Improving probability selection based weights for satisfiability problems

Boolean Satisfiability problem (SAT) plays a prominent role in many domains of computer science and artificial intelligence due to its significant importance in both theory and applications. Algorithms for solving SAT problems can be categorized into two main classes: complete algorithms and incompl...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 245; p. 108572
Main Authors: Fu, Huimin, Liu, Jun, Wu, Guanfeng, Xu, Yang, Sutcliffe, Geoff
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 07.06.2022
Elsevier Science Ltd
Subjects:
ISSN:0950-7051, 1872-7409
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Boolean Satisfiability problem (SAT) plays a prominent role in many domains of computer science and artificial intelligence due to its significant importance in both theory and applications. Algorithms for solving SAT problems can be categorized into two main classes: complete algorithms and incomplete algorithms (typically stochastic local search (SLS) algorithms). SLS algorithms are among the most effective for solving uniform random SAT problems, while hybrid algorithms achieved great breakthroughs for solving hard random SAT (HRS) problem recently. However, there is a lack of algorithms that can effectively solve both uniform random SAT and HRS problems. In this paper, a new SLS algorithm named SelectNTS is proposed aiming at solving both uniform random SAT and HRS problem effectively. SelectNTS is essentially an improved probability selection based local search algorithm, the core of which includes new clause and variable selection heuristics: a new clause weighting scheme and a biased random walk strategy are utilized to select a clause, while a new probability selection strategy with the variation of configuration checking strategy is used to select a variable. Extensive experimental results show that SelectNTS outperforms the state-of-the-art random SAT algorithms and hybrid algorithms in solving both uniform random SAT and HRS problems effectively.
AbstractList Boolean Satisfiability problem (SAT) plays a prominent role in many domains of computer science and artificial intelligence due to its significant importance in both theory and applications. Algorithms for solving SAT problems can be categorized into two main classes: complete algorithms and incomplete algorithms (typically stochastic local search (SLS) algorithms). SLS algorithms are among the most effective for solving uniform random SAT problems, while hybrid algorithms achieved great breakthroughs for solving hard random SAT (HRS) problem recently. However, there is a lack of algorithms that can effectively solve both uniform random SAT and HRS problems. In this paper, a new SLS algorithm named SelectNTS is proposed aiming at solving both uniform random SAT and HRS problem effectively. SelectNTS is essentially an improved probability selection based local search algorithm, the core of which includes new clause and variable selection heuristics: a new clause weighting scheme and a biased random walk strategy are utilized to select a clause, while a new probability selection strategy with the variation of configuration checking strategy is used to select a variable. Extensive experimental results show that SelectNTS outperforms the state-of-the-art random SAT algorithms and hybrid algorithms in solving both uniform random SAT and HRS problems effectively.
ArticleNumber 108572
Author Xu, Yang
Sutcliffe, Geoff
Fu, Huimin
Liu, Jun
Wu, Guanfeng
Author_xml – sequence: 1
  givenname: Huimin
  orcidid: 0000-0002-4447-3585
  surname: Fu
  fullname: Fu, Huimin
  email: fuhuimin@swufe.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China
– sequence: 2
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: School of Computing, Ulster University, Northern Ireland, UK
– sequence: 3
  givenname: Guanfeng
  surname: Wu
  fullname: Wu, Guanfeng
  email: wgf1024@swjtu.edu.cn
  organization: School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 4
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  organization: School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 5
  givenname: Geoff
  surname: Sutcliffe
  fullname: Sutcliffe, Geoff
  organization: Department of Computer Science, University of Miami, USA
BookMark eNqFkD1PwzAQhi1UJNrCP2CIxJzij8R2GJBQxUelSiwwW45zKQ5pUmy3qP8eR4GFAaY7nd7nzn5maNL1HSB0SfCCYMKvm8V71_ujX1BMaRzJXNATNCVS0FRkuJigKS5ynAqckzM0877BOCaJnKLVartz_cF2myTWUpe2teGYeGjBBNt3Sak9VMkn2M1b8Endu8TrYH1tf6ID1sLWn6PTWrceLr7rHL0-3L8sn9L18-NqebdODZM4pJKUtCyMyChkecUkjw-RpABR4VqaUlSsACZyyLAmHJeCcUaNjg2nnJYkZ3N0Ne6Nhz_24INq-r3r4klFORcyZ0LImMrGlHG99w5qtXN2q91REawGaapRozQ1SFOjtIjd_MKMDXoQEZy27X_w7QhD_P7BglPeWOgMVNZFm6rq7d8LvgBD-Izw
CitedBy_id crossref_primary_10_1007_s12083_025_02021_9
crossref_primary_10_1016_j_advengsoft_2022_103355
crossref_primary_10_1016_j_ins_2023_119751
crossref_primary_10_1134_S0965542523010116
crossref_primary_10_1109_ACCESS_2023_3246123
crossref_primary_10_3390_math11040984
crossref_primary_10_7717_peerj_cs_1806
Cites_doi 10.24963/ijcai.2017/716
10.1016/j.entcs.2007.08.008
10.3182/20120523-3-RO-2023.00179
10.1016/j.artint.2013.09.001
10.1007/978-3-642-40627-0_37
10.1016/j.jsc.2019.07.024
10.1016/j.ins.2021.03.009
10.1093/comjnl/bxu135
10.1007/978-3-319-92991-0_3
10.1609/socs.v9i1.18461
10.1007/978-3-642-14186-7_3
10.1609/aaai.v30i1.10083
10.1016/j.biosystems.2019.02.013
10.1016/j.pnsc.2008.07.017
10.1109/TCYB.2016.2556742
10.1007/978-3-642-31612-8_43
10.1007/978-3-642-31612-8_3
10.1609/aaai.v28i1.9110
10.1002/rsa.20057
10.1109/12.769433
10.1007/978-3-642-14186-7_31
10.1007/11499107_12
10.1109/TCYB.2014.2343242
10.1016/j.ejor.2011.03.019
10.1007/s10489-014-0556-7
10.1145/378239.379017
10.1109/TC.2010.270
10.1007/978-3-319-66263-3_8
10.1016/j.artint.2016.07.006
10.1007/s10489-020-01768-3
10.1007/3-540-46135-3_16
10.1016/j.artint.2015.11.002
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 7, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 7, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108572
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108572
S0950705122002556
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c380t-81b2b9c742e45d386022819e7d0f8cb7d39e375e40a160b73632ca0b76262b153
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802978200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:46:42 EST 2025
Sat Nov 29 07:06:03 EST 2025
Tue Nov 18 22:20:17 EST 2025
Fri Feb 23 02:40:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic local search
Weights
Boolean Satisfiability problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-81b2b9c742e45d386022819e7d0f8cb7d39e375e40a160b73632ca0b76262b153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4447-3585
OpenAccessLink http://www.scopus.com/inward/record.url?scp=85127369082&partnerID=8YFLogxK
PQID 2667853778
PQPubID 2035257
ParticipantIDs proquest_journals_2667853778
crossref_primary_10_1016_j_knosys_2022_108572
crossref_citationtrail_10_1016_j_knosys_2022_108572
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108572
PublicationCentury 2000
PublicationDate 2022-06-07
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-07
  day: 07
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References C. Luo, S. Cai, W. Wu, K. Su, CSCCSat, in: Proc. of SAT 2016: Solver and Benchmark Descriptions, p. 10
T. Balyo, Using algorithm configuration tools to generate hard random satisfiable benchmarks, in: Proc. of SAT 2016: Solver and Benchmark Descriptions, pp. 60–62
(b45) 2018
Ulyantsev, Tsarev (b8) 2012; 45
A. Balint, U. Schöning, Choosing probability distributions for stochastic local search and the role of make versus break, in: Pro. of SAT-2012, 2012, pp. 16–29.
Braunstein, Mézard, Zecchina (b17) 2005; 27
S. Liu, A. Papakonstantinou, Local search for hard sat formulas: the strength of the polynomial law, in: Proc. of the AAAI-2016, 2016, pp. 732–738.
A. Biere, Cadical, lingeling, llingeling, treengeling and yalsat entering the SAT competition 2017, in: Proc. of SAT 2017: Solver and Benchmark Descriptions, pp. 14-15.
L. Kroc, A. Sabharwal, B. Selman, An empirical study of optimal noise and runtime distributions in local search, in: Proc. of SAT-2010, pp. 346–351.
Achlioptas (b1) 2009
M.J. Heule, Generating the uniform random benchmarks, in: Proc. SAT competition 2018, p. 80.
Luo, Su, Cai (b56) 2014; 41
Cai, Luo, Su (b36) 2014; 58
Fu, Liu, Xu (b58) 2020; 50
.
Ouimet, Lundqvist (b7) 2007; 190
A. Zha, GluHack, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, p. 26.
Thornton (b32) 2015; 35
Mavrovouniotis, Müller, Yang (b26) 2017; 47
k-SAT generator.
Fu, Wu, Liu, Chen, He (b47) 2021; 566
Deshpande, Layek (b5) 2019; 179
Cai, Luo, Lin, Su (b54) 2016; 240
F. Hutter, D.A. Tompkins, H.H. Hoos, Scaling and probabilistic smoothing: Efficient dynamic local search for SAT, in: Proc. of CP 2002, pp. 233-248.
(b57) 2013
Yin, He, Hung, Song, Gu (b2) 2012; 61
H.H. Hoos, An adaptive noise mechanism for WalkSAT, in: Proc. of AAAI 2002, pp. 655–660.
Coelho, Vanhoucke (b4) 2011; 213
T. Balyo, L. Chrpa, Using algorithm configuration tools to generate hard SAT benchmarks, in: Proc. of SoCS 2018, pp. 133–137.
B. Selman, H.A. Kautz, B. Cohen, Noise strategies for improving local search, in: Proc. of AAAI 1994, pp. 337–343.
T.T.N. Duong, D.N. Pham, A. Sattar, M.H. Newton, Weight-enhanced diversification in stochastic local search for satisfiability, in: Proc. of IJCAI 2013, 2013, pp. 524–530.
Z. Wu, B.W. Wah, An efficient global-search strategy in discrete Lagrangian methods for solving hard satisfiability problems, in: Proc. of AAAI/IAAI, 2000, pp. 310-315.
S. Liu, A. Papakonstantinou, Local search for hard sat formulas: the strength of the polynomial law, in: Proc. of AAAI 2016, pp. 732–738.
(b44) 2017
C. Luo, S. Cai, K. Su, W. Huang, CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability (extended abstract), in: Proc. of IJCAI 2017, pp. 5030–5034.
Cai, Su (b30) 2013; 204
C. Luo, K. Su, S. Cai, Improving local search for random 3-SAT using quantitative configuration checking, in: Proc. of ECAI 2012, 2012, pp. 570–575.
A. Balint, A. Fröhlich, Improving stochastic local search for SAT with a new probability distribution, in: Proc. of SAT 2010, pp. 10–15.
C. Li, Y. Li, Satisfying versus falsifying in local search for satisfiability - (poster presentation), in: Proc. of SAT-2012, pp. 477–478.
SAT, in: Proc. of SAT 2017: Solver and Benchmark Descriptions, p. 34.
C. Luo, S. Cai, W. Wu, K. Su, Focused random walk with configuration checking and break minimum for satisfiability, in: Proc. of CP-2013, pp. 481–496.
S. Cai, K. Su, CCAnr, in: Pro. of SAT-2013: Solver and Benchmark Descriptions, 2013, pp. 16–17.
B. Mazure, L. Saïs, E. Grégoire, Tabu search for SAT, in: Proc. of the AAAI- 97, 1997, pp. 281–285.
B. König, N. Maxime, N. Dennis, CoReS: A tool for computing core graphs via SAT/SMT solvers. In: Proc. of Graph Transformation, 2018, pp. 37-42.
S. Cai, K. Su, Comprehensive score: Towards efficient local search for SAT with long clauses, in: Proc. of IJCAI 2013, 2013, pp. 489-495.
S. Cai, C. Luo, Score
Marques-Silva, Sakallah (b13) 1999; 48
C. Luo, S. Cai, W. Wu, K. Su, Double configuration checking in stochastic local search for satisfiability, in: Pro. of AAAI 2014, pp. 2703-2709.
KhudaBukhsh, Xu, Hoos, Leyton-Brown (b18) 2016; 232
V. Ryvchin, A. Nadel, Ma-ple_LCM_Dist_ChronoBT, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, p. 29.
A. Balint, U. Schöning, ProbSAT, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, 2018, p. 35.
Zhao, Zhang, Ouyang, Jiao (b9) 2009; 19
M. Moskewicz, C. Madigan, et al. Chaff: Engineering an efficient SAT solver, in: Proc. of Design Automation Conference, 2001, pp. 530–535.
B. Selman, D. Mitchell, H. Levesque, A new method for solving hard satisfiability problems, in: Proc. of the AAAI-92, 1992, pp. 440–446.
Bright, Ilias, Vijay (b3) 2020; 100
Luo, Cai, Su, Wu (b22) 2015; 45
A. Balint, N. Manthey, SparrowToRiss, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, 2018, pp. 38–39.
S. Kochemazov, O. Zaikin, V. Kondratiev, A. Semenov, MapleLCMDistChronoBT-DL, duplicate learnts heuristic -aided solvers at the SAT Race 2019, in: Proc. of SAT 2019: Solver and Benchmark Descriptions, p. 24
J.H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, An empirical study of branching heuristics through the lens of global learning rate, in: Proc. of SAT 2010, pp. 119-135.
C. Li, W. Huang, Diversification and determinism in local search for satisfiability. In Pro. of SAT-2005, pp. 158–172.
(10.1016/j.knosys.2022.108572_b57) 2013
10.1016/j.knosys.2022.108572_b49
10.1016/j.knosys.2022.108572_b48
Mavrovouniotis (10.1016/j.knosys.2022.108572_b26) 2017; 47
(10.1016/j.knosys.2022.108572_b44) 2017
Luo (10.1016/j.knosys.2022.108572_b56) 2014; 41
Coelho (10.1016/j.knosys.2022.108572_b4) 2011; 213
Luo (10.1016/j.knosys.2022.108572_b22) 2015; 45
10.1016/j.knosys.2022.108572_b53
10.1016/j.knosys.2022.108572_b52
10.1016/j.knosys.2022.108572_b51
10.1016/j.knosys.2022.108572_b50
10.1016/j.knosys.2022.108572_b12
10.1016/j.knosys.2022.108572_b11
10.1016/j.knosys.2022.108572_b55
10.1016/j.knosys.2022.108572_b10
10.1016/j.knosys.2022.108572_b39
10.1016/j.knosys.2022.108572_b38
10.1016/j.knosys.2022.108572_b37
Ouimet (10.1016/j.knosys.2022.108572_b7) 2007; 190
Marques-Silva (10.1016/j.knosys.2022.108572_b13) 1999; 48
Braunstein (10.1016/j.knosys.2022.108572_b17) 2005; 27
(10.1016/j.knosys.2022.108572_b45) 2018
10.1016/j.knosys.2022.108572_b42
KhudaBukhsh (10.1016/j.knosys.2022.108572_b18) 2016; 232
10.1016/j.knosys.2022.108572_b41
10.1016/j.knosys.2022.108572_b40
10.1016/j.knosys.2022.108572_b46
Cai (10.1016/j.knosys.2022.108572_b36) 2014; 58
10.1016/j.knosys.2022.108572_b43
10.1016/j.knosys.2022.108572_b28
10.1016/j.knosys.2022.108572_b27
Achlioptas (10.1016/j.knosys.2022.108572_b1) 2009
10.1016/j.knosys.2022.108572_b25
10.1016/j.knosys.2022.108572_b29
Cai (10.1016/j.knosys.2022.108572_b54) 2016; 240
10.1016/j.knosys.2022.108572_b6
Zhao (10.1016/j.knosys.2022.108572_b9) 2009; 19
Ulyantsev (10.1016/j.knosys.2022.108572_b8) 2012; 45
10.1016/j.knosys.2022.108572_b31
10.1016/j.knosys.2022.108572_b35
10.1016/j.knosys.2022.108572_b34
10.1016/j.knosys.2022.108572_b33
Deshpande (10.1016/j.knosys.2022.108572_b5) 2019; 179
10.1016/j.knosys.2022.108572_b16
Fu (10.1016/j.knosys.2022.108572_b58) 2020; 50
10.1016/j.knosys.2022.108572_b15
10.1016/j.knosys.2022.108572_b14
10.1016/j.knosys.2022.108572_b19
Yin (10.1016/j.knosys.2022.108572_b2) 2012; 61
Fu (10.1016/j.knosys.2022.108572_b47) 2021; 566
Cai (10.1016/j.knosys.2022.108572_b30) 2013; 204
Bright (10.1016/j.knosys.2022.108572_b3) 2020; 100
Thornton (10.1016/j.knosys.2022.108572_b32) 2015; 35
10.1016/j.knosys.2022.108572_b20
10.1016/j.knosys.2022.108572_b24
10.1016/j.knosys.2022.108572_b23
10.1016/j.knosys.2022.108572_b21
References_xml – volume: 204
  start-page: 75
  year: 2013
  end-page: 98
  ident: b30
  article-title: Local search for Boolean satisfiability with configuration checking and subscore
  publication-title: Artificial Intelligence
– reference: S. Cai, K. Su, Comprehensive score: Towards efficient local search for SAT with long clauses, in: Proc. of IJCAI 2013, 2013, pp. 489-495.
– year: 2013
  ident: b57
  article-title: SAT competition
– volume: 61
  start-page: 420
  year: 2012
  end-page: 426
  ident: b2
  article-title: Maxterm covering for satisfiability
  publication-title: IEEE Trans. Comput.
– reference: SAT, in: Proc. of SAT 2017: Solver and Benchmark Descriptions, p. 34.
– reference: S. Liu, A. Papakonstantinou, Local search for hard sat formulas: the strength of the polynomial law, in: Proc. of AAAI 2016, pp. 732–738.
– volume: 566
  start-page: 118
  year: 2021
  end-page: 139
  ident: b47
  article-title: Emphasis on the flipping variable: Towards effective local search for hard random satisfiability
  publication-title: Inform. Sci.
– reference: L. Kroc, A. Sabharwal, B. Selman, An empirical study of optimal noise and runtime distributions in local search, in: Proc. of SAT-2010, pp. 346–351.
– reference: H.H. Hoos, An adaptive noise mechanism for WalkSAT, in: Proc. of AAAI 2002, pp. 655–660.
– start-page: 245
  year: 2009
  end-page: 270
  ident: b1
  article-title: Random satisfiability
  publication-title: Handbook of Satisfiability
– volume: 232
  start-page: 20
  year: 2016
  end-page: 42
  ident: b18
  article-title: SATenstein: Automatically building local search SAT solvers from components
  publication-title: Artificial Intelligence
– volume: 27
  start-page: 201
  year: 2005
  end-page: 226
  ident: b17
  article-title: Survey propagation: an algorithm for satisfiability
  publication-title: Random Struct. Algorithms
– volume: 47
  start-page: 1743
  year: 2017
  end-page: 1756
  ident: b26
  article-title: Ant colony optimization with local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
– reference: A. Balint, A. Fröhlich, Improving stochastic local search for SAT with a new probability distribution, in: Proc. of SAT 2010, pp. 10–15.
– volume: 240
  start-page: 1
  year: 2016
  end-page: 18
  ident: b54
  article-title: New local search methods for partial MaxSAT
  publication-title: Artificial Intelligence
– reference: S. Cai, K. Su, CCAnr, in: Pro. of SAT-2013: Solver and Benchmark Descriptions, 2013, pp. 16–17.
– volume: 100
  start-page: 187
  year: 2020
  end-page: 209
  ident: b3
  article-title: Applying computer algebra systems with SAT solvers to the Williamson conjecture
  publication-title: J. Symbolic Comput.
– year: 2018
  ident: b45
  article-title: SAT competition
– volume: 58
  start-page: 2864
  year: 2014
  end-page: 2875
  ident: b36
  article-title: Improving walksat by effective tie-breaking and efficient implementation
  publication-title: Comput. J.
– reference: A. Balint, N. Manthey, SparrowToRiss, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, 2018, pp. 38–39.
– reference: Z. Wu, B.W. Wah, An efficient global-search strategy in discrete Lagrangian methods for solving hard satisfiability problems, in: Proc. of AAAI/IAAI, 2000, pp. 310-315.
– volume: 179
  start-page: 55
  year: 2019
  end-page: 62
  ident: b5
  article-title: Fault detection and therapeutic intervention in gene regulatory networks using SAT solvers
  publication-title: BioSystems
– reference: C. Luo, S. Cai, W. Wu, K. Su, CSCCSat, in: Proc. of SAT 2016: Solver and Benchmark Descriptions, p. 10,
– reference: B. König, N. Maxime, N. Dennis, CoReS: A tool for computing core graphs via SAT/SMT solvers. In: Proc. of Graph Transformation, 2018, pp. 37-42.
– reference: C. Li, W. Huang, Diversification and determinism in local search for satisfiability. In Pro. of SAT-2005, pp. 158–172.
– reference: M. Moskewicz, C. Madigan, et al. Chaff: Engineering an efficient SAT solver, in: Proc. of Design Automation Conference, 2001, pp. 530–535.
– reference: A. Zha, GluHack, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, p. 26.
– reference: M.J. Heule, Generating the uniform random benchmarks, in: Proc. SAT competition 2018, p. 80.
– reference: C. Li, Y. Li, Satisfying versus falsifying in local search for satisfiability - (poster presentation), in: Proc. of SAT-2012, pp. 477–478.
– volume: 41
  start-page: 665
  year: 2014
  end-page: 680
  ident: b56
  article-title: More efficient two-mode stochastic local search for random 3-satisfiability
  publication-title: Appl. Intell.
– volume: 48
  start-page: 506
  year: 1999
  end-page: 521
  ident: b13
  article-title: Grasp: A search algorithm for propositional satisfiability
  publication-title: IEEE Trans. Comput.
– reference: C. Luo, S. Cai, W. Wu, K. Su, Double configuration checking in stochastic local search for satisfiability, in: Pro. of AAAI 2014, pp. 2703-2709.
– reference: T. Balyo, L. Chrpa, Using algorithm configuration tools to generate hard SAT benchmarks, in: Proc. of SoCS 2018, pp. 133–137.
– volume: 35
  start-page: 97
  year: 2015
  end-page: 142
  ident: b32
  article-title: Clause weighting local search for SAT
  publication-title: J. Automat. Reason.
– reference: C. Luo, S. Cai, W. Wu, K. Su, Focused random walk with configuration checking and break minimum for satisfiability, in: Proc. of CP-2013, pp. 481–496.
– reference: V. Ryvchin, A. Nadel, Ma-ple_LCM_Dist_ChronoBT, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, p. 29.
– reference: T.T.N. Duong, D.N. Pham, A. Sattar, M.H. Newton, Weight-enhanced diversification in stochastic local search for satisfiability, in: Proc. of IJCAI 2013, 2013, pp. 524–530.
– reference: B. Mazure, L. Saïs, E. Grégoire, Tabu search for SAT, in: Proc. of the AAAI- 97, 1997, pp. 281–285.
– reference: F. Hutter, D.A. Tompkins, H.H. Hoos, Scaling and probabilistic smoothing: Efficient dynamic local search for SAT, in: Proc. of CP 2002, pp. 233-248.
– year: 2017
  ident: b44
  article-title: SAT competition
– reference: B. Selman, H.A. Kautz, B. Cohen, Noise strategies for improving local search, in: Proc. of AAAI 1994, pp. 337–343.
– volume: 45
  start-page: 1028
  year: 2015
  end-page: 1041
  ident: b22
  article-title: Clause states based configuration checking in local search for satisfiability
  publication-title: IEEE Trans. Cybern.
– reference: S. Kochemazov, O. Zaikin, V. Kondratiev, A. Semenov, MapleLCMDistChronoBT-DL, duplicate learnts heuristic -aided solvers at the SAT Race 2019, in: Proc. of SAT 2019: Solver and Benchmark Descriptions, p. 24,
– reference: J.H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, An empirical study of branching heuristics through the lens of global learning rate, in: Proc. of SAT 2010, pp. 119-135.
– reference: A. Biere, Cadical, lingeling, llingeling, treengeling and yalsat entering the SAT competition 2017, in: Proc. of SAT 2017: Solver and Benchmark Descriptions, pp. 14-15.
– reference: A. Balint, U. Schöning, Choosing probability distributions for stochastic local search and the role of make versus break, in: Pro. of SAT-2012, 2012, pp. 16–29.
– reference: C. Luo, K. Su, S. Cai, Improving local search for random 3-SAT using quantitative configuration checking, in: Proc. of ECAI 2012, 2012, pp. 570–575.
– reference: A. Balint, U. Schöning, ProbSAT, in: Proc. of SAT 2018: Solver and Benchmark Descriptions, 2018, p. 35.
– reference: C. Luo, S. Cai, K. Su, W. Huang, CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability (extended abstract), in: Proc. of IJCAI 2017, pp. 5030–5034.
– reference: T. Balyo, Using algorithm configuration tools to generate hard random satisfiable benchmarks, in: Proc. of SAT 2016: Solver and Benchmark Descriptions, pp. 60–62,
– volume: 19
  start-page: 489
  year: 2009
  end-page: 494
  ident: b9
  article-title: Deriving all minimal consistency-based diagnosis sets using SAT solvers
  publication-title: Prog. Nat. Sci.
– reference: k-SAT generator.
– reference: .
– volume: 50
  start-page: 4732
  year: 2020
  end-page: 4753
  ident: b58
  article-title: Focused random walk with probability distribution for SAT with long clauses
  publication-title: Appl. Intell.
– volume: 213
  start-page: 73
  year: 2011
  end-page: 82
  ident: b4
  article-title: Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers
  publication-title: European J. Oper. Res.
– reference: S. Cai, C. Luo, Score
– volume: 45
  start-page: 236
  year: 2012
  end-page: 241
  ident: b8
  article-title: Extended finite-state machine induction using SAT-solver
  publication-title: IFAC Proc. Vol.
– volume: 190
  start-page: 85
  year: 2007
  end-page: 97
  ident: b7
  article-title: Automated verification of completeness and consistency of abstract state machine specifications using a sat solver
  publication-title: Electron. Notes Theor. Comput. Sci.
– reference: B. Selman, D. Mitchell, H. Levesque, A new method for solving hard satisfiability problems, in: Proc. of the AAAI-92, 1992, pp. 440–446.
– reference: S. Liu, A. Papakonstantinou, Local search for hard sat formulas: the strength of the polynomial law, in: Proc. of the AAAI-2016, 2016, pp. 732–738.
– ident: 10.1016/j.knosys.2022.108572_b53
  doi: 10.24963/ijcai.2017/716
– ident: 10.1016/j.knosys.2022.108572_b49
– volume: 190
  start-page: 85
  issue: 2
  year: 2007
  ident: 10.1016/j.knosys.2022.108572_b7
  article-title: Automated verification of completeness and consistency of abstract state machine specifications using a sat solver
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2007.08.008
– ident: 10.1016/j.knosys.2022.108572_b55
– volume: 45
  start-page: 236
  issue: 6
  year: 2012
  ident: 10.1016/j.knosys.2022.108572_b8
  article-title: Extended finite-state machine induction using SAT-solver
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120523-3-RO-2023.00179
– volume: 204
  start-page: 75
  year: 2013
  ident: 10.1016/j.knosys.2022.108572_b30
  article-title: Local search for Boolean satisfiability with configuration checking and subscore
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2013.09.001
– start-page: 245
  year: 2009
  ident: 10.1016/j.knosys.2022.108572_b1
  article-title: Random satisfiability
– ident: 10.1016/j.knosys.2022.108572_b19
  doi: 10.1007/978-3-642-40627-0_37
– volume: 100
  start-page: 187
  year: 2020
  ident: 10.1016/j.knosys.2022.108572_b3
  article-title: Applying computer algebra systems with SAT solvers to the Williamson conjecture
  publication-title: J. Symbolic Comput.
  doi: 10.1016/j.jsc.2019.07.024
– volume: 566
  start-page: 118
  issue: 2021
  year: 2021
  ident: 10.1016/j.knosys.2022.108572_b47
  article-title: Emphasis on the flipping variable: Towards effective local search for hard random satisfiability
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.03.009
– volume: 58
  start-page: 2864
  issue: 11
  year: 2014
  ident: 10.1016/j.knosys.2022.108572_b36
  article-title: Improving walksat by effective tie-breaking and efficient implementation
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxu135
– ident: 10.1016/j.knosys.2022.108572_b6
  doi: 10.1007/978-3-319-92991-0_3
– ident: 10.1016/j.knosys.2022.108572_b24
  doi: 10.1609/socs.v9i1.18461
– ident: 10.1016/j.knosys.2022.108572_b41
– ident: 10.1016/j.knosys.2022.108572_b46
  doi: 10.1007/978-3-642-14186-7_3
– ident: 10.1016/j.knosys.2022.108572_b51
  doi: 10.1609/aaai.v30i1.10083
– volume: 179
  start-page: 55
  year: 2019
  ident: 10.1016/j.knosys.2022.108572_b5
  article-title: Fault detection and therapeutic intervention in gene regulatory networks using SAT solvers
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2019.02.013
– ident: 10.1016/j.knosys.2022.108572_b23
– ident: 10.1016/j.knosys.2022.108572_b50
– volume: 19
  start-page: 489
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2022.108572_b9
  article-title: Deriving all minimal consistency-based diagnosis sets using SAT solvers
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2008.07.017
– ident: 10.1016/j.knosys.2022.108572_b48
– ident: 10.1016/j.knosys.2022.108572_b16
– ident: 10.1016/j.knosys.2022.108572_b40
– volume: 47
  start-page: 1743
  issue: 7
  year: 2017
  ident: 10.1016/j.knosys.2022.108572_b26
  article-title: Ant colony optimization with local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2556742
– volume: 35
  start-page: 97
  issue: 1–3
  year: 2015
  ident: 10.1016/j.knosys.2022.108572_b32
  article-title: Clause weighting local search for SAT
  publication-title: J. Automat. Reason.
– ident: 10.1016/j.knosys.2022.108572_b28
  doi: 10.1007/978-3-642-31612-8_43
– ident: 10.1016/j.knosys.2022.108572_b37
  doi: 10.1007/978-3-642-31612-8_3
– ident: 10.1016/j.knosys.2022.108572_b35
  doi: 10.1609/aaai.v28i1.9110
– volume: 27
  start-page: 201
  issue: 2
  year: 2005
  ident: 10.1016/j.knosys.2022.108572_b17
  article-title: Survey propagation: an algorithm for satisfiability
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20057
– ident: 10.1016/j.knosys.2022.108572_b11
– volume: 48
  start-page: 506
  issue: 5
  year: 1999
  ident: 10.1016/j.knosys.2022.108572_b13
  article-title: Grasp: A search algorithm for propositional satisfiability
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.769433
– year: 2018
  ident: 10.1016/j.knosys.2022.108572_b45
– ident: 10.1016/j.knosys.2022.108572_b27
  doi: 10.1007/978-3-642-14186-7_31
– ident: 10.1016/j.knosys.2022.108572_b38
– ident: 10.1016/j.knosys.2022.108572_b43
– ident: 10.1016/j.knosys.2022.108572_b20
– ident: 10.1016/j.knosys.2022.108572_b29
  doi: 10.1007/11499107_12
– ident: 10.1016/j.knosys.2022.108572_b15
– ident: 10.1016/j.knosys.2022.108572_b34
– volume: 45
  start-page: 1028
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2022.108572_b22
  article-title: Clause states based configuration checking in local search for satisfiability
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2343242
– volume: 213
  start-page: 73
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2022.108572_b4
  article-title: Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2011.03.019
– year: 2017
  ident: 10.1016/j.knosys.2022.108572_b44
– volume: 41
  start-page: 665
  issue: 3
  year: 2014
  ident: 10.1016/j.knosys.2022.108572_b56
  article-title: More efficient two-mode stochastic local search for random 3-satisfiability
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0556-7
– ident: 10.1016/j.knosys.2022.108572_b14
  doi: 10.1145/378239.379017
– volume: 61
  start-page: 420
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2022.108572_b2
  article-title: Maxterm covering for satisfiability
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2010.270
– ident: 10.1016/j.knosys.2022.108572_b12
  doi: 10.1007/978-3-319-66263-3_8
– ident: 10.1016/j.knosys.2022.108572_b31
– year: 2013
  ident: 10.1016/j.knosys.2022.108572_b57
– volume: 240
  start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.108572_b54
  article-title: New local search methods for partial MaxSAT
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2016.07.006
– volume: 50
  start-page: 4732
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2022.108572_b58
  article-title: Focused random walk with probability distribution for SAT with long clauses
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01768-3
– ident: 10.1016/j.knosys.2022.108572_b25
– ident: 10.1016/j.knosys.2022.108572_b10
– ident: 10.1016/j.knosys.2022.108572_b33
  doi: 10.1007/3-540-46135-3_16
– ident: 10.1016/j.knosys.2022.108572_b39
– volume: 232
  start-page: 20
  year: 2016
  ident: 10.1016/j.knosys.2022.108572_b18
  article-title: SATenstein: Automatically building local search SAT solvers from components
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2015.11.002
– ident: 10.1016/j.knosys.2022.108572_b42
– ident: 10.1016/j.knosys.2022.108572_b52
  doi: 10.1609/aaai.v30i1.10083
– ident: 10.1016/j.knosys.2022.108572_b21
SSID ssj0002218
Score 2.378415
Snippet Boolean Satisfiability problem (SAT) plays a prominent role in many domains of computer science and artificial intelligence due to its significant importance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108572
SubjectTerms Algorithms
Artificial intelligence
Boolean algebra
Boolean Satisfiability problem
Clauses
Computer science
Heuristic
Probability
Random walk
Search algorithms
Stochastic local search
Strategies
Weighting
Weights
Title Improving probability selection based weights for satisfiability problems
URI https://dx.doi.org/10.1016/j.knosys.2022.108572
https://www.proquest.com/docview/2667853778
Volume 245
WOSCitedRecordID wos000802978200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYocOiFR6GCFpAPva288tpJHB9XFYiHhHqg6nKKEseRgCogwsLy7zt-7i6I16GXKJq1vVa-iWc88cyH0A89KE14QpNU0pokYEKIlIqRMqMlS7T5MOfIJsTpaT4ayV8-haCzdAKibfPJRN78V6hBBmCb1NkPwB0HBQHcA-hwBdjh-i7gp2ECQxbjynA_9jrLd2OwNnar7j3YkKgtxtDrbIbDRWjqOWa6Wb_1JITeiOvezRQ6N-iPrQkbG4qweMTnYuzSPqLkjxWAUraN9gYTpCMrPS-9xEcgYPNqghBiLpRIiaC-cKxfVVmSzqyLJsfBUfQ8W7Jd9OCyf9Vew9z75g_60-bzFbKfWK54njAcVbss3CiFGaVwo3xCS0ykEla8peHR_ug42mnGbPQ3zj4kVtrTf89n85Lj8sSEW7_kbA2t-A0FHjpFWEcLuv2CVgNZB_Zr9wY6inqBZ_QCR73AFljs9QKDXuB5vcBBLzbR74P9s5-HxPNoEMVzekdgZ8IqqUTCdJLW3LCOmc-nWtS0yVUlai41F6lOaDnIaCV4xpkq4QY2u6wCk_gVLbbXrd5COGuaqoY9pgYvOOGMl0lOlRgoWsuqarjeRjw8pEL5IvOG6-Rv8RpE24jEXjeuyMob7UV4_oV3FJ0DWIBSvdFzJ8BV-HcWfs_AY0u5EPm3D07kO_o8fSF20OLd7VjvomV1D_Dc7nmF-wfeFpao
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+probability+selection+based+weights+for+satisfiability+problems&rft.jtitle=Knowledge-based+systems&rft.au=Fu%2C+Huimin&rft.au=Liu%2C+Jun&rft.au=Wu%2C+Guanfeng&rft.au=Xu%2C+Yang&rft.date=2022-06-07&rft.issn=0950-7051&rft.volume=245&rft.spage=108572&rft_id=info:doi/10.1016%2Fj.knosys.2022.108572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_108572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon