Atsj9Cx0GHPo4-we_eiGaXoKw_Ps_NeQsMPZAm2KIf6Y3Vj3HCIeku2lXWU82rwH5PHi_OH0qlrcXl6ffl9Urm5gqKxiDfd1a6WXjLWOg29c2Sut843gQK2ymiupee3BW7TC-lbjUnPZtL7l9QE5Xvu-pv7niHkwXcgOVysbsR-zoQ0TopZc6v9AAUo-ik2u3z6gL_2YYjnkjSoRSSEL9XVDjW2H3rym0Nn027znVgC5Blzqc064NC4MdgpvSDasDAUzFWRKQWYqyGwKKkL4IHz3_ofky1oSEPEvrngpVqr6D-rVl9U
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109663
crossref_primary_10_1007_s11063_018_9869_6
crossref_primary_10_1109_JSTSP_2018_2873988
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_1016_j_neucom_2020_06_110
crossref_primary_10_1016_j_cose_2022_102658
crossref_primary_10_1016_j_neucom_2020_12_064
crossref_primary_10_1109_ACCESS_2019_2894014
crossref_primary_10_1007_s12559_017_9474_4
crossref_primary_10_1016_j_jksuci_2019_09_001
crossref_primary_10_1109_TSTE_2021_3054125
crossref_primary_10_1007_s11045_022_00820_4
crossref_primary_10_1007_s11760_025_03954_7
crossref_primary_10_1115_1_4067270
crossref_primary_10_1016_j_asoc_2025_113789
crossref_primary_10_1016_j_neucom_2019_05_098
crossref_primary_10_1016_j_patcog_2018_02_010
crossref_primary_10_1007_s00417_023_06049_6
crossref_primary_10_3390_s23187772
crossref_primary_10_1007_s40747_023_01065_9
crossref_primary_10_1016_j_neunet_2021_12_018
crossref_primary_10_1049_ipr2_12101
crossref_primary_10_1016_j_knosys_2019_04_008
crossref_primary_10_1145_3634813
crossref_primary_10_1002_for_2663
crossref_primary_10_1016_j_neunet_2020_06_009
crossref_primary_10_1049_enc2_12015
crossref_primary_10_1109_TNNLS_2018_2869974
crossref_primary_10_1016_j_bspc_2023_104663
crossref_primary_10_3390_en11071807
crossref_primary_10_1016_j_cmpb_2019_04_029
crossref_primary_10_1016_j_engappai_2020_104062
crossref_primary_10_1016_j_bspc_2021_102919
crossref_primary_10_1007_s11042_018_6500_9
crossref_primary_10_1016_j_engappai_2023_105899
crossref_primary_10_1016_j_patcog_2019_07_005
crossref_primary_10_1016_j_cose_2021_102473
crossref_primary_10_1007_s12559_018_9557_x
crossref_primary_10_1088_1361_6579_ab45c8
crossref_primary_10_1016_j_neucom_2017_02_025
crossref_primary_10_1109_TSMC_2017_2718220
crossref_primary_10_1038_s41598_024_77080_8
crossref_primary_10_1109_TIM_2020_3013129
crossref_primary_10_1016_j_neunet_2019_04_015
crossref_primary_10_1016_j_knosys_2021_107385
crossref_primary_10_1109_TII_2018_2874477
crossref_primary_10_1155_2017_7406568
crossref_primary_10_1016_j_engappai_2024_109143
crossref_primary_10_1007_s11265_020_01571_w
crossref_primary_10_1016_j_neucom_2019_01_056
crossref_primary_10_1109_TKDE_2017_2785784
crossref_primary_10_1007_s10115_021_01625_w
crossref_primary_10_3233_JIFS_189581
crossref_primary_10_1007_s00500_022_07745_x
crossref_primary_10_1007_s12559_018_9598_1
crossref_primary_10_1016_j_jtherbio_2018_09_016
crossref_primary_10_1145_3495164
crossref_primary_10_1007_s00034_021_01697_7
crossref_primary_10_1007_s11432_022_3579_1
crossref_primary_10_1016_j_neucom_2021_07_065
crossref_primary_10_1038_s41598_025_95678_4
crossref_primary_10_1007_s11554_018_0793_9
crossref_primary_10_1109_TSMC_2019_2931003
crossref_primary_10_1109_ACCESS_2022_3178709
crossref_primary_10_1007_s10489_022_04333_2
crossref_primary_10_1007_s11042_021_10567_y
crossref_primary_10_1109_ACCESS_2024_3434954
crossref_primary_10_1109_ACCESS_2017_2706363
crossref_primary_10_1109_TNNLS_2016_2636834
crossref_primary_10_1109_ACCESS_2018_2848966
crossref_primary_10_1109_TGRS_2019_2900509
crossref_primary_10_1016_j_apenergy_2022_120385
crossref_primary_10_3390_math11081777
crossref_primary_10_1109_TSMC_2017_2680404
crossref_primary_10_1016_j_ymssp_2023_110957
crossref_primary_10_1049_iet_ipr_2019_1016
crossref_primary_10_3390_rs9121255
crossref_primary_10_1016_j_neunet_2019_01_007
crossref_primary_10_1109_ACCESS_2025_3541271
crossref_primary_10_1109_TSP_2020_3039599
crossref_primary_10_1016_j_bspc_2022_104191
crossref_primary_10_1016_j_jvcir_2019_102598
crossref_primary_10_1080_03610918_2025_2524548
crossref_primary_10_1145_3340268
crossref_primary_10_3390_s20051262
crossref_primary_10_1080_00949655_2025_2534610
crossref_primary_10_1007_s00500_018_3109_x
crossref_primary_10_1109_TNNLS_2017_2654357
crossref_primary_10_1007_s11042_020_09438_9
crossref_primary_10_1109_TNNLS_2020_3015860
crossref_primary_10_1109_ACCESS_2020_2965284
crossref_primary_10_1016_j_matt_2020_06_011
crossref_primary_10_1109_TIFS_2017_2766583
crossref_primary_10_1016_j_knosys_2017_05_013
crossref_primary_10_1186_s40537_022_00640_0
crossref_primary_10_1016_j_infrared_2019_103070
crossref_primary_10_1109_ACCESS_2018_2810849
crossref_primary_10_1007_s13369_021_06484_9
crossref_primary_10_3390_s19245535
crossref_primary_10_1007_s10489_022_04284_8
crossref_primary_10_1016_j_patcog_2019_03_005
crossref_primary_10_3390_computers8010002
crossref_primary_10_1109_ACCESS_2021_3059858
crossref_primary_10_1016_j_bspc_2021_102608
crossref_primary_10_1007_s00521_023_08992_1
crossref_primary_10_1109_JSAC_2019_2951932
crossref_primary_10_1109_TAFFC_2019_2944603
crossref_primary_10_1016_j_neucom_2021_03_110
crossref_primary_10_1007_s12559_018_9601_x
crossref_primary_10_1016_j_measurement_2020_108276
crossref_primary_10_1109_ACCESS_2023_3253432
crossref_primary_10_1007_s11042_019_7330_0
crossref_primary_10_1016_j_neucom_2021_08_052
crossref_primary_10_12677_JISP_2024_131006
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_1109_TKDE_2018_2877746
crossref_primary_10_1016_j_neucom_2018_05_066
crossref_primary_10_1109_TCYB_2017_2727278
crossref_primary_10_1109_TNSRE_2024_3485186
crossref_primary_10_1007_s12065_018_0190_0
crossref_primary_10_1007_s10489_021_02915_0
crossref_primary_10_1109_ACCESS_2019_2940697
crossref_primary_10_1109_ACCESS_2020_2998478
crossref_primary_10_1016_j_neunet_2019_11_007
crossref_primary_10_1016_j_apm_2020_01_063
crossref_primary_10_3390_computers13010025
crossref_primary_10_1016_j_neucom_2020_03_045
crossref_primary_10_1016_j_knosys_2021_107182
crossref_primary_10_1007_s40747_021_00486_8
crossref_primary_10_1007_s11063_018_9809_5
crossref_primary_10_1007_s13042_022_01698_1
crossref_primary_10_1016_j_eswa_2019_112845
crossref_primary_10_1016_j_neucom_2017_08_040
crossref_primary_10_1016_j_neucom_2020_04_052
crossref_primary_10_1016_j_neucom_2019_11_105
crossref_primary_10_1109_JSTARS_2023_3308031
crossref_primary_10_1016_j_engappai_2022_105323
crossref_primary_10_1109_ACCESS_2020_3010233
crossref_primary_10_1049_joe_2019_0320
crossref_primary_10_1016_j_neucom_2020_05_021
crossref_primary_10_1109_ACCESS_2020_2985381
crossref_primary_10_3390_agriculture10110517
crossref_primary_10_1016_j_neunet_2019_11_015
crossref_primary_10_3390_s23218976
crossref_primary_10_1007_s11042_024_19291_9
crossref_primary_10_1109_ACCESS_2019_2936856
crossref_primary_10_1155_2022_7693393
crossref_primary_10_1016_j_asoc_2024_111378
crossref_primary_10_1016_j_neucom_2018_12_078
crossref_primary_10_1016_j_compeleceng_2020_106891
crossref_primary_10_3390_s20041185
crossref_primary_10_1109_TSG_2023_3286697
crossref_primary_10_1007_s13042_019_01057_7
Cites_doi 10.1007/s12559-014-9255-2
10.1093/qmath/11.1.50
10.1016/0893-6080(89)90014-2
10.1109/CVPR.2004.1315150
10.1145/1390156.1390224
10.1016/j.neucom.2005.12.126
10.1109/TPAMI.2013.50
10.1037/h0071325
10.1145/375551.375608
10.1109/TSMCB.2011.2168604
10.1145/1015330.1015408
10.1007/s12559-015-9333-0
10.1111/j.1469-1809.1936.tb02137.x
10.1523/JNEUROSCI.2753-12.2013
10.1038/nature12160
10.1038/323533a0
10.1038/nature09868
10.1007/BF02288367
10.1090/conm/026/737400
10.1080/14786440109462720
10.1109/TNN.2006.875977
10.1109/5.726791
10.1023/A:1012470815092
10.1109/MCI.2015.2405316
10.1137/0702016
10.1126/science.1127647
10.1109/TNNLS.2015.2424995
10.1109/TIT.2009.2027527
10.1126/science.1225266
10.1038/44565
10.1016/j.conb.2016.01.010
10.1109/TCYB.2014.2307349
10.1007/BF00994018
10.1016/S0042-6989(97)00169-7
10.1016/j.neucom.2007.02.009
10.1016/j.neucom.2007.10.008
10.1109/TNNLS.2011.2178124
10.1016/j.neunet.2015.06.002
10.1023/A:1018628609742
10.1561/2200000006
10.1109/18.661502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2016.2570569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList PubMed
Technology Research Database

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3918
ExternalDocumentID 4102750041
27214902
10_1109_TIP_2016_2570569
7471467
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c380t-a7284d3ba6d622bc40d8c2726acd85401a7a9476943d0daea5adb9ef9468bdb43
IEDL.DBID RIE
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380028000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Wed Oct 01 14:59:50 EDT 2025
Sat Sep 27 21:01:25 EDT 2025
Sun Nov 30 05:06:23 EST 2025
Wed Feb 19 02:09:23 EST 2025
Sat Nov 29 03:21:03 EST 2025
Tue Nov 18 22:14:29 EST 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Extreme learning machine (ELM)
auto-encoder (AE)
dimension reduction
principal component analysis (PCA)
random projection (RP)
non-negative matrix factorization (NMF)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-a7284d3ba6d622bc40d8c2726acd85401a7a9476943d0daea5adb9ef9468bdb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4078-3877
PMID 27214902
PQID 1800001656
PQPubID 85429
PageCount 13
ParticipantIDs crossref_primary_10_1109_TIP_2016_2570569
proquest_miscellaneous_1800705724
pubmed_primary_27214902
ieee_primary_7471467
crossref_citationtrail_10_1109_TIP_2016_2570569
proquest_journals_1800001656
proquest_miscellaneous_1825536469
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References serre (ref37) 2002
ref53
ref52
ref55
ref54
rifai (ref18) 2011
ref17
vincent (ref9) 2010; 11
ref19
ref51
ref46
ref45
ref48
ref47
lee (ref15) 2008; 20
ref44
ref43
bengio (ref13) 2007; 19
rao (ref38) 1971
ref49
ref8
ref7
ref4
ref6
ref5
ref40
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
ref39
chen (ref10) 2012
hinton (ref42) 2006; 313
kasun (ref36) 2013; 28
hinton (ref11) 1993
goodfellow (ref16) 2009; 22
ref24
lee (ref41) 2001
ref23
le (ref50) 2011
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ranzato (ref14) 2006
ref29
le cun (ref12) 1987
lee (ref3) 1999; 401
References_xml – ident: ref25
  doi: 10.1007/s12559-014-9255-2
– volume: 20
  start-page: 873
  year: 2008
  ident: ref15
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref47
  doi: 10.1093/qmath/11.1.50
– ident: ref6
  doi: 10.1016/0893-6080(89)90014-2
– ident: ref53
  doi: 10.1109/CVPR.2004.1315150
– start-page: 767
  year: 2012
  ident: ref10
  article-title: Marginalized denoising autoencoders for domain adaptation
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref17
  doi: 10.1145/1390156.1390224
– start-page: 556
  year: 2001
  ident: ref41
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc Neural Inf Process Syst
– ident: ref23
  doi: 10.1016/j.neucom.2005.12.126
– year: 1987
  ident: ref12
  article-title: Modèles connexionnistes de l'apprentissage [Connectionist Models of Learning]
– ident: ref8
  doi: 10.1109/TPAMI.2013.50
– ident: ref2
  doi: 10.1037/h0071325
– ident: ref5
  doi: 10.1145/375551.375608
– ident: ref24
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref48
  doi: 10.1145/1015330.1015408
– ident: ref26
  doi: 10.1007/s12559-015-9333-0
– ident: ref54
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref31
  doi: 10.1523/JNEUROSCI.2753-12.2013
– start-page: 3
  year: 1993
  ident: ref11
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Proc Neural Inf Process Syst
– volume: 28
  start-page: 31
  year: 2013
  ident: ref36
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intell Syst
– ident: ref32
  doi: 10.1038/nature12160
– ident: ref34
  doi: 10.1038/323533a0
– start-page: 1017
  year: 2011
  ident: ref50
  article-title: CA with reconstruction cost for efficient overcomplete feature learning
  publication-title: Proc Neural Inf Process Syst
– ident: ref29
  doi: 10.1038/nature09868
– ident: ref46
  doi: 10.1007/BF02288367
– ident: ref4
  doi: 10.1090/conm/026/737400
– ident: ref1
  doi: 10.1080/14786440109462720
– start-page: 1137
  year: 2006
  ident: ref14
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Proc Neural Inf Process Syst
– ident: ref19
  doi: 10.1109/TNN.2006.875977
– ident: ref52
  doi: 10.1109/5.726791
– ident: ref51
  doi: 10.1023/A:1012470815092
– ident: ref28
  doi: 10.1109/MCI.2015.2405316
– ident: ref45
  doi: 10.1137/0702016
– volume: 313
  start-page: 504
  year: 2006
  ident: ref42
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref27
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref55
  doi: 10.1109/TIT.2009.2027527
– start-page: 833
  year: 2011
  ident: ref18
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proc Int Conf Mach Learn
– ident: ref30
  doi: 10.1126/science.1225266
– volume: 19
  start-page: 153
  year: 2007
  ident: ref13
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 401
  start-page: 788
  year: 1999
  ident: ref3
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: ref33
  doi: 10.1016/j.conb.2016.01.010
– year: 1971
  ident: ref38
  publication-title: Generalized Inverse of Matrices and its Applications
– ident: ref44
  doi: 10.1109/TCYB.2014.2307349
– ident: ref39
  doi: 10.1007/BF00994018
– volume: 22
  start-page: 646
  year: 2009
  ident: ref16
  article-title: Measuring invariances in deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref20
  doi: 10.1016/j.neucom.2007.02.009
– ident: ref22
  doi: 10.1016/j.neucom.2007.10.008
– ident: ref21
  doi: 10.1109/TNNLS.2011.2178124
– ident: ref43
  doi: 10.1016/j.neunet.2015.06.002
– year: 2002
  ident: ref37
  publication-title: Matrices Theory and Applications
– ident: ref40
  doi: 10.1023/A:1018628609742
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref9
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1561/2200000006
– ident: ref35
  doi: 10.1109/18.661502
SSID ssj0014516
Score 2.6047199
Snippet Data may often contain noise or irrelevant information, which negatively affect the generalization capability of machine learning algorithms. The objective of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3906
SubjectTerms Algorithms
auto-encoder (AE)
Dimension reduction
Extreme Learning Machine (ELM)
Learning
Machine learning
Machine learning algorithms
Mathematical model
Neural networks
Noise
Non-negative Matrix Factorization (NMF)
Nonlinearity
Object recognition
Principal component analysis
Principal Component Analysis (PCA)
Principal components analysis
random projection (RP)
Reduction
Regression analysis
Subspaces
Support vector machines
Title Dimension Reduction With Extreme Learning Machine
URI https://ieeexplore.ieee.org/document/7471467
https://www.ncbi.nlm.nih.gov/pubmed/27214902
https://www.proquest.com/docview/1800001656
https://www.proquest.com/docview/1800705724
https://www.proquest.com/docview/1825536469
Volume 25
WOSCitedRecordID wos000380028000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH34_1RQUvgnW3bZo0R1EXBRURH3sraRJ1QXbF7Yo_35k0LR5U8FbotA3zaOaVbwD2mUGliVUcYmxAAYrB_6CSPFTobbBYy0K7csHDpbi-zvp9eTMFh81ZGGutaz6zR3TpavlmpCeUKutQAIWGPQ3TQvDqrFZTMaCBs66ymYoQqWRdkuzKzt3FDfVw8SOa2JZyAgqNMfBh0udS6t3IjVf53dN0O05v4X9rXYR571kGx5UqLMGUHS7DgvcyA2_D42WY-wZBuALRKcH7U8osuCUUV5JT8DgoX4Kzz5Jyh4FHYH0OrlzfpV2F-97Z3cl56McohDrJumWoBG5BJikUNzyOC40CyTQygCttMnTYIiWUZIJLlpiuUValyhTSPknGs8IULFmD1nA0tBsQRMLYNDWEEsbQ8xJFwjiLjBDSRMjbog2dmp259hjjNOriNXexRlfmKIucZJF7WbThoHnircLX-IN2hfjc0HkWt2G7lljuDXCcR5mrW6C32oa95jaaDtVD1NCOJhUNvljE7C8ajLkSzujr65U2NN-vlWjz53VtwSytvuoW3IZW-T6xOzCjP8rB-H0Xdbif7Tod_gL36udt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8BQwIexteADsaCxMukpW0Sx44fEQOB1lYV6jbeIsf2oBJqUZsi_nzuHCfaAyDtLVIusXN3ju_LvwM4ZQaVJlZxiL4BOSgG_4NK8lChtcFiLQvt0gW_e2IwyG5v5XAJvjdnYay1rvjMtunS5fLNVC8oVNYhBwoX9jJ8oM5Z_rRWkzOglrMut5mKEOlknZTsys7oekhVXLxNPdtSTlChMbo-TPpoSr0fuQYrb9uabs-53Py_2W7BR29bBmeVMmzDkp3swKa3MwO_iuc7sPEPCOEuRD8I4J-CZsEN4biSpII_4_I-uHguKXoYeAzWu6DvKi_tJ_h1eTE6vwp9I4VQJ1m3DJXATcgkheKGx3GhUSSZRgZwpU2GJlukhJJMcMkS0zXKqlSZQtq_kvGsMAVL9mBlMp3YAwgiYWyaGsIJY2h7iSJhnEVGCGki5G3Rgk7Nzlx7lHFqdvGQO2-jK3OURU6yyL0sWvCteeKxQth4h3aX-NzQeRa34KiWWO6X4DyPMpe5QHu1BSfNbVw8lBFREztdVDT4YhGz92jQ60o4o9H3K21oxq-V6PPr8_oKa1ejfi_vXQ9-HsI6fUlVO3gEK-VsYb_Aqn4qx_PZsdPkF7rX6c4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+Reduction+With+Extreme+Learning+Machine&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Kasun%2C+Liyanaarachchi+Lekamalage+Chamara&rft.au=Yang%2C+Yan&rft.au=Huang%2C+Guang-Bin&rft.au=Zhang%2C+Zhengyou&rft.date=2016-08-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=25&rft.issue=8&rft.spage=3906&rft_id=info:doi/10.1109%2FTIP.2016.2570569&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon