Parameter Estimation of the Reduced RUM Using the EM Algorithm

Diagnostic classification models (DCMs) are psychometric models widely discussed by researchers nowadays because of their promising feature of obtaining detailed information on students’ mastery on specific attributes. Model estimation is essential for further implementation of these models, and est...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied psychological measurement Ročník 38; číslo 2; s. 137 - 150
Hlavní autoři: Feng, Yuling, Habing, Brian T., Huebner, Alan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Angeles, CA SAGE Publications 01.03.2014
Témata:
ISSN:0146-6216, 1552-3497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Diagnostic classification models (DCMs) are psychometric models widely discussed by researchers nowadays because of their promising feature of obtaining detailed information on students’ mastery on specific attributes. Model estimation is essential for further implementation of these models, and estimation methods are often developed within some general framework, such as generalized diagnostic model (GDM) of von Davier, the log-linear diagnostic classification model (LDCM), and the generalized deterministic input, noisy-and-gate (G-DINA). Using a maximum likelihood estimation algorithm, this article addresses the estimation issue of a complex compensatory DCM, the reduced reparameterized unified model (rRUM), whose estimation under general frameworks could be lengthy due to the complexity of the model. The proposed estimation method is demonstrated on simulated data as well as a real data set, and is shown to provide accurate item parameter estimates for the rRUM.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0146-6216
1552-3497
DOI:10.1177/0146621613502704