Towards automated homomorphic encryption parameter selection with fuzzy logic and linear programming

Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the sel...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 229; p. 120460
Main Authors: Cabrero-Holgueras, José, Pastrana, Sergio
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2023
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the selection of appropriate parameters within the algorithms) is a relevant multi-faced problem. First, the parametrization needs to comply with a set of properties to guarantee the security of the underlying scheme. Second, parametrization requires a deep understanding of the low-level primitives since the parameters have a confronting impact on the scheme’s precision, performance, and security. Finally, the circuit to be executed influences, and it is influenced by, the parametrization. Thus, there is no general optimal selection of parameters, and this selection depends on the circuit and the scenario of the application. Currently, most existing HE frameworks require cryptographers to address these considerations manually. It requires a minimum of expertise acquired through a steep learning curve. In this paper, we propose a unified solution for the aforementioned challenges. Concretely, we present an expert system combining Fuzzy Logic and Linear Programming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the security, efficiency, and performance of the cryptosystem. Based on these preferences, the expert system generates a Linear Programming Model that obtains optimal combinations of parameters by considering those priorities while preserving a minimum level of security for the cryptosystem. We conduct an extended evaluation showing that an expert system generates optimal parameter selections that maintain user preferences without undergoing the inherent complexity of analyzing the circuit. •Homomorphic Encryption scheme parametrization is a complex procedure.•Scheme parametrizations can be represented as Linear Programming Tasks.•Fuzzy Logic loosens the constraints of the Linear Programming Task.•Together Fuzzy Logic and Linear Programming provide near-optimal parametrizations.•The parametrization complexity is reduced and couples with user preferences.
AbstractList Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the selection of appropriate parameters within the algorithms) is a relevant multi-faced problem. First, the parametrization needs to comply with a set of properties to guarantee the security of the underlying scheme. Second, parametrization requires a deep understanding of the low-level primitives since the parameters have a confronting impact on the scheme’s precision, performance, and security. Finally, the circuit to be executed influences, and it is influenced by, the parametrization. Thus, there is no general optimal selection of parameters, and this selection depends on the circuit and the scenario of the application. Currently, most existing HE frameworks require cryptographers to address these considerations manually. It requires a minimum of expertise acquired through a steep learning curve. In this paper, we propose a unified solution for the aforementioned challenges. Concretely, we present an expert system combining Fuzzy Logic and Linear Programming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the security, efficiency, and performance of the cryptosystem. Based on these preferences, the expert system generates a Linear Programming Model that obtains optimal combinations of parameters by considering those priorities while preserving a minimum level of security for the cryptosystem. We conduct an extended evaluation showing that an expert system generates optimal parameter selections that maintain user preferences without undergoing the inherent complexity of analyzing the circuit. •Homomorphic Encryption scheme parametrization is a complex procedure.•Scheme parametrizations can be represented as Linear Programming Tasks.•Fuzzy Logic loosens the constraints of the Linear Programming Task.•Together Fuzzy Logic and Linear Programming provide near-optimal parametrizations.•The parametrization complexity is reduced and couples with user preferences.
ArticleNumber 120460
Author Cabrero-Holgueras, José
Pastrana, Sergio
Author_xml – sequence: 1
  givenname: José
  orcidid: 0000-0002-5668-5091
  surname: Cabrero-Holgueras
  fullname: Cabrero-Holgueras, José
  email: jose.cabrero@alumnos.uc3m.es
  organization: CERN, Esplanade des Particles, Meyrin, 1211, Geneva, Switzerland
– sequence: 2
  givenname: Sergio
  orcidid: 0000-0003-1036-6359
  surname: Pastrana
  fullname: Pastrana, Sergio
  email: spastran@inf.uc3m.es
  organization: Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganes, 28911, Madrid, Spain
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-BUD9uSoZsS-oJAN-laKHokCrZlJKUh-frKTVddlFkMDHOGO2cGJr3vDQD3GC0wwvXDfmHiUS4IInSBCSprdAWmmDNa1KyhEzBFTcWKErPyBsxi3COEGUJsCvTaH2XQEcpD8p1MRsOd73KFYecUNL0KpyE538NBBtmZZAKMpjXqZ3Z0aQft4Xw-wdZv877sNWxdb2SAQ_DbTHSu396CayvbaO5--xx8vjyvl2_F6uP1ffm0KhTlKBWSEFtrSxlFDbacEMVpzSWuuGW13VDNkWpYyUgOvymRYpaW1mpcV7rSkjd0Dvjlrgo-xmCsUC7JMWkK0rUCIzHaEnsx2hKjLXGxlVHyBx2C62Q4_Q89XiCTn_pyJoioXFZmtAvZkNDe_Yd_A7T0iCo
CitedBy_id crossref_primary_10_1142_S0219622024500068
crossref_primary_10_1016_j_aei_2024_103085
crossref_primary_10_1016_j_ipm_2024_103929
crossref_primary_10_1109_ACCESS_2023_3322035
Cites_doi 10.1016/j.eswa.2021.115989
10.1145/3314221.3314628
10.1016/j.eswa.2022.117086
10.1145/3310273.3323047
10.1145/1568318.1568324
10.1145/2633600
10.3390/info10040122
10.1145/3338469.3358944
10.1038/s41591-018-0300-7
10.1145/362946.362974
10.2478/popets-2021-0064
10.1016/S0377-0427(00)00433-7
10.1145/2488608.2488680
10.1002/asmb.2209
10.1007/s00145-019-09319-x
10.1145/3407023.3407045
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2023.120460
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_120460
S0957417423009624
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c380t-a22f6df373091f822c8368a158f76fb3d80c97472017b40c7f34ffd165d5da893
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013493400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:36:16 EST 2025
Sat Nov 29 07:06:41 EST 2025
Fri Feb 23 02:37:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy logic
Linear programming
Privacy preserving computation
Parameter selection
Homomorphic encryption
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-a22f6df373091f822c8368a158f76fb3d80c97472017b40c7f34ffd165d5da893
ORCID 0000-0003-1036-6359
0000-0002-5668-5091
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2023.120460
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_120460
crossref_primary_10_1016_j_eswa_2023_120460
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120460
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dathathri, Kostova, Saarikivi, Dai, Laine, Musuvathi (b16) 2020
Boemer, F., Costache, A., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE2: A high-throughput framework for neural network inference on encrypted data. In
(pp. 3–13).
Berman, Buczak, Chavis, Corbett (b3) 2019; 10
Albrecht, Chase, Chen, Ding, Goldwasser, Gorbunov, Halevi, Hoffstein, Laine, Lauter, Lokam, Micciancio, Moody, Morrison, Sahai, Vaikuntanathan (b1) 2018
Chillotti, I., Joye, M., Ligier, D., Orfila, J.-B., & Tap, S. (2020). CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. In
Regev (b28) 2009; 56
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., & Stehlé, D. (2013). Classical hardness of learning with errors. In
Ducas, Micciancio (b18) 2015
Mouchet, C. V., Bossuat, J.-P., Troncoso-Pastoriza, J. R., & Hubaux, J.-P. (2020). Lattigo: A multiparty homomorphic encryption library in go. In
(pp. 142–156).
Cabrero-Holgueras, Pastrana (b9) 2021; 2021
Viand, Jattke, Hithnawi (b33) 2021
Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., & Mytkowicz, T. (2019). CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In
Cheon, Kim, Kim, Song (b13) 2017
Qiao, Lan, Zhou, Ma (b27) 2022; 188
Cabrero-Holgueras, Pastrana (b10) 2022
Micciancio, Peikert (b23) 2013
Sen (b31) 2015
(pp. 1–10).
Boemer, F., Cammarota, R., Demmler, D., Schneider, T., & Yalame, H. (2020). MP2ML: a mixed-protocol machine learning framework for private inference. In
(no. CONF), (pp. 64–70).
Ryffel, Trask, Dahl, Wagner, Mancuso, Rueckert, Passerat-Palmbach (b29) 2018
Bartels, Golub (b2) 1969; 12
Boemer, F., Lao, Y., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE: a graph compiler for deep learning on homomorphically encrypted data. In
Chillotti, Gama, Georgieva, Izabachène (b14) 2020; 33
Brakerski, Gentry, Vaikuntanathan (b7) 2014; 6
Potra, Wright (b26) 2000; 124
SEAL (b30) 2020
Chen, Zhao, Duan, Zhang, Hong, Wang (b12) 2022; 201
,
Fan, Vercauteren (b19) 2012; 2012
.
(pp. 575–584).
Halevi, Shoup (b21) 2020; 2020
Topol (b32) 2019; 25
(pp. 45–56).
Cabrero-Holgueras, Pastrana (b11) 2023
Gentry (b20) 2009
Heaton, Polson, Witte (b22) 2017; 33
Murota (b25) 2020
Topol (10.1016/j.eswa.2023.120460_b32) 2019; 25
Fan (10.1016/j.eswa.2023.120460_b19) 2012; 2012
Albrecht (10.1016/j.eswa.2023.120460_b1) 2018
Regev (10.1016/j.eswa.2023.120460_b28) 2009; 56
Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b10) 2022
Gentry (10.1016/j.eswa.2023.120460_b20) 2009
Sen (10.1016/j.eswa.2023.120460_b31) 2015
10.1016/j.eswa.2023.120460_b15
Qiao (10.1016/j.eswa.2023.120460_b27) 2022; 188
Ryffel (10.1016/j.eswa.2023.120460_b29) 2018
Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b11) 2023
Heaton (10.1016/j.eswa.2023.120460_b22) 2017; 33
Murota (10.1016/j.eswa.2023.120460_b25) 2020
Dathathri (10.1016/j.eswa.2023.120460_b16) 2020
Brakerski (10.1016/j.eswa.2023.120460_b7) 2014; 6
Potra (10.1016/j.eswa.2023.120460_b26) 2000; 124
Chillotti (10.1016/j.eswa.2023.120460_b14) 2020; 33
SEAL (10.1016/j.eswa.2023.120460_b30) 2020
Bartels (10.1016/j.eswa.2023.120460_b2) 1969; 12
10.1016/j.eswa.2023.120460_b5
Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b9) 2021; 2021
10.1016/j.eswa.2023.120460_b6
10.1016/j.eswa.2023.120460_b4
10.1016/j.eswa.2023.120460_b8
Berman (10.1016/j.eswa.2023.120460_b3) 2019; 10
Chen (10.1016/j.eswa.2023.120460_b12) 2022; 201
10.1016/j.eswa.2023.120460_b17
Cheon (10.1016/j.eswa.2023.120460_b13) 2017
Viand (10.1016/j.eswa.2023.120460_b33) 2021
Ducas (10.1016/j.eswa.2023.120460_b18) 2015
10.1016/j.eswa.2023.120460_b24
Micciancio (10.1016/j.eswa.2023.120460_b23) 2013
Halevi (10.1016/j.eswa.2023.120460_b21) 2020; 2020
References_xml – volume: 33
  start-page: 34
  year: 2020
  end-page: 91
  ident: b14
  article-title: TFHE: fast fully homomorphic encryption over the torus
  publication-title: Journal of Cryptology
– volume: 6
  start-page: 1
  year: 2014
  end-page: 36
  ident: b7
  article-title: (Leveled) fully homomorphic encryption without bootstrapping
  publication-title: ACM Transactions on Computation Theory (TOCT)
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: b32
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nature Medicine
– reference: Boemer, F., Cammarota, R., Demmler, D., Schneider, T., & Yalame, H. (2020). MP2ML: a mixed-protocol machine learning framework for private inference. In
– reference: ,
– reference: (pp. 45–56).
– start-page: 409
  year: 2017
  end-page: 437
  ident: b13
  article-title: Homomorphic encryption for arithmetic of approximate numbers
  publication-title: International conference on the theory and application of cryptology and information security
– volume: 2012
  start-page: 144
  year: 2012
  ident: b19
  article-title: Somewhat practical fully homomorphic encryption
  publication-title: IACR Cryptology ePrint Archive
– year: 2018
  ident: b1
  article-title: Homomorphic encryption security standard
– year: 2018
  ident: b29
  article-title: A generic framework for privacy preserving deep learning
– reference: Boemer, F., Lao, Y., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE: a graph compiler for deep learning on homomorphically encrypted data. In
– volume: 201
  year: 2022
  ident: b12
  article-title: Verifiable privacy-preserving association rule mining using distributed decryption mechanism on the cloud
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 3
  year: 2017
  end-page: 12
  ident: b22
  article-title: Deep learning for finance: deep portfolios
  publication-title: Applied Stochastic Models in Business and Industry
– reference: Mouchet, C. V., Bossuat, J.-P., Troncoso-Pastoriza, J. R., & Hubaux, J.-P. (2020). Lattigo: A multiparty homomorphic encryption library in go. In
– start-page: 617
  year: 2015
  end-page: 640
  ident: b18
  article-title: FHEW: bootstrapping homomorphic encryption in less than a second
  publication-title: Annual international conference on the theory and applications of cryptographic techniques
– volume: 10
  start-page: 122
  year: 2019
  ident: b3
  article-title: A survey of deep learning methods for cyber security
  publication-title: Information
– year: 2020
  ident: b30
  article-title: Microsoft SEAL (release 3.6)
– reference: (pp. 575–584).
– start-page: 1
  year: 2020
  end-page: 7
  ident: b25
  article-title: Linear programming
  publication-title: Computer vision: A reference guide
– reference: Boemer, F., Costache, A., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE2: A high-throughput framework for neural network inference on encrypted data. In
– reference: (pp. 3–13).
– volume: 188
  year: 2022
  ident: b27
  article-title: Privacy-preserving credit evaluation system based on blockchain
  publication-title: Expert Systems with Applications
– reference: Brakerski, Z., Langlois, A., Peikert, C., Regev, O., & Stehlé, D. (2013). Classical hardness of learning with errors. In
– reference: (pp. 142–156).
– volume: 124
  start-page: 281
  year: 2000
  end-page: 302
  ident: b26
  article-title: Interior-point methods
  publication-title: Journal of Computational and Applied Mathematics
– start-page: 1585
  year: 2015
  end-page: 1630
  ident: b31
  article-title: Security and privacy issues in cloud computing
  publication-title: Cloud technology: Concepts, methodologies, tools, and applications
– volume: 12
  start-page: 266
  year: 1969
  end-page: 268
  ident: b2
  article-title: The simplex method of linear programming using LU decomposition
  publication-title: Communications of the ACM
– year: 2009
  ident: b20
  article-title: A fully homomorphic encryption scheme
– volume: 2020
  start-page: 1481
  year: 2020
  ident: b21
  article-title: Design and implementation of HElib: a homomorphic encryption library
  publication-title: IACR Cryptology ePrint Archive
– year: 2020
  ident: b16
  article-title: EVA: an encrypted vector arithmetic language and compiler for efficient homomorphic computation
  publication-title: Proceedings of the 41st ACM SIGPLAN conference on programming language design and implementation
– reference: .
– start-page: 21
  year: 2013
  end-page: 39
  ident: b23
  article-title: Hardness of SIS and LWE with small parameters
  publication-title: Annual cryptology conference
– volume: 56
  start-page: 1
  year: 2009
  end-page: 40
  ident: b28
  article-title: On lattices, learning with errors, random linear codes, and cryptography
  publication-title: Journal of the ACM
– reference: (pp. 1–10).
– year: 2023
  ident: b11
  article-title: Fuzzy logic with linear programming for automated homomorphic encryption parametrization
– reference: Chillotti, I., Joye, M., Ligier, D., Orfila, J.-B., & Tap, S. (2020). CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. In
– reference: (no. CONF), (pp. 64–70).
– volume: 2021
  start-page: 139
  year: 2021
  end-page: 162
  ident: b9
  article-title: Sok: Privacy-preserving computation techniques for deep learning
  publication-title: Proceedings on Privacy Enhancing Technologies
– start-page: 1166
  year: 2021
  end-page: 1182
  ident: b33
  article-title: SoK: Fully homomorphic encryption compilers
  publication-title: 2021 IEEE symposium on security and privacy
– year: 2022
  ident: b10
  article-title: Towards realistic privacy-preserving deep learning inference over encrypted data
– reference: Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., & Mytkowicz, T. (2019). CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In
– volume: 188
  year: 2022
  ident: 10.1016/j.eswa.2023.120460_b27
  article-title: Privacy-preserving credit evaluation system based on blockchain
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115989
– ident: 10.1016/j.eswa.2023.120460_b17
  doi: 10.1145/3314221.3314628
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.120460_b25
  article-title: Linear programming
– year: 2018
  ident: 10.1016/j.eswa.2023.120460_b29
– volume: 201
  year: 2022
  ident: 10.1016/j.eswa.2023.120460_b12
  article-title: Verifiable privacy-preserving association rule mining using distributed decryption mechanism on the cloud
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117086
– ident: 10.1016/j.eswa.2023.120460_b6
  doi: 10.1145/3310273.3323047
– ident: 10.1016/j.eswa.2023.120460_b15
– year: 2023
  ident: 10.1016/j.eswa.2023.120460_b11
– volume: 56
  start-page: 1
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2023.120460_b28
  article-title: On lattices, learning with errors, random linear codes, and cryptography
  publication-title: Journal of the ACM
  doi: 10.1145/1568318.1568324
– volume: 6
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2023.120460_b7
  article-title: (Leveled) fully homomorphic encryption without bootstrapping
  publication-title: ACM Transactions on Computation Theory (TOCT)
  doi: 10.1145/2633600
– year: 2022
  ident: 10.1016/j.eswa.2023.120460_b10
– volume: 10
  start-page: 122
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2023.120460_b3
  article-title: A survey of deep learning methods for cyber security
  publication-title: Information
  doi: 10.3390/info10040122
– ident: 10.1016/j.eswa.2023.120460_b5
  doi: 10.1145/3338469.3358944
– year: 2009
  ident: 10.1016/j.eswa.2023.120460_b20
– ident: 10.1016/j.eswa.2023.120460_b24
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2023.120460_b32
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0300-7
– start-page: 409
  year: 2017
  ident: 10.1016/j.eswa.2023.120460_b13
  article-title: Homomorphic encryption for arithmetic of approximate numbers
– start-page: 1166
  year: 2021
  ident: 10.1016/j.eswa.2023.120460_b33
  article-title: SoK: Fully homomorphic encryption compilers
– year: 2020
  ident: 10.1016/j.eswa.2023.120460_b16
  article-title: EVA: an encrypted vector arithmetic language and compiler for efficient homomorphic computation
– start-page: 21
  year: 2013
  ident: 10.1016/j.eswa.2023.120460_b23
  article-title: Hardness of SIS and LWE with small parameters
– volume: 12
  start-page: 266
  issue: 5
  year: 1969
  ident: 10.1016/j.eswa.2023.120460_b2
  article-title: The simplex method of linear programming using LU decomposition
  publication-title: Communications of the ACM
  doi: 10.1145/362946.362974
– year: 2020
  ident: 10.1016/j.eswa.2023.120460_b30
– volume: 2020
  start-page: 1481
  year: 2020
  ident: 10.1016/j.eswa.2023.120460_b21
  article-title: Design and implementation of HElib: a homomorphic encryption library
  publication-title: IACR Cryptology ePrint Archive
– volume: 2021
  start-page: 139
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2023.120460_b9
  article-title: Sok: Privacy-preserving computation techniques for deep learning
  publication-title: Proceedings on Privacy Enhancing Technologies
  doi: 10.2478/popets-2021-0064
– start-page: 617
  year: 2015
  ident: 10.1016/j.eswa.2023.120460_b18
  article-title: FHEW: bootstrapping homomorphic encryption in less than a second
– year: 2018
  ident: 10.1016/j.eswa.2023.120460_b1
– volume: 124
  start-page: 281
  issue: 1–2
  year: 2000
  ident: 10.1016/j.eswa.2023.120460_b26
  article-title: Interior-point methods
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(00)00433-7
– start-page: 1585
  year: 2015
  ident: 10.1016/j.eswa.2023.120460_b31
  article-title: Security and privacy issues in cloud computing
– ident: 10.1016/j.eswa.2023.120460_b8
  doi: 10.1145/2488608.2488680
– volume: 33
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2023.120460_b22
  article-title: Deep learning for finance: deep portfolios
  publication-title: Applied Stochastic Models in Business and Industry
  doi: 10.1002/asmb.2209
– volume: 33
  start-page: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.120460_b14
  article-title: TFHE: fast fully homomorphic encryption over the torus
  publication-title: Journal of Cryptology
  doi: 10.1007/s00145-019-09319-x
– volume: 2012
  start-page: 144
  year: 2012
  ident: 10.1016/j.eswa.2023.120460_b19
  article-title: Somewhat practical fully homomorphic encryption
  publication-title: IACR Cryptology ePrint Archive
– ident: 10.1016/j.eswa.2023.120460_b4
  doi: 10.1145/3407023.3407045
SSID ssj0017007
Score 2.461687
Snippet Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120460
SubjectTerms Fuzzy logic
Homomorphic encryption
Linear programming
Parameter selection
Privacy preserving computation
Title Towards automated homomorphic encryption parameter selection with fuzzy logic and linear programming
URI https://dx.doi.org/10.1016/j.eswa.2023.120460
Volume 229
WOSCitedRecordID wos001013493400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb5wwFLbaSQ-9dK-SdJEPvSEisDE2x6hKlVZV1ENazQ2BjdOMMhAB0yy_vs_YBhqlUXOoRkIjy3gs3jePz29F6INUWpWAnNC0dgkTzkhYqLQIo4olqWKEicGU_eMrPzoSy2X2zYUVdUM7AV7X4vIyO_-vooYxELZJnb2HuMdFYQC-g9DhCmKH678JfgiE7YJi0zdAR4FQ_mzW8IEHeioD2Gl7ZdWEqfq9NtEwQTc0wzFjg1lWb66vr4JBKQ6-BcNETUVsG8q19i-71RjFV7W9Kwntk-VmbvHJywGn77YJD5uzk03VFt4BYV31kyvL2F5sohrosRMbJubtEoS6BL25gZGHSWx78HhdS5x5w2rLmBi37K2K3NoUVntVd2GqQxG6N03-s2r2jbfZGGPow9dWuVkjN2vkdo2HaItwlokF2tr_fLD8MnqdeGTT6_3OXZKVjQe8uZPbicyMnBw_Q0_cqQLvWzQ8Rw-q-gV66jt2YKfAXyLlwIFHcOAZOPAEDjyCA4_gwEa0eAAHHsCBARzYggPPwPEKff90cPzxMHR9NkJJRdSHBSE6VZrCXzaLNTBGKWgqipgJzVNdUiUiaY6dwBV5mUSSa5poreKUKaYKILyv0aJu6mob4VLyEhitpkyXMCcqJNMJLXWcZSUcTvUOiv1Dy6UrQm96oZzlfxfXDgrGe85tCZY7ZzMvi9yRSEsOc4DWHfft3utX3qDHE-bfokXfbqp36JH81Z927XuHq98m5pfr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+automated+homomorphic+encryption+parameter+selection+with+fuzzy+logic+and+linear+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Cabrero-Holgueras%2C+Jos%C3%A9&rft.au=Pastrana%2C+Sergio&rft.date=2023-11-01&rft.issn=0957-4174&rft.volume=229&rft.spage=120460&rft_id=info:doi/10.1016%2Fj.eswa.2023.120460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_120460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon