Towards automated homomorphic encryption parameter selection with fuzzy logic and linear programming
Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the sel...
Saved in:
| Published in: | Expert systems with applications Vol. 229; p. 120460 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2023
|
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the selection of appropriate parameters within the algorithms) is a relevant multi-faced problem. First, the parametrization needs to comply with a set of properties to guarantee the security of the underlying scheme. Second, parametrization requires a deep understanding of the low-level primitives since the parameters have a confronting impact on the scheme’s precision, performance, and security. Finally, the circuit to be executed influences, and it is influenced by, the parametrization. Thus, there is no general optimal selection of parameters, and this selection depends on the circuit and the scenario of the application. Currently, most existing HE frameworks require cryptographers to address these considerations manually. It requires a minimum of expertise acquired through a steep learning curve. In this paper, we propose a unified solution for the aforementioned challenges. Concretely, we present an expert system combining Fuzzy Logic and Linear Programming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the security, efficiency, and performance of the cryptosystem. Based on these preferences, the expert system generates a Linear Programming Model that obtains optimal combinations of parameters by considering those priorities while preserving a minimum level of security for the cryptosystem. We conduct an extended evaluation showing that an expert system generates optimal parameter selections that maintain user preferences without undergoing the inherent complexity of analyzing the circuit.
•Homomorphic Encryption scheme parametrization is a complex procedure.•Scheme parametrizations can be represented as Linear Programming Tasks.•Fuzzy Logic loosens the constraints of the Linear Programming Task.•Together Fuzzy Logic and Linear Programming provide near-optimal parametrizations.•The parametrization complexity is reduced and couples with user preferences. |
|---|---|
| AbstractList | Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the selection of appropriate parameters within the algorithms) is a relevant multi-faced problem. First, the parametrization needs to comply with a set of properties to guarantee the security of the underlying scheme. Second, parametrization requires a deep understanding of the low-level primitives since the parameters have a confronting impact on the scheme’s precision, performance, and security. Finally, the circuit to be executed influences, and it is influenced by, the parametrization. Thus, there is no general optimal selection of parameters, and this selection depends on the circuit and the scenario of the application. Currently, most existing HE frameworks require cryptographers to address these considerations manually. It requires a minimum of expertise acquired through a steep learning curve. In this paper, we propose a unified solution for the aforementioned challenges. Concretely, we present an expert system combining Fuzzy Logic and Linear Programming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the security, efficiency, and performance of the cryptosystem. Based on these preferences, the expert system generates a Linear Programming Model that obtains optimal combinations of parameters by considering those priorities while preserving a minimum level of security for the cryptosystem. We conduct an extended evaluation showing that an expert system generates optimal parameter selections that maintain user preferences without undergoing the inherent complexity of analyzing the circuit.
•Homomorphic Encryption scheme parametrization is a complex procedure.•Scheme parametrizations can be represented as Linear Programming Tasks.•Fuzzy Logic loosens the constraints of the Linear Programming Task.•Together Fuzzy Logic and Linear Programming provide near-optimal parametrizations.•The parametrization complexity is reduced and couples with user preferences. |
| ArticleNumber | 120460 |
| Author | Cabrero-Holgueras, José Pastrana, Sergio |
| Author_xml | – sequence: 1 givenname: José orcidid: 0000-0002-5668-5091 surname: Cabrero-Holgueras fullname: Cabrero-Holgueras, José email: jose.cabrero@alumnos.uc3m.es organization: CERN, Esplanade des Particles, Meyrin, 1211, Geneva, Switzerland – sequence: 2 givenname: Sergio orcidid: 0000-0003-1036-6359 surname: Pastrana fullname: Pastrana, Sergio email: spastran@inf.uc3m.es organization: Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganes, 28911, Madrid, Spain |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP-BUD9uSoZsS-oJAN-laKHokCrZlJKUh-frKTVddlFkMDHOGO2cGJr3vDQD3GC0wwvXDfmHiUS4IInSBCSprdAWmmDNa1KyhEzBFTcWKErPyBsxi3COEGUJsCvTaH2XQEcpD8p1MRsOd73KFYecUNL0KpyE538NBBtmZZAKMpjXqZ3Z0aQft4Xw-wdZv877sNWxdb2SAQ_DbTHSu396CayvbaO5--xx8vjyvl2_F6uP1ffm0KhTlKBWSEFtrSxlFDbacEMVpzSWuuGW13VDNkWpYyUgOvymRYpaW1mpcV7rSkjd0Dvjlrgo-xmCsUC7JMWkK0rUCIzHaEnsx2hKjLXGxlVHyBx2C62Q4_Q89XiCTn_pyJoioXFZmtAvZkNDe_Yd_A7T0iCo |
| CitedBy_id | crossref_primary_10_1142_S0219622024500068 crossref_primary_10_1016_j_aei_2024_103085 crossref_primary_10_1016_j_ipm_2024_103929 crossref_primary_10_1109_ACCESS_2023_3322035 |
| Cites_doi | 10.1016/j.eswa.2021.115989 10.1145/3314221.3314628 10.1016/j.eswa.2022.117086 10.1145/3310273.3323047 10.1145/1568318.1568324 10.1145/2633600 10.3390/info10040122 10.1145/3338469.3358944 10.1038/s41591-018-0300-7 10.1145/362946.362974 10.2478/popets-2021-0064 10.1016/S0377-0427(00)00433-7 10.1145/2488608.2488680 10.1002/asmb.2209 10.1007/s00145-019-09319-x 10.1145/3407023.3407045 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.120460 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_120460 S0957417423009624 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c380t-a22f6df373091f822c8368a158f76fb3d80c97472017b40c7f34ffd165d5da893 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013493400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 22:36:16 EST 2025 Sat Nov 29 07:06:41 EST 2025 Fri Feb 23 02:37:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy logic Linear programming Privacy preserving computation Parameter selection Homomorphic encryption |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-a22f6df373091f822c8368a158f76fb3d80c97472017b40c7f34ffd165d5da893 |
| ORCID | 0000-0003-1036-6359 0000-0002-5668-5091 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.eswa.2023.120460 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_120460 crossref_primary_10_1016_j_eswa_2023_120460 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_120460 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dathathri, Kostova, Saarikivi, Dai, Laine, Musuvathi (b16) 2020 Boemer, F., Costache, A., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE2: A high-throughput framework for neural network inference on encrypted data. In (pp. 3–13). Berman, Buczak, Chavis, Corbett (b3) 2019; 10 Albrecht, Chase, Chen, Ding, Goldwasser, Gorbunov, Halevi, Hoffstein, Laine, Lauter, Lokam, Micciancio, Moody, Morrison, Sahai, Vaikuntanathan (b1) 2018 Chillotti, I., Joye, M., Ligier, D., Orfila, J.-B., & Tap, S. (2020). CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. In Regev (b28) 2009; 56 Brakerski, Z., Langlois, A., Peikert, C., Regev, O., & Stehlé, D. (2013). Classical hardness of learning with errors. In Ducas, Micciancio (b18) 2015 Mouchet, C. V., Bossuat, J.-P., Troncoso-Pastoriza, J. R., & Hubaux, J.-P. (2020). Lattigo: A multiparty homomorphic encryption library in go. In (pp. 142–156). Cabrero-Holgueras, Pastrana (b9) 2021; 2021 Viand, Jattke, Hithnawi (b33) 2021 Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., & Mytkowicz, T. (2019). CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In Cheon, Kim, Kim, Song (b13) 2017 Qiao, Lan, Zhou, Ma (b27) 2022; 188 Cabrero-Holgueras, Pastrana (b10) 2022 Micciancio, Peikert (b23) 2013 Sen (b31) 2015 (pp. 1–10). Boemer, F., Cammarota, R., Demmler, D., Schneider, T., & Yalame, H. (2020). MP2ML: a mixed-protocol machine learning framework for private inference. In (no. CONF), (pp. 64–70). Ryffel, Trask, Dahl, Wagner, Mancuso, Rueckert, Passerat-Palmbach (b29) 2018 Bartels, Golub (b2) 1969; 12 Boemer, F., Lao, Y., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE: a graph compiler for deep learning on homomorphically encrypted data. In Chillotti, Gama, Georgieva, Izabachène (b14) 2020; 33 Brakerski, Gentry, Vaikuntanathan (b7) 2014; 6 Potra, Wright (b26) 2000; 124 SEAL (b30) 2020 Chen, Zhao, Duan, Zhang, Hong, Wang (b12) 2022; 201 , Fan, Vercauteren (b19) 2012; 2012 . (pp. 575–584). Halevi, Shoup (b21) 2020; 2020 Topol (b32) 2019; 25 (pp. 45–56). Cabrero-Holgueras, Pastrana (b11) 2023 Gentry (b20) 2009 Heaton, Polson, Witte (b22) 2017; 33 Murota (b25) 2020 Topol (10.1016/j.eswa.2023.120460_b32) 2019; 25 Fan (10.1016/j.eswa.2023.120460_b19) 2012; 2012 Albrecht (10.1016/j.eswa.2023.120460_b1) 2018 Regev (10.1016/j.eswa.2023.120460_b28) 2009; 56 Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b10) 2022 Gentry (10.1016/j.eswa.2023.120460_b20) 2009 Sen (10.1016/j.eswa.2023.120460_b31) 2015 10.1016/j.eswa.2023.120460_b15 Qiao (10.1016/j.eswa.2023.120460_b27) 2022; 188 Ryffel (10.1016/j.eswa.2023.120460_b29) 2018 Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b11) 2023 Heaton (10.1016/j.eswa.2023.120460_b22) 2017; 33 Murota (10.1016/j.eswa.2023.120460_b25) 2020 Dathathri (10.1016/j.eswa.2023.120460_b16) 2020 Brakerski (10.1016/j.eswa.2023.120460_b7) 2014; 6 Potra (10.1016/j.eswa.2023.120460_b26) 2000; 124 Chillotti (10.1016/j.eswa.2023.120460_b14) 2020; 33 SEAL (10.1016/j.eswa.2023.120460_b30) 2020 Bartels (10.1016/j.eswa.2023.120460_b2) 1969; 12 10.1016/j.eswa.2023.120460_b5 Cabrero-Holgueras (10.1016/j.eswa.2023.120460_b9) 2021; 2021 10.1016/j.eswa.2023.120460_b6 10.1016/j.eswa.2023.120460_b4 10.1016/j.eswa.2023.120460_b8 Berman (10.1016/j.eswa.2023.120460_b3) 2019; 10 Chen (10.1016/j.eswa.2023.120460_b12) 2022; 201 10.1016/j.eswa.2023.120460_b17 Cheon (10.1016/j.eswa.2023.120460_b13) 2017 Viand (10.1016/j.eswa.2023.120460_b33) 2021 Ducas (10.1016/j.eswa.2023.120460_b18) 2015 10.1016/j.eswa.2023.120460_b24 Micciancio (10.1016/j.eswa.2023.120460_b23) 2013 Halevi (10.1016/j.eswa.2023.120460_b21) 2020; 2020 |
| References_xml | – volume: 33 start-page: 34 year: 2020 end-page: 91 ident: b14 article-title: TFHE: fast fully homomorphic encryption over the torus publication-title: Journal of Cryptology – volume: 6 start-page: 1 year: 2014 end-page: 36 ident: b7 article-title: (Leveled) fully homomorphic encryption without bootstrapping publication-title: ACM Transactions on Computation Theory (TOCT) – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: b32 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nature Medicine – reference: Boemer, F., Cammarota, R., Demmler, D., Schneider, T., & Yalame, H. (2020). MP2ML: a mixed-protocol machine learning framework for private inference. In – reference: , – reference: (pp. 45–56). – start-page: 409 year: 2017 end-page: 437 ident: b13 article-title: Homomorphic encryption for arithmetic of approximate numbers publication-title: International conference on the theory and application of cryptology and information security – volume: 2012 start-page: 144 year: 2012 ident: b19 article-title: Somewhat practical fully homomorphic encryption publication-title: IACR Cryptology ePrint Archive – year: 2018 ident: b1 article-title: Homomorphic encryption security standard – year: 2018 ident: b29 article-title: A generic framework for privacy preserving deep learning – reference: Boemer, F., Lao, Y., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE: a graph compiler for deep learning on homomorphically encrypted data. In – volume: 201 year: 2022 ident: b12 article-title: Verifiable privacy-preserving association rule mining using distributed decryption mechanism on the cloud publication-title: Expert Systems with Applications – volume: 33 start-page: 3 year: 2017 end-page: 12 ident: b22 article-title: Deep learning for finance: deep portfolios publication-title: Applied Stochastic Models in Business and Industry – reference: Mouchet, C. V., Bossuat, J.-P., Troncoso-Pastoriza, J. R., & Hubaux, J.-P. (2020). Lattigo: A multiparty homomorphic encryption library in go. In – start-page: 617 year: 2015 end-page: 640 ident: b18 article-title: FHEW: bootstrapping homomorphic encryption in less than a second publication-title: Annual international conference on the theory and applications of cryptographic techniques – volume: 10 start-page: 122 year: 2019 ident: b3 article-title: A survey of deep learning methods for cyber security publication-title: Information – year: 2020 ident: b30 article-title: Microsoft SEAL (release 3.6) – reference: (pp. 575–584). – start-page: 1 year: 2020 end-page: 7 ident: b25 article-title: Linear programming publication-title: Computer vision: A reference guide – reference: Boemer, F., Costache, A., Cammarota, R., & Wierzynski, C. (2019). nGraph-HE2: A high-throughput framework for neural network inference on encrypted data. In – reference: (pp. 3–13). – volume: 188 year: 2022 ident: b27 article-title: Privacy-preserving credit evaluation system based on blockchain publication-title: Expert Systems with Applications – reference: Brakerski, Z., Langlois, A., Peikert, C., Regev, O., & Stehlé, D. (2013). Classical hardness of learning with errors. In – reference: (pp. 142–156). – volume: 124 start-page: 281 year: 2000 end-page: 302 ident: b26 article-title: Interior-point methods publication-title: Journal of Computational and Applied Mathematics – start-page: 1585 year: 2015 end-page: 1630 ident: b31 article-title: Security and privacy issues in cloud computing publication-title: Cloud technology: Concepts, methodologies, tools, and applications – volume: 12 start-page: 266 year: 1969 end-page: 268 ident: b2 article-title: The simplex method of linear programming using LU decomposition publication-title: Communications of the ACM – year: 2009 ident: b20 article-title: A fully homomorphic encryption scheme – volume: 2020 start-page: 1481 year: 2020 ident: b21 article-title: Design and implementation of HElib: a homomorphic encryption library publication-title: IACR Cryptology ePrint Archive – year: 2020 ident: b16 article-title: EVA: an encrypted vector arithmetic language and compiler for efficient homomorphic computation publication-title: Proceedings of the 41st ACM SIGPLAN conference on programming language design and implementation – reference: . – start-page: 21 year: 2013 end-page: 39 ident: b23 article-title: Hardness of SIS and LWE with small parameters publication-title: Annual cryptology conference – volume: 56 start-page: 1 year: 2009 end-page: 40 ident: b28 article-title: On lattices, learning with errors, random linear codes, and cryptography publication-title: Journal of the ACM – reference: (pp. 1–10). – year: 2023 ident: b11 article-title: Fuzzy logic with linear programming for automated homomorphic encryption parametrization – reference: Chillotti, I., Joye, M., Ligier, D., Orfila, J.-B., & Tap, S. (2020). CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. In – reference: (no. CONF), (pp. 64–70). – volume: 2021 start-page: 139 year: 2021 end-page: 162 ident: b9 article-title: Sok: Privacy-preserving computation techniques for deep learning publication-title: Proceedings on Privacy Enhancing Technologies – start-page: 1166 year: 2021 end-page: 1182 ident: b33 article-title: SoK: Fully homomorphic encryption compilers publication-title: 2021 IEEE symposium on security and privacy – year: 2022 ident: b10 article-title: Towards realistic privacy-preserving deep learning inference over encrypted data – reference: Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., & Mytkowicz, T. (2019). CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In – volume: 188 year: 2022 ident: 10.1016/j.eswa.2023.120460_b27 article-title: Privacy-preserving credit evaluation system based on blockchain publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115989 – ident: 10.1016/j.eswa.2023.120460_b17 doi: 10.1145/3314221.3314628 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2023.120460_b25 article-title: Linear programming – year: 2018 ident: 10.1016/j.eswa.2023.120460_b29 – volume: 201 year: 2022 ident: 10.1016/j.eswa.2023.120460_b12 article-title: Verifiable privacy-preserving association rule mining using distributed decryption mechanism on the cloud publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117086 – ident: 10.1016/j.eswa.2023.120460_b6 doi: 10.1145/3310273.3323047 – ident: 10.1016/j.eswa.2023.120460_b15 – year: 2023 ident: 10.1016/j.eswa.2023.120460_b11 – volume: 56 start-page: 1 issue: 6 year: 2009 ident: 10.1016/j.eswa.2023.120460_b28 article-title: On lattices, learning with errors, random linear codes, and cryptography publication-title: Journal of the ACM doi: 10.1145/1568318.1568324 – volume: 6 start-page: 1 issue: 3 year: 2014 ident: 10.1016/j.eswa.2023.120460_b7 article-title: (Leveled) fully homomorphic encryption without bootstrapping publication-title: ACM Transactions on Computation Theory (TOCT) doi: 10.1145/2633600 – year: 2022 ident: 10.1016/j.eswa.2023.120460_b10 – volume: 10 start-page: 122 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.120460_b3 article-title: A survey of deep learning methods for cyber security publication-title: Information doi: 10.3390/info10040122 – ident: 10.1016/j.eswa.2023.120460_b5 doi: 10.1145/3338469.3358944 – year: 2009 ident: 10.1016/j.eswa.2023.120460_b20 – ident: 10.1016/j.eswa.2023.120460_b24 – volume: 25 start-page: 44 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.120460_b32 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nature Medicine doi: 10.1038/s41591-018-0300-7 – start-page: 409 year: 2017 ident: 10.1016/j.eswa.2023.120460_b13 article-title: Homomorphic encryption for arithmetic of approximate numbers – start-page: 1166 year: 2021 ident: 10.1016/j.eswa.2023.120460_b33 article-title: SoK: Fully homomorphic encryption compilers – year: 2020 ident: 10.1016/j.eswa.2023.120460_b16 article-title: EVA: an encrypted vector arithmetic language and compiler for efficient homomorphic computation – start-page: 21 year: 2013 ident: 10.1016/j.eswa.2023.120460_b23 article-title: Hardness of SIS and LWE with small parameters – volume: 12 start-page: 266 issue: 5 year: 1969 ident: 10.1016/j.eswa.2023.120460_b2 article-title: The simplex method of linear programming using LU decomposition publication-title: Communications of the ACM doi: 10.1145/362946.362974 – year: 2020 ident: 10.1016/j.eswa.2023.120460_b30 – volume: 2020 start-page: 1481 year: 2020 ident: 10.1016/j.eswa.2023.120460_b21 article-title: Design and implementation of HElib: a homomorphic encryption library publication-title: IACR Cryptology ePrint Archive – volume: 2021 start-page: 139 issue: 4 year: 2021 ident: 10.1016/j.eswa.2023.120460_b9 article-title: Sok: Privacy-preserving computation techniques for deep learning publication-title: Proceedings on Privacy Enhancing Technologies doi: 10.2478/popets-2021-0064 – start-page: 617 year: 2015 ident: 10.1016/j.eswa.2023.120460_b18 article-title: FHEW: bootstrapping homomorphic encryption in less than a second – year: 2018 ident: 10.1016/j.eswa.2023.120460_b1 – volume: 124 start-page: 281 issue: 1–2 year: 2000 ident: 10.1016/j.eswa.2023.120460_b26 article-title: Interior-point methods publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/S0377-0427(00)00433-7 – start-page: 1585 year: 2015 ident: 10.1016/j.eswa.2023.120460_b31 article-title: Security and privacy issues in cloud computing – ident: 10.1016/j.eswa.2023.120460_b8 doi: 10.1145/2488608.2488680 – volume: 33 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.eswa.2023.120460_b22 article-title: Deep learning for finance: deep portfolios publication-title: Applied Stochastic Models in Business and Industry doi: 10.1002/asmb.2209 – volume: 33 start-page: 34 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.120460_b14 article-title: TFHE: fast fully homomorphic encryption over the torus publication-title: Journal of Cryptology doi: 10.1007/s00145-019-09319-x – volume: 2012 start-page: 144 year: 2012 ident: 10.1016/j.eswa.2023.120460_b19 article-title: Somewhat practical fully homomorphic encryption publication-title: IACR Cryptology ePrint Archive – ident: 10.1016/j.eswa.2023.120460_b4 doi: 10.1145/3407023.3407045 |
| SSID | ssj0017007 |
| Score | 2.461687 |
| Snippet | Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow privacy-preserving operation over the encrypted text. Still, HE... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 120460 |
| SubjectTerms | Fuzzy logic Homomorphic encryption Linear programming Parameter selection Privacy preserving computation |
| Title | Towards automated homomorphic encryption parameter selection with fuzzy logic and linear programming |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.120460 |
| Volume | 229 |
| WOSCitedRecordID | wos001013493400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb5wwFLbaSQ-9dK-SdJEPvSEisDE2x6hKlVZV1ENazQ2BjdOMMhAB0yy_vs_YBhqlUXOoRkIjy3gs3jePz29F6INUWpWAnNC0dgkTzkhYqLQIo4olqWKEicGU_eMrPzoSy2X2zYUVdUM7AV7X4vIyO_-vooYxELZJnb2HuMdFYQC-g9DhCmKH678JfgiE7YJi0zdAR4FQ_mzW8IEHeioD2Gl7ZdWEqfq9NtEwQTc0wzFjg1lWb66vr4JBKQ6-BcNETUVsG8q19i-71RjFV7W9Kwntk-VmbvHJywGn77YJD5uzk03VFt4BYV31kyvL2F5sohrosRMbJubtEoS6BL25gZGHSWx78HhdS5x5w2rLmBi37K2K3NoUVntVd2GqQxG6N03-s2r2jbfZGGPow9dWuVkjN2vkdo2HaItwlokF2tr_fLD8MnqdeGTT6_3OXZKVjQe8uZPbicyMnBw_Q0_cqQLvWzQ8Rw-q-gV66jt2YKfAXyLlwIFHcOAZOPAEDjyCA4_gwEa0eAAHHsCBARzYggPPwPEKff90cPzxMHR9NkJJRdSHBSE6VZrCXzaLNTBGKWgqipgJzVNdUiUiaY6dwBV5mUSSa5poreKUKaYKILyv0aJu6mob4VLyEhitpkyXMCcqJNMJLXWcZSUcTvUOiv1Dy6UrQm96oZzlfxfXDgrGe85tCZY7ZzMvi9yRSEsOc4DWHfft3utX3qDHE-bfokXfbqp36JH81Z927XuHq98m5pfr |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+automated+homomorphic+encryption+parameter+selection+with+fuzzy+logic+and+linear+programming&rft.jtitle=Expert+systems+with+applications&rft.au=Cabrero-Holgueras%2C+Jos%C3%A9&rft.au=Pastrana%2C+Sergio&rft.date=2023-11-01&rft.issn=0957-4174&rft.volume=229&rft.spage=120460&rft_id=info:doi/10.1016%2Fj.eswa.2023.120460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_120460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |