Mean square stability for Kalman filtering with Markovian packet losses

This paper studies the stability of Kalman filtering over a network subject to random packet losses, which are modeled by a time-homogeneous ergodic Markov process. For second-order systems, necessary and sufficient conditions for stability of the mean estimation error covariance matrices are derive...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 47; číslo 12; s. 2647 - 2657
Hlavní autoři: You, Keyou, Fu, Minyue, Xie, Lihua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.12.2011
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the stability of Kalman filtering over a network subject to random packet losses, which are modeled by a time-homogeneous ergodic Markov process. For second-order systems, necessary and sufficient conditions for stability of the mean estimation error covariance matrices are derived by taking into account the system structure. While for certain classes of higher-order systems, necessary and sufficient conditions are also provided to ensure stability of the mean estimation error covariance matrices. All stability criteria are expressed by simple inequalities in terms of the largest eigenvalue of the open loop matrix and transition probabilities of the Markov process. Their implications and relationships with related results in the literature are discussed.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2011.09.015