Parameter Estimation of the Reduced RUM Using the EM Algorithm

Diagnostic classification models (DCMs) are psychometric models widely discussed by researchers nowadays because of their promising feature of obtaining detailed information on students’ mastery on specific attributes. Model estimation is essential for further implementation of these models, and est...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied psychological measurement Ročník 38; číslo 2; s. 137 - 150
Hlavní autori: Feng, Yuling, Habing, Brian T., Huebner, Alan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Los Angeles, CA SAGE Publications 01.03.2014
Predmet:
ISSN:0146-6216, 1552-3497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Diagnostic classification models (DCMs) are psychometric models widely discussed by researchers nowadays because of their promising feature of obtaining detailed information on students’ mastery on specific attributes. Model estimation is essential for further implementation of these models, and estimation methods are often developed within some general framework, such as generalized diagnostic model (GDM) of von Davier, the log-linear diagnostic classification model (LDCM), and the generalized deterministic input, noisy-and-gate (G-DINA). Using a maximum likelihood estimation algorithm, this article addresses the estimation issue of a complex compensatory DCM, the reduced reparameterized unified model (rRUM), whose estimation under general frameworks could be lengthy due to the complexity of the model. The proposed estimation method is demonstrated on simulated data as well as a real data set, and is shown to provide accurate item parameter estimates for the rRUM.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0146-6216
1552-3497
DOI:10.1177/0146621613502704