Empirical decision model learning
One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization....
Saved in:
| Published in: | Artificial intelligence Vol. 244; pp. 343 - 367 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.03.2017
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0004-3702, 1872-7921 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization.
In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics.
All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions.
We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models. |
|---|---|
| AbstractList | One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization. In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics. All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions. We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models. One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough, accurate predictive models (e.g. simulators) can be devised, but they are too complex or too slow to be employed in combinatorial optimization. In this paper, we propose a methodology called Empirical Model Learning (EML) that relies on Machine Learning for obtaining components of a prescriptive model, using data either extracted from a predictive model or harvested from a real system. In a way, EML can be considered as a technique to merge predictive and prescriptive analytics. All models introduce some form of approximation. Citing G.E.P. Box [1] “Essentially, all models are wrong, but some of them are useful”. In EML, models are useful if they provide adequate accuracy, and if they can be effectively exploited by solvers for finding high-quality solutions. We show how to ground EML on a case study of thermal-aware workload dispatching. We use two learning methods, namely Artificial Neural Networks and Decision Trees and we show how to encapsulate the learned model in a number of optimization techniques, namely Local Search, Constraint Programming, Mixed Integer Non-Linear Programming and SAT Modulo Theories. We demonstrate the effectiveness of the EML approach by comparing our results with those obtained using expert-designed models. |
| Author | Milano, Michela Bartolini, Andrea Lombardi, Michele |
| Author_xml | – sequence: 1 givenname: Michele orcidid: 0000-0003-4709-8888 surname: Lombardi fullname: Lombardi, Michele email: michele.lombardi2@unibo.it organization: DISI, University of Bologna, Italy – sequence: 2 givenname: Michela surname: Milano fullname: Milano, Michela email: michela.milano@unibo.it organization: DISI, University of Bologna, Italy – sequence: 3 givenname: Andrea surname: Bartolini fullname: Bartolini, Andrea email: a.bartolini@unibo.it organization: DEI, University of Bologna, Italy |
| BookMark | eNqFkE9LAzEUxINUsK1-Aw8Vz7u-bNZk40GQUv9AwYueQ5q8lSzbbE1SwW9vyvbkQU-PgfnNY2ZGJn7wSMglhZIC5TddqUNyPpVVViXQEuD2hExpI6pCyIpOyBQA6oIJqM7ILMYuSyYlnZKr1XbngjO6X1g0LrrBL7aDxX7Row7e-Y9zctrqPuLF8c7J--PqbflcrF-fXpYP68KwBlJRMWaNlMA3stbI68pIi9yItrbcgNCodU1lK0Qt9aZCzmUjIZNGthSw0WxOrsfcXRg-9xiT6oZ98PmlopJyxpngTXbVo8uEIcaArdoFt9XhW1FQhzFUp8Yx1GEMBVTlMTJ29wszLumU26agXf8ffD_CmOt_OQwqGofeoHUBTVJ2cH8H_AAQc33q |
| CitedBy_id | crossref_primary_10_1109_TC_2020_3023022 crossref_primary_10_1287_inte_2022_1121 crossref_primary_10_1007_s42979_022_01109_w crossref_primary_10_1016_j_is_2019_03_011 crossref_primary_10_1007_s10589_022_00404_9 crossref_primary_10_1016_j_artint_2023_103896 crossref_primary_10_3390_ai2040033 crossref_primary_10_1007_s10472_020_09722_2 crossref_primary_10_1016_j_ejor_2020_12_018 crossref_primary_10_1016_j_energy_2023_127737 crossref_primary_10_1016_j_knosys_2024_112383 crossref_primary_10_3390_en10091378 crossref_primary_10_3390_s21113791 crossref_primary_10_1016_j_ijar_2024_109184 crossref_primary_10_1287_opre_2021_0707 crossref_primary_10_1007_s10472_021_09736_4 crossref_primary_10_1109_JPROC_2018_2812836 crossref_primary_10_1007_s00170_025_15574_z crossref_primary_10_1287_ijoc_2023_1285 crossref_primary_10_1016_j_est_2022_104123 crossref_primary_10_3390_ai2020010 crossref_primary_10_1007_s10107_020_01474_5 crossref_primary_10_1287_ijoc_2020_0993 crossref_primary_10_1016_j_knosys_2022_109199 crossref_primary_10_1287_ijoc_2020_0976 crossref_primary_10_1016_j_ejor_2023_04_041 crossref_primary_10_1016_j_swevo_2018_04_007 crossref_primary_10_1016_j_apm_2023_04_032 crossref_primary_10_1016_j_swevo_2021_100896 crossref_primary_10_1016_j_ejor_2020_08_045 crossref_primary_10_1016_j_envadv_2025_100653 crossref_primary_10_1016_j_ejor_2020_05_010 crossref_primary_10_1089_ast_2018_1969 crossref_primary_10_1080_21693277_2024_2447035 crossref_primary_10_1016_j_cor_2019_104781 crossref_primary_10_1016_j_trpro_2024_12_220 crossref_primary_10_1049_gtd2_12315 crossref_primary_10_1016_j_apm_2025_116184 crossref_primary_10_1016_j_asoc_2018_03_025 |
| Cites_doi | 10.1016/j.paerosci.2005.02.001 10.1002/aic.14418 10.1109/TKDE.2011.204 10.1109/22.390193 10.1145/1656274.1656278 10.1109/TVLSI.2006.876103 10.1017/S0962492913000032 10.3233/AIC-2012-0533 10.1023/A:1008306431147 10.1007/BF02136830 10.1016/j.artint.2013.10.003 10.1061/(ASCE)TE.1943-5436.0000128 10.1007/s10288-011-0165-9 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Copyright Elsevier Science Ltd. Mar 2017 |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Mar 2017 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.artint.2016.01.005 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7921 |
| EndPage | 367 |
| ExternalDocumentID | 10_1016_j_artint_2016_01_005 S0004370216000126 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 6TJ 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAKPC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACWUS ACZNC ADBBV ADEZE ADMUD AEBSH AECPX AEFWE AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 E3Z EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE IXB J1W JJJVA KOM KQ8 LG9 LY7 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 TR2 TWZ UPT UQL VQA WH7 WUQ XFK XJE XJT XPP XSW ZMT ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c380t-233dc9906b94ae642c9de6c7f4d6c07aeaa419f7749ab2e669890380c9f10e8a3 |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394630400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-3702 |
| IngestDate | Mon Jul 14 10:00:50 EDT 2025 Tue Nov 18 21:42:03 EST 2025 Sat Nov 29 06:59:03 EST 2025 Fri Feb 23 02:31:59 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SAT modulo theories Local search Mixed integer non-linear programming Constraint programming Machine learning Artificial neural networks Combinatorial optimization Decision trees Complex systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-233dc9906b94ae642c9de6c7f4d6c07aeaa419f7749ab2e669890380c9f10e8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4709-8888 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0004370216000126 |
| PQID | 1916363768 |
| PQPubID | 2038285 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_1916363768 crossref_primary_10_1016_j_artint_2016_01_005 crossref_citationtrail_10_1016_j_artint_2016_01_005 elsevier_sciencedirect_doi_10_1016_j_artint_2016_01_005 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Artificial intelligence |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Bonfietti, Lombardi, Milano (br0050) 2015 Rossi, Beek, Walsh (br0360) 2006 Moura, Bjørner (br0390) 2008 Zaabab, Zhang, Nakhla (br0240) 1995; 43 Rokach, Maimon (br0380) 2008 Flach (br0410) 2012 Bartolini, Lombardi, Milano, Benini (br0040) 2011 Raedt, Nijssen, O'Sullivan, Hentenryck (br0110) 2011 Haykin (br0340) 1998 Kotthoff, Gent, Miguel (br0140) 2012; 25 Raedt, Guns, Nijssen (br0090) 2010 Queipo, Haftka, Shyy, Goel, Vaidyanathan, Tucker (br0210) 2005; 41 Bessière, Coletta, O'Sullivan, Paulin (br0170) 2007 Quinlan (br0430) 1993 Bessière, Coletta, Freuder, O'Sullivan (br0160) 2004 Conn, Scheinberg, Vicente (br0270) 2009; vol. 8 Benoist, Estellon, Gardi, Megel, Nouioua (br0450) 2011; 9 Bussieck, Pruessner (br0460) 2003; 14 Hernando, Mendiburu, Lozano (br0150) 2013; vol. 7997 Guns, Nijssen, Raedt (br0100) 2013; 25 J. Heaton, Encog Java and DotNet neural network framework, Heaton Research, Inc., retrieved on July 20, 2010. Howard, Dighe (br0060) 2010 Cozad, Sahinidis, Miller (br0220) 2014; 60 Gopalakrishnan, Asce (br0230) 2009; 136 O'Sullivan (br0200) 2010 Malitsky, Sellmann (br0120) 2012 Audet (br0280) 2014 Glover, Kelly, Laguna (br0310) 1999 P. Flach, personal communication, 2014. Bessiere, Coletta, Hebrard, Katsirelos, Lazaar, Narodytska, Quimper, Walsh (br0190) 2013 Lombardi, Gualandi (br0370) 2013 Bennett, Parrado-Hernández (br0070) 2006; 7 Brailsford, Churilov, Dangerfield (br0020) 2014 Huang, Ghosh, Velusamy (br0320) 2006; 14 Belotti, Kirches, Leyffer, Linderoth, Luedtke, Mahajan (br0350) 2013; 22 Box, Draper (br0010) 1987 Sahinidis (br0470) 2013 Bonfietti, Lombardi (br0330) 2012 Régin (br0400) 1996 Jones, Schonlau, Welch (br0290) 1998; 13 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (br0440) 2009; 11 Beldiceanu, Simonis (br0180) 2012 Fu (br0300) 1994; 53 Hutter, Xu, Hoos, Leyton-Brown (br0130) 2014; 206 Gavanelli, Nonato, Peano, Alvisi, Franchini (br0260) 2012 Sra, Nowozin, Wright (br0080) 2011 Battiti, Brunato (br0250) 2014 Guns (10.1016/j.artint.2016.01.005_br0100) 2013; 25 Huang (10.1016/j.artint.2016.01.005_br0320) 2006; 14 Malitsky (10.1016/j.artint.2016.01.005_br0120) 2012 Haykin (10.1016/j.artint.2016.01.005_br0340) 1998 Bessiere (10.1016/j.artint.2016.01.005_br0190) 2013 Flach (10.1016/j.artint.2016.01.005_br0410) 2012 Raedt (10.1016/j.artint.2016.01.005_br0090) 2010 Conn (10.1016/j.artint.2016.01.005_br0270) 2009; vol. 8 10.1016/j.artint.2016.01.005_br0420 Beldiceanu (10.1016/j.artint.2016.01.005_br0180) 2012 Fu (10.1016/j.artint.2016.01.005_br0300) 1994; 53 O'Sullivan (10.1016/j.artint.2016.01.005_br0200) 2010 10.1016/j.artint.2016.01.005_br0030 Bonfietti (10.1016/j.artint.2016.01.005_br0050) 2015 Audet (10.1016/j.artint.2016.01.005_br0280) 2014 Jones (10.1016/j.artint.2016.01.005_br0290) 1998; 13 Bessière (10.1016/j.artint.2016.01.005_br0170) 2007 Gavanelli (10.1016/j.artint.2016.01.005_br0260) 2012 Battiti (10.1016/j.artint.2016.01.005_br0250) 2014 Sra (10.1016/j.artint.2016.01.005_br0080) 2011 Bennett (10.1016/j.artint.2016.01.005_br0070) 2006; 7 Bonfietti (10.1016/j.artint.2016.01.005_br0330) 2012 Rossi (10.1016/j.artint.2016.01.005_br0360) 2006 Hernando (10.1016/j.artint.2016.01.005_br0150) 2013; vol. 7997 Queipo (10.1016/j.artint.2016.01.005_br0210) 2005; 41 Lombardi (10.1016/j.artint.2016.01.005_br0370) 2013 Hall (10.1016/j.artint.2016.01.005_br0440) 2009; 11 Bussieck (10.1016/j.artint.2016.01.005_br0460) 2003; 14 Cozad (10.1016/j.artint.2016.01.005_br0220) 2014; 60 Glover (10.1016/j.artint.2016.01.005_br0310) 1999 Régin (10.1016/j.artint.2016.01.005_br0400) 1996 Gopalakrishnan (10.1016/j.artint.2016.01.005_br0230) 2009; 136 Raedt (10.1016/j.artint.2016.01.005_br0110) Belotti (10.1016/j.artint.2016.01.005_br0350) 2013; 22 Bessière (10.1016/j.artint.2016.01.005_br0160) 2004 Hutter (10.1016/j.artint.2016.01.005_br0130) 2014; 206 Benoist (10.1016/j.artint.2016.01.005_br0450) 2011; 9 Rokach (10.1016/j.artint.2016.01.005_br0380) 2008 Quinlan (10.1016/j.artint.2016.01.005_br0430) 1993 Box (10.1016/j.artint.2016.01.005_br0010) 1987 Bartolini (10.1016/j.artint.2016.01.005_br0040) 2011 Brailsford (10.1016/j.artint.2016.01.005_br0020) 2014 Moura (10.1016/j.artint.2016.01.005_br0390) 2008 Sahinidis (10.1016/j.artint.2016.01.005_br0470) Howard (10.1016/j.artint.2016.01.005_br0060) 2010 Zaabab (10.1016/j.artint.2016.01.005_br0240) 1995; 43 Kotthoff (10.1016/j.artint.2016.01.005_br0140) 2012; 25 |
| References_xml | – volume: 25 start-page: 257 year: 2012 end-page: 270 ident: br0140 article-title: An evaluation of machine learning in algorithm selection for search problems publication-title: AI Commun. – start-page: 337 year: 2008 end-page: 340 ident: br0390 article-title: Z3: an efficient smt solver publication-title: Tools and Algorithms for the Construction and Analysis of Systems – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: br0290 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. – year: 2013 ident: br0470 article-title: BARON 12.1.0: global optimization of mixed-integer nonlinear programs, User's manual – start-page: 244 year: 2012 end-page: 259 ident: br0120 article-title: Instance-specific algorithm configuration as a method for non-model-based portfolio generation publication-title: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems – volume: 9 start-page: 299 year: 2011 end-page: 316 ident: br0450 article-title: Localsolver 1.x: a black-box local-search solver for 0-1 programming publication-title: 4OR – start-page: 191 year: 2012 end-page: 206 ident: br0330 article-title: The weighted average constraint publication-title: Principles and Practice of Constraint Programming – volume: 7 start-page: 1265 year: 2006 end-page: 1281 ident: br0070 article-title: The interplay of optimization and machine learning research publication-title: J. Mach. Learn. Res. – year: 2011 ident: br0110 article-title: Constraint programming meets machine learning and data mining – start-page: 1493 year: 2010 end-page: 1497 ident: br0200 article-title: Automated modelling and solving in constraint programming publication-title: Proc. of the 24th AAAI Conference – start-page: 255 year: 1999 end-page: 260 ident: br0310 article-title: New advances for wedding optimization and simulation publication-title: Winter Simulation Conference, vol. 1 – volume: 14 start-page: 19 year: 2003 end-page: 22 ident: br0460 article-title: Mixed-integer nonlinear programming publication-title: SIAG/OPT Newsl. Views News – start-page: 424 year: 1987 ident: br0010 article-title: Empirical Model-Building and Response Surfaces – volume: vol. 7997 start-page: 299 year: 2013 end-page: 303 ident: br0150 article-title: Generating customized landscapes in permutation-based combinatorial optimization problems publication-title: Learning and Intelligent Optimization – LION – volume: 41 start-page: 1 year: 2005 end-page: 28 ident: br0210 article-title: Surrogate-based analysis and optimization publication-title: Prog. Aerosp. Sci. – start-page: 448 year: 2013 end-page: 463 ident: br0370 article-title: A new propagator for two-layer neural networks in empirical model learning publication-title: Principles and Practice of Constraint Programming – volume: 14 start-page: 501 year: 2006 end-page: 513 ident: br0320 article-title: Hotspot: a compact thermal modeling methodology for early-stage VLSI design publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – start-page: 50 year: 2007 end-page: 55 ident: br0170 article-title: Query-driven constraint acquisition publication-title: International Joint Conference on Artificial Intelligence – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: br0440 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. – year: 2011 ident: br0080 article-title: Optimization for Machine Learning – start-page: 74 year: 2015 end-page: 90 ident: br0050 article-title: Embedding decision trees and random forests in constraint programming publication-title: Integration of AI and OR Techniques in Constraint Programming – start-page: 141 year: 2012 end-page: 157 ident: br0180 article-title: A model seeker: Extracting global constraint models from positive examples publication-title: Principles and Practice of Constraint Programming – year: 2012 ident: br0410 article-title: Machine Learning: The Art and Science of Algorithms That Make Sense of Data – volume: vol. 8 year: 2009 ident: br0270 article-title: Introduction to Derivative-Free Optimization publication-title: MPS/SIAM Series on Optimization – year: 1998 ident: br0340 article-title: Neural Networks: A Comprehensive Foundation – start-page: 209 year: 1996 end-page: 215 ident: br0400 article-title: Generalized arc consistency for global cardinality constraint publication-title: Proc. of the 13th National Conference on Artificial Intelligence, vol. 1 – start-page: 475 year: 2013 end-page: 481 ident: br0190 article-title: Constraint acquisition via partial queries publication-title: International Joint Conference on Artificial Intelligence – start-page: 123 year: 2004 end-page: 137 ident: br0160 article-title: Leveraging the learning power of examples in automated constraint acquisition publication-title: Principles and Practice of Constraint Programming – volume: 136 start-page: 528 year: 2009 end-page: 536 ident: br0230 article-title: Neural network – swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation publication-title: J. Transp. Eng. – year: 1993 ident: br0430 article-title: C4.5: Programs for Machine Learning – volume: 206 start-page: 79 year: 2014 end-page: 111 ident: br0130 article-title: Algorithm runtime prediction: methods & evaluation publication-title: Artif. Intell. – reference: P. Flach, personal communication, 2014. – volume: 60 start-page: 2211 year: 2014 end-page: 2227 ident: br0220 article-title: Learning surrogate models for simulation-based optimization publication-title: AIChE J. – start-page: 108 year: 2010 end-page: 109 ident: br0060 article-title: A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS publication-title: International Solid-State Circuits Conference – year: 2006 ident: br0360 article-title: Handbook of Constraint Programming – year: 2014 ident: br0020 article-title: Discrete-Event Simulation and System Dynamics for Management Decision Making – start-page: 115 year: 2011 end-page: 129 ident: br0040 article-title: Neuron constraints to model complex real-world problems publication-title: Principles and Practice of Constraint Programming – volume: 43 start-page: 1349 year: 1995 end-page: 1358 ident: br0240 article-title: A neural network modeling approach to circuit optimization and statistical design publication-title: IEEE Trans. Microw. Theory Tech. – start-page: 31 year: 2014 end-page: 56 ident: br0280 article-title: A survey on direct search methods for blackbox optimization and their applications publication-title: Mathematics Without Boundaries – volume: 53 start-page: 199 year: 1994 end-page: 248 ident: br0300 article-title: Optimization via simulation: a review publication-title: Ann. Oper. Res. – reference: J. Heaton, Encog Java and DotNet neural network framework, Heaton Research, Inc., retrieved on July 20, 2010. – start-page: 124 year: 2012 end-page: 135 ident: br0260 article-title: Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events publication-title: Evolutionary Computation in Combinatorial Optimization – volume: 22 start-page: 1 year: 2013 end-page: 131 ident: br0350 article-title: Mixed-integer nonlinear optimization publication-title: Acta Numer. – year: 2014 ident: br0250 article-title: The LION way: machine learning plus intelligent optimization – start-page: 1671 year: 2010 end-page: 1675 ident: br0090 article-title: Constraint programming for data mining and machine learning publication-title: Proc. of 24th AAAI Conference on Artificial Intelligence – year: 2008 ident: br0380 article-title: Data Mining with Decision Trees: Theory and Applications – volume: 25 start-page: 402 year: 2013 end-page: 418 ident: br0100 article-title: k-Pattern set mining under constraints publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1671 year: 2010 ident: 10.1016/j.artint.2016.01.005_br0090 article-title: Constraint programming for data mining and machine learning – ident: 10.1016/j.artint.2016.01.005_br0110 – year: 1998 ident: 10.1016/j.artint.2016.01.005_br0340 – volume: 41 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.artint.2016.01.005_br0210 article-title: Surrogate-based analysis and optimization publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2005.02.001 – volume: vol. 7997 start-page: 299 year: 2013 ident: 10.1016/j.artint.2016.01.005_br0150 article-title: Generating customized landscapes in permutation-based combinatorial optimization problems – year: 2014 ident: 10.1016/j.artint.2016.01.005_br0020 – volume: 7 start-page: 1265 year: 2006 ident: 10.1016/j.artint.2016.01.005_br0070 article-title: The interplay of optimization and machine learning research publication-title: J. Mach. Learn. Res. – start-page: 255 year: 1999 ident: 10.1016/j.artint.2016.01.005_br0310 article-title: New advances for wedding optimization and simulation – year: 1993 ident: 10.1016/j.artint.2016.01.005_br0430 – start-page: 424 year: 1987 ident: 10.1016/j.artint.2016.01.005_br0010 – start-page: 1493 year: 2010 ident: 10.1016/j.artint.2016.01.005_br0200 article-title: Automated modelling and solving in constraint programming – year: 2006 ident: 10.1016/j.artint.2016.01.005_br0360 – start-page: 244 year: 2012 ident: 10.1016/j.artint.2016.01.005_br0120 article-title: Instance-specific algorithm configuration as a method for non-model-based portfolio generation – start-page: 191 year: 2012 ident: 10.1016/j.artint.2016.01.005_br0330 article-title: The weighted average constraint – volume: 60 start-page: 2211 issue: 6 year: 2014 ident: 10.1016/j.artint.2016.01.005_br0220 article-title: Learning surrogate models for simulation-based optimization publication-title: AIChE J. doi: 10.1002/aic.14418 – volume: 25 start-page: 402 issue: 2 year: 2013 ident: 10.1016/j.artint.2016.01.005_br0100 article-title: k-Pattern set mining under constraints publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.204 – volume: 43 start-page: 1349 issue: 6 year: 1995 ident: 10.1016/j.artint.2016.01.005_br0240 article-title: A neural network modeling approach to circuit optimization and statistical design publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/22.390193 – start-page: 448 year: 2013 ident: 10.1016/j.artint.2016.01.005_br0370 article-title: A new propagator for two-layer neural networks in empirical model learning – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.artint.2016.01.005_br0440 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – volume: 14 start-page: 501 issue: 5 year: 2006 ident: 10.1016/j.artint.2016.01.005_br0320 article-title: Hotspot: a compact thermal modeling methodology for early-stage VLSI design publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2006.876103 – start-page: 475 year: 2013 ident: 10.1016/j.artint.2016.01.005_br0190 article-title: Constraint acquisition via partial queries – year: 2014 ident: 10.1016/j.artint.2016.01.005_br0250 – year: 2008 ident: 10.1016/j.artint.2016.01.005_br0380 – ident: 10.1016/j.artint.2016.01.005_br0420 – volume: 22 start-page: 1 year: 2013 ident: 10.1016/j.artint.2016.01.005_br0350 article-title: Mixed-integer nonlinear optimization publication-title: Acta Numer. doi: 10.1017/S0962492913000032 – volume: 25 start-page: 257 issue: 3 year: 2012 ident: 10.1016/j.artint.2016.01.005_br0140 article-title: An evaluation of machine learning in algorithm selection for search problems publication-title: AI Commun. doi: 10.3233/AIC-2012-0533 – volume: 13 start-page: 455 year: 1998 ident: 10.1016/j.artint.2016.01.005_br0290 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – start-page: 337 year: 2008 ident: 10.1016/j.artint.2016.01.005_br0390 article-title: Z3: an efficient smt solver – volume: 53 start-page: 199 year: 1994 ident: 10.1016/j.artint.2016.01.005_br0300 article-title: Optimization via simulation: a review publication-title: Ann. Oper. Res. doi: 10.1007/BF02136830 – start-page: 74 year: 2015 ident: 10.1016/j.artint.2016.01.005_br0050 article-title: Embedding decision trees and random forests in constraint programming – volume: 206 start-page: 79 year: 2014 ident: 10.1016/j.artint.2016.01.005_br0130 article-title: Algorithm runtime prediction: methods & evaluation publication-title: Artif. Intell. doi: 10.1016/j.artint.2013.10.003 – start-page: 141 year: 2012 ident: 10.1016/j.artint.2016.01.005_br0180 article-title: A model seeker: Extracting global constraint models from positive examples – start-page: 31 year: 2014 ident: 10.1016/j.artint.2016.01.005_br0280 article-title: A survey on direct search methods for blackbox optimization and their applications – year: 2012 ident: 10.1016/j.artint.2016.01.005_br0410 – ident: 10.1016/j.artint.2016.01.005_br0470 – start-page: 124 year: 2012 ident: 10.1016/j.artint.2016.01.005_br0260 article-title: Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events – start-page: 115 year: 2011 ident: 10.1016/j.artint.2016.01.005_br0040 article-title: Neuron constraints to model complex real-world problems – volume: 136 start-page: 528 issue: 6 year: 2009 ident: 10.1016/j.artint.2016.01.005_br0230 article-title: Neural network – swarm intelligence hybrid nonlinear optimization algorithm for pavement moduli back-calculation publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000128 – volume: 9 start-page: 299 issue: 3 year: 2011 ident: 10.1016/j.artint.2016.01.005_br0450 article-title: Localsolver 1.x: a black-box local-search solver for 0-1 programming publication-title: 4OR doi: 10.1007/s10288-011-0165-9 – ident: 10.1016/j.artint.2016.01.005_br0030 – start-page: 209 year: 1996 ident: 10.1016/j.artint.2016.01.005_br0400 article-title: Generalized arc consistency for global cardinality constraint – volume: vol. 8 year: 2009 ident: 10.1016/j.artint.2016.01.005_br0270 article-title: Introduction to Derivative-Free Optimization – volume: 14 start-page: 19 issue: 1 year: 2003 ident: 10.1016/j.artint.2016.01.005_br0460 article-title: Mixed-integer nonlinear programming publication-title: SIAG/OPT Newsl. Views News – start-page: 108 year: 2010 ident: 10.1016/j.artint.2016.01.005_br0060 article-title: A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS – start-page: 50 year: 2007 ident: 10.1016/j.artint.2016.01.005_br0170 article-title: Query-driven constraint acquisition – year: 2011 ident: 10.1016/j.artint.2016.01.005_br0080 – start-page: 123 year: 2004 ident: 10.1016/j.artint.2016.01.005_br0160 article-title: Leveraging the learning power of examples in automated constraint acquisition |
| SSID | ssj0003991 |
| Score | 2.521431 |
| Snippet | One of the biggest challenges in the design of real-world decision support systems is coming up with a good combinatorial optimization model. Often enough,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 343 |
| SubjectTerms | Accuracy Analytics Approximation Artificial neural networks Combinatorial analysis Combinatorial optimization Complex systems Computer simulation Constraint programming Decision support systems Decision trees Empirical analysis Encapsulation Linear programming Local search Machine learning Mathematical models Mixed integer Mixed integer non-linear programming Neural networks Nonlinear programming Optimization SAT modulo theories Simulators Solvers Workload |
| Title | Empirical decision model learning |
| URI | https://dx.doi.org/10.1016/j.artint.2016.01.005 https://www.proquest.com/docview/1916363768 |
| Volume | 244 |
| WOSCitedRecordID | wos000394630400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7921 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0003991 issn: 0004-3702 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZ47IELz0XLU0HiGmTHrhMfK1QEHBASIPVmxY-sikqo2i7i5zPxI62oEAsSlyhy4sTxjGfGzuf5EDrVuTHCZCoF2dOUGaJShblKC4EVIZWGIYUd2UR-c1P0--I2cGxOHJ1AXtfF66sY_aiooQyE3Wyd_YK424dCAZyD0OEIYofjfwm-9zQa-LwfJvDneLqbSBDxdz4e7Y4dVsgxd8wl52xhOs9PqlGhCLC3wxlUdjAsHW13uDCb2EObGiagQYuXLOeXFsBdtdgqv961sOcl2FAGZgl7G2q92SxyiNOF3-sc7WrG2JxlpD4bU3Cy1HNwLNhvv5TweOZSKDRQV8JdVlXcmfmrFkV45_5jQksIdwtqfBmtZnlHgHFb7V71-tetS4YoLFAn-qbHPZQO6Lf4ro9ilHfe2oUg95toPcwdkq6X-RZasvU22oi8HEkw0zvopFWBJKpA4lQgiSrwGz1c9O7PL9NAhZFqWuBpmlFqNAQOXAlWWpgzamEs13nFDNc4L21ZMiIqiOVFqTLLG1pQDDW1qAi2RUl30Ur9XNs_KClsh0IRjEpGmCJYGA4Or8KWVFRVwuwhGj9e6pAnvqErGcoICHyUvstk02USEwldtofSttbI50n55P489qsMsZ6P4SSowic1D6MYZBh2E0lglkM5OMti_9sPPkBrs0FwiFam43_2CP3SL9PBZHwcVOoNaS-Ckg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+decision+model+learning&rft.jtitle=Artificial+intelligence&rft.au=Lombardi%2C+Michele&rft.au=Milano%2C+Michela&rft.au=Bartolini%2C+Andrea&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0004-3702&rft.eissn=1872-7921&rft.volume=244&rft.spage=343&rft.epage=367&rft_id=info:doi/10.1016%2Fj.artint.2016.01.005&rft.externalDocID=S0004370216000126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon |