Empirical decision model learning

One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization....

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence Vol. 244; pp. 343 - 367
Main Authors: Lombardi, Michele, Milano, Michela, Bartolini, Andrea
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.03.2017
Elsevier Science Ltd
Subjects:
ISSN:0004-3702, 1872-7921
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization. In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics. All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions. We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models.
AbstractList One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization. In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics. All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions. We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models.
One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization. In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics. All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions. We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models.
Author Milano, Michela
Bartolini, Andrea
Lombardi, Michele
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0003-4709-8888
  surname: Lombardi
  fullname: Lombardi, Michele
  email: michele.lombardi2@unibo.it
  organization: DISI, University of Bologna, Italy
– sequence: 2
  givenname: Michela
  surname: Milano
  fullname: Milano, Michela
  email: michela.milano@unibo.it
  organization: DISI, University of Bologna, Italy
– sequence: 3
  givenname: Andrea
  surname: Bartolini
  fullname: Bartolini, Andrea
  email: a.bartolini@unibo.it
  organization: DEI, University of Bologna, Italy
BookMark eNqFkE9LAzEUxINUsK1-Aw8Vz7u-bNZk40GQUv9AwYueQ5q8lSzbbE1SwW9vyvbkQU-PgfnNY2ZGJn7wSMglhZIC5TddqUNyPpVVViXQEuD2hExpI6pCyIpOyBQA6oIJqM7ILMYuSyYlnZKr1XbngjO6X1g0LrrBL7aDxX7Row7e-Y9zctrqPuLF8c7J--PqbflcrF-fXpYP68KwBlJRMWaNlMA3stbI68pIi9yItrbcgNCodU1lK0Qt9aZCzmUjIZNGthSw0WxOrsfcXRg-9xiT6oZ98PmlopJyxpngTXbVo8uEIcaArdoFt9XhW1FQhzFUp8Yx1GEMBVTlMTJ29wszLumU26agXf8ffD_CmOt_OQwqGofeoHUBTVJ2cH8H_AAQc33q
CitedBy_id crossref_primary_10_1109_TC_2020_3023022
crossref_primary_10_1287_inte_2022_1121
crossref_primary_10_1007_s42979_022_01109_w
crossref_primary_10_1016_j_is_2019_03_011
crossref_primary_10_1007_s10589_022_00404_9
crossref_primary_10_1016_j_artint_2023_103896
crossref_primary_10_3390_ai2040033
crossref_primary_10_1007_s10472_020_09722_2
crossref_primary_10_1016_j_ejor_2020_12_018
crossref_primary_10_1016_j_energy_2023_127737
crossref_primary_10_1016_j_knosys_2024_112383
crossref_primary_10_3390_en10091378
crossref_primary_10_3390_s21113791
crossref_primary_10_1016_j_ijar_2024_109184
crossref_primary_10_1287_opre_2021_0707
crossref_primary_10_1007_s10472_021_09736_4
crossref_primary_10_1109_JPROC_2018_2812836
crossref_primary_10_1007_s00170_025_15574_z
crossref_primary_10_1287_ijoc_2023_1285
crossref_primary_10_1016_j_est_2022_104123
crossref_primary_10_3390_ai2020010
crossref_primary_10_1007_s10107_020_01474_5
crossref_primary_10_1287_ijoc_2020_0993
crossref_primary_10_1016_j_knosys_2022_109199
crossref_primary_10_1287_ijoc_2020_0976
crossref_primary_10_1016_j_ejor_2023_04_041
crossref_primary_10_1016_j_swevo_2018_04_007
crossref_primary_10_1016_j_apm_2023_04_032
crossref_primary_10_1016_j_swevo_2021_100896
crossref_primary_10_1016_j_ejor_2020_08_045
crossref_primary_10_1016_j_envadv_2025_100653
crossref_primary_10_1016_j_ejor_2020_05_010
crossref_primary_10_1089_ast_2018_1969
crossref_primary_10_1080_21693277_2024_2447035
crossref_primary_10_1016_j_cor_2019_104781
crossref_primary_10_1016_j_trpro_2024_12_220
crossref_primary_10_1049_gtd2_12315
crossref_primary_10_1016_j_apm_2025_116184
crossref_primary_10_1016_j_asoc_2018_03_025
Cites_doi 10.1016/j.paerosci.2005.02.001
10.1002/aic.14418
10.1109/TKDE.2011.204
10.1109/22.390193
10.1145/1656274.1656278
10.1109/TVLSI.2006.876103
10.1017/S0962492913000032
10.3233/AIC-2012-0533
10.1023/A:1008306431147
10.1007/BF02136830
10.1016/j.artint.2013.10.003
10.1061/(ASCE)TE.1943-5436.0000128
10.1007/s10288-011-0165-9
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier Science Ltd. Mar 2017
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Mar 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.artint.2016.01.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7921
EndPage 367
ExternalDocumentID 10_1016_j_artint_2016_01_005
S0004370216000126
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c380t-233dc9906b94ae642c9de6c7f4d6c07aeaa419f7749ab2e669890380c9f10e8a3
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394630400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-3702
IngestDate Mon Jul 14 10:00:50 EDT 2025
Tue Nov 18 21:42:03 EST 2025
Sat Nov 29 06:59:03 EST 2025
Fri Feb 23 02:31:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SAT modulo theories
Local search
Mixed integer non-linear programming
Constraint programming
Machine learning
Artificial neural networks
Combinatorial optimization
Decision trees
Complex systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-233dc9906b94ae642c9de6c7f4d6c07aeaa419f7749ab2e669890380c9f10e8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4709-8888
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0004370216000126
PQID 1916363768
PQPubID 2038285
PageCount 25
ParticipantIDs proquest_journals_1916363768
crossref_primary_10_1016_j_artint_2016_01_005
crossref_citationtrail_10_1016_j_artint_2016_01_005
elsevier_sciencedirect_doi_10_1016_j_artint_2016_01_005
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Artificial intelligence
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Bonfietti, Lombardi, Milano (br0050) 2015
Rossi, Beek, Walsh (br0360) 2006
Moura, Bjørner (br0390) 2008
Zaabab, Zhang, Nakhla (br0240) 1995; 43
Rokach, Maimon (br0380) 2008
Flach (br0410) 2012
Bartolini, Lombardi, Milano, Benini (br0040) 2011
Raedt, Nijssen, O'Sullivan, Hentenryck (br0110) 2011
Haykin (br0340) 1998
Kotthoff, Gent, Miguel (br0140) 2012; 25
Raedt, Guns, Nijssen (br0090) 2010
Queipo, Haftka, Shyy, Goel, Vaidyanathan, Tucker (br0210) 2005; 41
Bessière, Coletta, O'Sullivan, Paulin (br0170) 2007
Quinlan (br0430) 1993
Bessière, Coletta, Freuder, O'Sullivan (br0160) 2004
Conn, Scheinberg, Vicente (br0270) 2009; vol. 8
Benoist, Estellon, Gardi, Megel, Nouioua (br0450) 2011; 9
Bussieck, Pruessner (br0460) 2003; 14
Hernando, Mendiburu, Lozano (br0150) 2013; vol. 7997
Guns, Nijssen, Raedt (br0100) 2013; 25
J. Heaton, Encog Java and DotNet neural network framework, Heaton Research, Inc., retrieved on July 20, 2010.
Howard, Dighe (br0060) 2010
Cozad, Sahinidis, Miller (br0220) 2014; 60
Gopalakrishnan, Asce (br0230) 2009; 136
O'Sullivan (br0200) 2010
Malitsky, Sellmann (br0120) 2012
Audet (br0280) 2014
Glover, Kelly, Laguna (br0310) 1999
P. Flach, personal communication, 2014.
Bessiere, Coletta, Hebrard, Katsirelos, Lazaar, Narodytska, Quimper, Walsh (br0190) 2013
Lombardi, Gualandi (br0370) 2013
Bennett, Parrado-Hernández (br0070) 2006; 7
Brailsford, Churilov, Dangerfield (br0020) 2014
Huang, Ghosh, Velusamy (br0320) 2006; 14
Belotti, Kirches, Leyffer, Linderoth, Luedtke, Mahajan (br0350) 2013; 22
Box, Draper (br0010) 1987
Sahinidis (br0470) 2013
Bonfietti, Lombardi (br0330) 2012
Régin (br0400) 1996
Jones, Schonlau, Welch (br0290) 1998; 13
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (br0440) 2009; 11
Beldiceanu, Simonis (br0180) 2012
Fu (br0300) 1994; 53
Hutter, Xu, Hoos, Leyton-Brown (br0130) 2014; 206
Gavanelli, Nonato, Peano, Alvisi, Franchini (br0260) 2012
Sra, Nowozin, Wright (br0080) 2011
Battiti, Brunato (br0250) 2014
Guns (10.1016/j.artint.2016.01.005_br0100) 2013; 25
Huang (10.1016/j.artint.2016.01.005_br0320) 2006; 14
Malitsky (10.1016/j.artint.2016.01.005_br0120) 2012
Haykin (10.1016/j.artint.2016.01.005_br0340) 1998
Bessiere (10.1016/j.artint.2016.01.005_br0190) 2013
Flach (10.1016/j.artint.2016.01.005_br0410) 2012
Raedt (10.1016/j.artint.2016.01.005_br0090) 2010
Conn (10.1016/j.artint.2016.01.005_br0270) 2009; vol. 8
10.1016/j.artint.2016.01.005_br0420
Beldiceanu (10.1016/j.artint.2016.01.005_br0180) 2012
Fu (10.1016/j.artint.2016.01.005_br0300) 1994; 53
O'Sullivan (10.1016/j.artint.2016.01.005_br0200) 2010
10.1016/j.artint.2016.01.005_br0030
Bonfietti (10.1016/j.artint.2016.01.005_br0050) 2015
Audet (10.1016/j.artint.2016.01.005_br0280) 2014
Jones (10.1016/j.artint.2016.01.005_br0290) 1998; 13
Bessière (10.1016/j.artint.2016.01.005_br0170) 2007
Gavanelli (10.1016/j.artint.2016.01.005_br0260) 2012
Battiti (10.1016/j.artint.2016.01.005_br0250) 2014
Sra (10.1016/j.artint.2016.01.005_br0080) 2011
Bennett (10.1016/j.artint.2016.01.005_br0070) 2006; 7
Bonfietti (10.1016/j.artint.2016.01.005_br0330) 2012
Rossi (10.1016/j.artint.2016.01.005_br0360) 2006
Hernando (10.1016/j.artint.2016.01.005_br0150) 2013; vol. 7997
Queipo (10.1016/j.artint.2016.01.005_br0210) 2005; 41
Lombardi (10.1016/j.artint.2016.01.005_br0370) 2013
Hall (10.1016/j.artint.2016.01.005_br0440) 2009; 11
Bussieck (10.1016/j.artint.2016.01.005_br0460) 2003; 14
Cozad (10.1016/j.artint.2016.01.005_br0220) 2014; 60
Glover (10.1016/j.artint.2016.01.005_br0310) 1999
Régin (10.1016/j.artint.2016.01.005_br0400) 1996
Gopalakrishnan (10.1016/j.artint.2016.01.005_br0230) 2009; 136
Raedt (10.1016/j.artint.2016.01.005_br0110)
Belotti (10.1016/j.artint.2016.01.005_br0350) 2013; 22
Bessière (10.1016/j.artint.2016.01.005_br0160) 2004
Hutter (10.1016/j.artint.2016.01.005_br0130) 2014; 206
Benoist (10.1016/j.artint.2016.01.005_br0450) 2011; 9
Rokach (10.1016/j.artint.2016.01.005_br0380) 2008
Quinlan (10.1016/j.artint.2016.01.005_br0430) 1993
Box (10.1016/j.artint.2016.01.005_br0010) 1987
Bartolini (10.1016/j.artint.2016.01.005_br0040) 2011
Brailsford (10.1016/j.artint.2016.01.005_br0020) 2014
Moura (10.1016/j.artint.2016.01.005_br0390) 2008
Sahinidis (10.1016/j.artint.2016.01.005_br0470)
Howard (10.1016/j.artint.2016.01.005_br0060) 2010
Zaabab (10.1016/j.artint.2016.01.005_br0240) 1995; 43
Kotthoff (10.1016/j.artint.2016.01.005_br0140) 2012; 25
References_xml – volume: 25
  start-page: 257
  year: 2012
  end-page: 270
  ident: br0140
  article-title: An evaluation of machine learning in algorithm selection for search problems
  publication-title: AI Commun.
– start-page: 337
  year: 2008
  end-page: 340
  ident: br0390
  article-title: Z3: an efficient smt solver
  publication-title: Tools and Algorithms for the Construction and Analysis of Systems
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: br0290
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– year: 2013
  ident: br0470
  article-title: BARON 12.1.0: global optimization of mixed-integer nonlinear programs, User's manual
– start-page: 244
  year: 2012
  end-page: 259
  ident: br0120
  article-title: Instance-specific algorithm configuration as a method for non-model-based portfolio generation
  publication-title: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
– volume: 9
  start-page: 299
  year: 2011
  end-page: 316
  ident: br0450
  article-title: Localsolver 1.x: a black-box local-search solver for 0-1 programming
  publication-title: 4OR
– start-page: 191
  year: 2012
  end-page: 206
  ident: br0330
  article-title: The weighted average constraint
  publication-title: Principles and Practice of Constraint Programming
– volume: 7
  start-page: 1265
  year: 2006
  end-page: 1281
  ident: br0070
  article-title: The interplay of optimization and machine learning research
  publication-title: J. Mach. Learn. Res.
– year: 2011
  ident: br0110
  article-title: Constraint programming meets machine learning and data mining
– start-page: 1493
  year: 2010
  end-page: 1497
  ident: br0200
  article-title: Automated modelling and solving in constraint programming
  publication-title: Proc. of the 24th AAAI Conference
– start-page: 255
  year: 1999
  end-page: 260
  ident: br0310
  article-title: New advances for wedding optimization and simulation
  publication-title: Winter Simulation Conference, vol. 1
– volume: 14
  start-page: 19
  year: 2003
  end-page: 22
  ident: br0460
  article-title: Mixed-integer nonlinear programming
  publication-title: SIAG/OPT Newsl. Views News
– start-page: 424
  year: 1987
  ident: br0010
  article-title: Empirical Model-Building and Response Surfaces
– volume: vol. 7997
  start-page: 299
  year: 2013
  end-page: 303
  ident: br0150
  article-title: Generating customized landscapes in permutation-based combinatorial optimization problems
  publication-title: Learning and Intelligent Optimization – LION
– volume: 41
  start-page: 1
  year: 2005
  end-page: 28
  ident: br0210
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
– start-page: 448
  year: 2013
  end-page: 463
  ident: br0370
  article-title: A new propagator for two-layer neural networks in empirical model learning
  publication-title: Principles and Practice of Constraint Programming
– volume: 14
  start-page: 501
  year: 2006
  end-page: 513
  ident: br0320
  article-title: Hotspot: a compact thermal modeling methodology for early-stage VLSI design
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– start-page: 50
  year: 2007
  end-page: 55
  ident: br0170
  article-title: Query-driven constraint acquisition
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: br0440
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
– year: 2011
  ident: br0080
  article-title: Optimization for Machine Learning
– start-page: 74
  year: 2015
  end-page: 90
  ident: br0050
  article-title: Embedding decision trees and random forests in constraint programming
  publication-title: Integration of AI and OR Techniques in Constraint Programming
– start-page: 141
  year: 2012
  end-page: 157
  ident: br0180
  article-title: A model seeker: Extracting global constraint models from positive examples
  publication-title: Principles and Practice of Constraint Programming
– year: 2012
  ident: br0410
  article-title: Machine Learning: The Art and Science of Algorithms That Make Sense of Data
– volume: vol. 8
  year: 2009
  ident: br0270
  article-title: Introduction to Derivative-Free Optimization
  publication-title: MPS/SIAM Series on Optimization
– year: 1998
  ident: br0340
  article-title: Neural Networks: A Comprehensive Foundation
– start-page: 209
  year: 1996
  end-page: 215
  ident: br0400
  article-title: Generalized arc consistency for global cardinality constraint
  publication-title: Proc. of the 13th National Conference on Artificial Intelligence, vol. 1
– start-page: 475
  year: 2013
  end-page: 481
  ident: br0190
  article-title: Constraint acquisition via partial queries
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 123
  year: 2004
  end-page: 137
  ident: br0160
  article-title: Leveraging the learning power of examples in automated constraint acquisition
  publication-title: Principles and Practice of Constraint Programming
– volume: 136
  start-page: 528
  year: 2009
  end-page: 536
  ident: br0230
  article-title: Neural network – swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation
  publication-title: J. Transp. Eng.
– year: 1993
  ident: br0430
  article-title: C4.5: Programs for Machine Learning
– volume: 206
  start-page: 79
  year: 2014
  end-page: 111
  ident: br0130
  article-title: Algorithm runtime prediction: methods & evaluation
  publication-title: Artif. Intell.
– reference: P. Flach, personal communication, 2014.
– volume: 60
  start-page: 2211
  year: 2014
  end-page: 2227
  ident: br0220
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
– start-page: 108
  year: 2010
  end-page: 109
  ident: br0060
  article-title: A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS
  publication-title: International Solid-State Circuits Conference
– year: 2006
  ident: br0360
  article-title: Handbook of Constraint Programming
– year: 2014
  ident: br0020
  article-title: Discrete-Event Simulation and System Dynamics for Management Decision Making
– start-page: 115
  year: 2011
  end-page: 129
  ident: br0040
  article-title: Neuron constraints to model complex real-world problems
  publication-title: Principles and Practice of Constraint Programming
– volume: 43
  start-page: 1349
  year: 1995
  end-page: 1358
  ident: br0240
  article-title: A neural network modeling approach to circuit optimization and statistical design
  publication-title: IEEE Trans. Microw. Theory Tech.
– start-page: 31
  year: 2014
  end-page: 56
  ident: br0280
  article-title: A survey on direct search methods for blackbox optimization and their applications
  publication-title: Mathematics Without Boundaries
– volume: 53
  start-page: 199
  year: 1994
  end-page: 248
  ident: br0300
  article-title: Optimization via simulation: a review
  publication-title: Ann. Oper. Res.
– reference: J. Heaton, Encog Java and DotNet neural network framework, Heaton Research, Inc., retrieved on July 20, 2010.
– start-page: 124
  year: 2012
  end-page: 135
  ident: br0260
  article-title: Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events
  publication-title: Evolutionary Computation in Combinatorial Optimization
– volume: 22
  start-page: 1
  year: 2013
  end-page: 131
  ident: br0350
  article-title: Mixed-integer nonlinear optimization
  publication-title: Acta Numer.
– year: 2014
  ident: br0250
  article-title: The LION way: machine learning plus intelligent optimization
– start-page: 1671
  year: 2010
  end-page: 1675
  ident: br0090
  article-title: Constraint programming for data mining and machine learning
  publication-title: Proc. of 24th AAAI Conference on Artificial Intelligence
– year: 2008
  ident: br0380
  article-title: Data Mining with Decision Trees: Theory and Applications
– volume: 25
  start-page: 402
  year: 2013
  end-page: 418
  ident: br0100
  article-title: k-Pattern set mining under constraints
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1671
  year: 2010
  ident: 10.1016/j.artint.2016.01.005_br0090
  article-title: Constraint programming for data mining and machine learning
– ident: 10.1016/j.artint.2016.01.005_br0110
– year: 1998
  ident: 10.1016/j.artint.2016.01.005_br0340
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.artint.2016.01.005_br0210
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2005.02.001
– volume: vol. 7997
  start-page: 299
  year: 2013
  ident: 10.1016/j.artint.2016.01.005_br0150
  article-title: Generating customized landscapes in permutation-based combinatorial optimization problems
– year: 2014
  ident: 10.1016/j.artint.2016.01.005_br0020
– volume: 7
  start-page: 1265
  year: 2006
  ident: 10.1016/j.artint.2016.01.005_br0070
  article-title: The interplay of optimization and machine learning research
  publication-title: J. Mach. Learn. Res.
– start-page: 255
  year: 1999
  ident: 10.1016/j.artint.2016.01.005_br0310
  article-title: New advances for wedding optimization and simulation
– year: 1993
  ident: 10.1016/j.artint.2016.01.005_br0430
– start-page: 424
  year: 1987
  ident: 10.1016/j.artint.2016.01.005_br0010
– start-page: 1493
  year: 2010
  ident: 10.1016/j.artint.2016.01.005_br0200
  article-title: Automated modelling and solving in constraint programming
– year: 2006
  ident: 10.1016/j.artint.2016.01.005_br0360
– start-page: 244
  year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0120
  article-title: Instance-specific algorithm configuration as a method for non-model-based portfolio generation
– start-page: 191
  year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0330
  article-title: The weighted average constraint
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  ident: 10.1016/j.artint.2016.01.005_br0220
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.14418
– volume: 25
  start-page: 402
  issue: 2
  year: 2013
  ident: 10.1016/j.artint.2016.01.005_br0100
  article-title: k-Pattern set mining under constraints
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.204
– volume: 43
  start-page: 1349
  issue: 6
  year: 1995
  ident: 10.1016/j.artint.2016.01.005_br0240
  article-title: A neural network modeling approach to circuit optimization and statistical design
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/22.390193
– start-page: 448
  year: 2013
  ident: 10.1016/j.artint.2016.01.005_br0370
  article-title: A new propagator for two-layer neural networks in empirical model learning
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.artint.2016.01.005_br0440
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– volume: 14
  start-page: 501
  issue: 5
  year: 2006
  ident: 10.1016/j.artint.2016.01.005_br0320
  article-title: Hotspot: a compact thermal modeling methodology for early-stage VLSI design
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2006.876103
– start-page: 475
  year: 2013
  ident: 10.1016/j.artint.2016.01.005_br0190
  article-title: Constraint acquisition via partial queries
– year: 2014
  ident: 10.1016/j.artint.2016.01.005_br0250
– year: 2008
  ident: 10.1016/j.artint.2016.01.005_br0380
– ident: 10.1016/j.artint.2016.01.005_br0420
– volume: 22
  start-page: 1
  year: 2013
  ident: 10.1016/j.artint.2016.01.005_br0350
  article-title: Mixed-integer nonlinear optimization
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000032
– volume: 25
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0140
  article-title: An evaluation of machine learning in algorithm selection for search problems
  publication-title: AI Commun.
  doi: 10.3233/AIC-2012-0533
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.artint.2016.01.005_br0290
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– start-page: 337
  year: 2008
  ident: 10.1016/j.artint.2016.01.005_br0390
  article-title: Z3: an efficient smt solver
– volume: 53
  start-page: 199
  year: 1994
  ident: 10.1016/j.artint.2016.01.005_br0300
  article-title: Optimization via simulation: a review
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02136830
– start-page: 74
  year: 2015
  ident: 10.1016/j.artint.2016.01.005_br0050
  article-title: Embedding decision trees and random forests in constraint programming
– volume: 206
  start-page: 79
  year: 2014
  ident: 10.1016/j.artint.2016.01.005_br0130
  article-title: Algorithm runtime prediction: methods & evaluation
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.10.003
– start-page: 141
  year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0180
  article-title: A model seeker: Extracting global constraint models from positive examples
– start-page: 31
  year: 2014
  ident: 10.1016/j.artint.2016.01.005_br0280
  article-title: A survey on direct search methods for blackbox optimization and their applications
– year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0410
– ident: 10.1016/j.artint.2016.01.005_br0470
– start-page: 124
  year: 2012
  ident: 10.1016/j.artint.2016.01.005_br0260
  article-title: Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events
– start-page: 115
  year: 2011
  ident: 10.1016/j.artint.2016.01.005_br0040
  article-title: Neuron constraints to model complex real-world problems
– volume: 136
  start-page: 528
  issue: 6
  year: 2009
  ident: 10.1016/j.artint.2016.01.005_br0230
  article-title: Neural network – swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000128
– volume: 9
  start-page: 299
  issue: 3
  year: 2011
  ident: 10.1016/j.artint.2016.01.005_br0450
  article-title: Localsolver 1.x: a black-box local-search solver for 0-1 programming
  publication-title: 4OR
  doi: 10.1007/s10288-011-0165-9
– ident: 10.1016/j.artint.2016.01.005_br0030
– start-page: 209
  year: 1996
  ident: 10.1016/j.artint.2016.01.005_br0400
  article-title: Generalized arc consistency for global cardinality constraint
– volume: vol. 8
  year: 2009
  ident: 10.1016/j.artint.2016.01.005_br0270
  article-title: Introduction to Derivative-Free Optimization
– volume: 14
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.artint.2016.01.005_br0460
  article-title: Mixed-integer nonlinear programming
  publication-title: SIAG/OPT Newsl. Views News
– start-page: 108
  year: 2010
  ident: 10.1016/j.artint.2016.01.005_br0060
  article-title: A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS
– start-page: 50
  year: 2007
  ident: 10.1016/j.artint.2016.01.005_br0170
  article-title: Query-driven constraint acquisition
– year: 2011
  ident: 10.1016/j.artint.2016.01.005_br0080
– start-page: 123
  year: 2004
  ident: 10.1016/j.artint.2016.01.005_br0160
  article-title: Leveraging the learning power of examples in automated constraint acquisition
SSID ssj0003991
Score 2.521431
Snippet One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Accuracy
Analytics
Approximation
Artificial neural networks
Combinatorial analysis
Combinatorial optimization
Complex systems
Computer simulation
Constraint programming
Decision support systems
Decision trees
Empirical analysis
Encapsulation
Linear programming
Local search
Machine learning
Mathematical models
Mixed integer
Mixed integer non-linear programming
Neural networks
Nonlinear programming
Optimization
SAT modulo theories
Simulators
Solvers
Workload
Title Empirical decision model learning
URI https://dx.doi.org/10.1016/j.artint.2016.01.005
https://www.proquest.com/docview/1916363768
Volume 244
WOSCitedRecordID wos000394630400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZ47IELz0XLU0HiGmTHrhMfK1QEHBASIPVmxY-sikqo2i7i5zPxI62oEAsSlyhy4sTxjGfGzuf5EDrVuTHCZCoF2dOUGaJShblKC4EVIZWGIYUd2UR-c1P0--I2cGxOHJ1AXtfF66sY_aiooQyE3Wyd_YK424dCAZyD0OEIYofjfwm-9zQa-LwfJvDneLqbSBDxdz4e7Y4dVsgxd8wl52xhOs9PqlGhCLC3wxlUdjAsHW13uDCb2EObGiagQYuXLOeXFsBdtdgqv961sOcl2FAGZgl7G2q92SxyiNOF3-sc7WrG2JxlpD4bU3Cy1HNwLNhvv5TweOZSKDRQV8JdVlXcmfmrFkV45_5jQksIdwtqfBmtZnlHgHFb7V71-tetS4YoLFAn-qbHPZQO6Lf4ro9ilHfe2oUg95toPcwdkq6X-RZasvU22oi8HEkw0zvopFWBJKpA4lQgiSrwGz1c9O7PL9NAhZFqWuBpmlFqNAQOXAlWWpgzamEs13nFDNc4L21ZMiIqiOVFqTLLG1pQDDW1qAi2RUl30Ur9XNs_KClsh0IRjEpGmCJYGA4Or8KWVFRVwuwhGj9e6pAnvqErGcoICHyUvstk02USEwldtofSttbI50n55P489qsMsZ6P4SSowic1D6MYZBh2E0lglkM5OMti_9sPPkBrs0FwiFam43_2CP3SL9PBZHwcVOoNaS-Ckg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+decision+model+learning&rft.jtitle=Artificial+intelligence&rft.au=Lombardi%2C+Michele&rft.au=Milano%2C+Michela&rft.au=Bartolini%2C+Andrea&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=244&rft.spage=343&rft.epage=367&rft_id=info:doi/10.1016%2Fj.artint.2016.01.005&rft.externalDocID=S0004370216000126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon