A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation

Mathematical models are basic for designing controller and system identification is the theory and methods for establishing the mathematical models of practical systems. This paper considers the parameter identification for Hammerstein controlled autoregressive systems. Using the key term separation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Franklin Institute Ročník 355; číslo 8; s. 3737 - 3752
Hlavní autoři: Ding, Feng, Chen, Huibo, Xu, Ling, Dai, Jiyang, Li, Qishen, Hayat, Tasawar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elmsford Elsevier Ltd 01.05.2018
Elsevier Science Ltd
Témata:
ISSN:0016-0032, 1879-2693, 0016-0032
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mathematical models are basic for designing controller and system identification is the theory and methods for establishing the mathematical models of practical systems. This paper considers the parameter identification for Hammerstein controlled autoregressive systems. Using the key term separation technique to express the system output as a linear combination of the system parameters, the system is decomposed into several subsystems with fewer variables, and then a hierarchical least squares (HLS) algorithm is developed for estimating all parameters involving in the subsystems. The HLS algorithm requires less computation than the recursive least squares algorithm. The computational efficiency comparison and simulation results both confirm the effectiveness of the proposed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2018.01.052