Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture

Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid superca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electrochimica acta Ročník 327; s. 134999
Hlavní autori: Yu, Peifeng, Zeng, Yuan, Zeng, Yinxiang, Dong, Hanwu, Hu, Hang, Liu, Yingliang, Zheng, Mingtao, Xiao, Yong, Lu, Xihong, Liang, Yeru
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 10.12.2019
Elsevier BV
Predmet:
ISSN:0013-4686, 1873-3859
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor. [Display omitted] •High-energy-density and ultra-stable zinc-ion hybrid supercapacitors are realized.•Hierarchical porous carbon is obtained based on a purposeful hydrothermal-assisted molecular-scale mixing strategy.•High surface area, hierarchical porous architecture and favorable graphitization degree is favorable to zinc-ion storage.
AbstractList Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor.
Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor. [Display omitted] •High-energy-density and ultra-stable zinc-ion hybrid supercapacitors are realized.•Hierarchical porous carbon is obtained based on a purposeful hydrothermal-assisted molecular-scale mixing strategy.•High surface area, hierarchical porous architecture and favorable graphitization degree is favorable to zinc-ion storage.
ArticleNumber 134999
Author Dong, Hanwu
Yu, Peifeng
Liu, Yingliang
Zeng, Yuan
Zheng, Mingtao
Liang, Yeru
Xiao, Yong
Zeng, Yinxiang
Hu, Hang
Lu, Xihong
Author_xml – sequence: 1
  givenname: Peifeng
  surname: Yu
  fullname: Yu, Peifeng
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 2
  givenname: Yuan
  surname: Zeng
  fullname: Zeng, Yuan
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 3
  givenname: Yinxiang
  surname: Zeng
  fullname: Zeng, Yinxiang
  organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
– sequence: 4
  givenname: Hanwu
  surname: Dong
  fullname: Dong, Hanwu
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 5
  givenname: Hang
  surname: Hu
  fullname: Hu, Hang
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 6
  givenname: Yingliang
  surname: Liu
  fullname: Liu, Yingliang
  email: tliuyl@scau.edu.cn
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 7
  givenname: Mingtao
  surname: Zheng
  fullname: Zheng, Mingtao
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 8
  givenname: Yong
  surname: Xiao
  fullname: Xiao, Yong
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
– sequence: 9
  givenname: Xihong
  surname: Lu
  fullname: Lu, Xihong
  email: luxh6@mail.sysu.edu.cn
  organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
– sequence: 10
  givenname: Yeru
  surname: Liang
  fullname: Liang, Yeru
  email: liangyr@scau.edu.cn
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China
BookMark eNqNkEGLFDEQhYOs4OzqbzDgOWPS6U53Dh6GxVVhwYueQ3W6ZiZDm7SV7oX27v82a4sHLy4UFBTvvar6rtlVTBEZe63kXkll3l72OKKfodS-ksrula6ttc_YTnWtFrpr7BXbSam0qE1nXrDrnC9Syta0csd-Hvw54EOIJ34Op7PAiHRaxYAxh3nlEAe-jDOByDP0I_IfIXoRUuTntacw8LxMSB4m8GFOlHm_coynEBFpy0QCKis8jHxKlJbMPVBfAn6P53L5QviSPT_CmPHVn37Dvt69_3L7Udx__vDp9nAvvO7kLCoJBmu0nW6M7NqmHSpEX_W1qiV23pjaoj1WRlXWywZg6I8KwTS91ShbAH3D3my5E6XvC-bZXdJCsax0la50LTul26J6t6k8pZwJj648B3P5uoAIo1PSPZJ3F_eXvHsk7zbyxd_-458ofANan-A8bE4sEB4KO5d9wOhxCFT0bkjhvxm_AA-iqN0
CitedBy_id crossref_primary_10_1016_j_jcis_2022_11_030
crossref_primary_10_1016_j_est_2023_106715
crossref_primary_10_1002_celc_202100029
crossref_primary_10_1016_j_jcis_2024_05_048
crossref_primary_10_1007_s11664_024_11537_4
crossref_primary_10_1016_j_est_2022_104252
crossref_primary_10_1016_j_electacta_2021_138170
crossref_primary_10_1016_j_est_2023_110370
crossref_primary_10_1002_adfm_202007843
crossref_primary_10_3103_S1068375521050070
crossref_primary_10_1016_j_carbon_2022_07_012
crossref_primary_10_1007_s11664_021_08959_9
crossref_primary_10_3390_en13215847
crossref_primary_10_1002_aenm_202300630
crossref_primary_10_1007_s40843_021_2006_y
crossref_primary_10_1016_j_diamond_2019_107603
crossref_primary_10_1016_j_diamond_2025_112652
crossref_primary_10_1002_anie_202014766
crossref_primary_10_1016_j_jcis_2023_03_024
crossref_primary_10_1016_j_est_2023_110368
crossref_primary_10_1002_aenm_202202303
crossref_primary_10_1002_aenm_202001705
crossref_primary_10_3390_molecules28207187
crossref_primary_10_1016_j_jpowsour_2022_232347
crossref_primary_10_1002_ente_202100297
crossref_primary_10_1016_j_jechem_2022_03_051
crossref_primary_10_1007_s42114_023_00636_1
crossref_primary_10_1016_j_est_2021_103385
crossref_primary_10_1016_j_nanoen_2021_106070
crossref_primary_10_1016_j_est_2022_106378
crossref_primary_10_1016_j_jelechem_2020_114972
crossref_primary_10_1016_j_mtchem_2023_101476
crossref_primary_10_1016_j_est_2025_115298
crossref_primary_10_3389_fchem_2020_00663
crossref_primary_10_1007_s11581_024_05833_6
crossref_primary_10_1016_j_ccr_2024_216097
crossref_primary_10_1016_j_nanoen_2023_108290
crossref_primary_10_1016_j_jpowsour_2024_236140
crossref_primary_10_1016_j_jcis_2022_04_022
crossref_primary_10_1039_D3NR01178J
crossref_primary_10_1016_j_apsusc_2021_152247
crossref_primary_10_1016_j_jpowsour_2024_234638
crossref_primary_10_1016_j_est_2023_106855
crossref_primary_10_1016_j_cej_2025_164974
crossref_primary_10_1039_D1NR03215A
crossref_primary_10_1002_slct_202001552
crossref_primary_10_1016_j_jcis_2023_12_144
crossref_primary_10_1016_j_est_2025_116712
crossref_primary_10_1007_s40820_023_01065_x
crossref_primary_10_1016_j_carbon_2022_09_056
crossref_primary_10_26599_NR_2025_94907031
crossref_primary_10_1002_adfm_202112151
crossref_primary_10_1002_batt_202500161
crossref_primary_10_1016_j_jpowsour_2023_233114
crossref_primary_10_1016_j_jcis_2021_04_114
crossref_primary_10_1039_D4RA04681A
crossref_primary_10_3390_batteries9080429
crossref_primary_10_1016_j_est_2023_108228
crossref_primary_10_1016_j_jpowsour_2023_232789
crossref_primary_10_1016_j_carbon_2021_08_084
crossref_primary_10_1002_ange_202014766
crossref_primary_10_1002_batt_202000312
crossref_primary_10_1039_D3SE00565H
crossref_primary_10_1002_cey2_69
crossref_primary_10_1002_batt_202300175
crossref_primary_10_1002_cey2_271
crossref_primary_10_1016_j_carbon_2021_04_093
crossref_primary_10_1016_j_cej_2021_133241
crossref_primary_10_1016_S1872_5805_24_60881_4
crossref_primary_10_1016_j_carbon_2021_05_049
crossref_primary_10_1016_j_cej_2025_162004
crossref_primary_10_1016_j_jpowsour_2022_231743
crossref_primary_10_1016_j_susmat_2022_e00536
crossref_primary_10_1016_j_micromeso_2022_111721
crossref_primary_10_1039_D4EE02163K
crossref_primary_10_1039_D5TA03521J
crossref_primary_10_1016_j_mtsust_2024_100676
crossref_primary_10_1002_smll_202304172
crossref_primary_10_1016_j_gee_2023_01_002
crossref_primary_10_1002_advs_202406235
crossref_primary_10_1039_D4QI02657H
crossref_primary_10_1016_j_est_2024_112002
crossref_primary_10_1016_j_ceramint_2020_02_175
crossref_primary_10_1016_j_est_2023_109571
crossref_primary_10_1016_j_est_2023_110320
crossref_primary_10_1016_j_jpowsour_2021_230663
crossref_primary_10_1002_celc_202001322
crossref_primary_10_1007_s12598_025_03509_2
crossref_primary_10_1002_aenm_202003994
crossref_primary_10_1002_cite_202300054
crossref_primary_10_1016_j_est_2022_105089
crossref_primary_10_1002_cssc_202500787
crossref_primary_10_1016_j_jiec_2024_11_011
crossref_primary_10_1002_celc_202100282
crossref_primary_10_1016_j_jcis_2022_12_170
crossref_primary_10_1016_j_cej_2021_131071
crossref_primary_10_1016_j_carbon_2021_10_060
crossref_primary_10_1016_j_est_2023_108794
crossref_primary_10_1002_aenm_202100201
crossref_primary_10_1007_s40820_021_00588_5
crossref_primary_10_1002_smll_202003174
crossref_primary_10_1088_1361_6528_abdb17
crossref_primary_10_1016_j_pmatsci_2020_100716
crossref_primary_10_20517_energymater_2024_266
crossref_primary_10_1080_21663831_2023_2178860
crossref_primary_10_1016_j_cej_2025_166437
crossref_primary_10_1016_j_electacta_2020_135804
crossref_primary_10_1002_batt_202100034
crossref_primary_10_1002_smll_202504629
crossref_primary_10_1016_j_rser_2021_111288
crossref_primary_10_1016_j_cej_2023_146408
crossref_primary_10_1016_j_ccr_2023_215056
crossref_primary_10_1021_acsami_5c10120
crossref_primary_10_1016_j_electacta_2022_141312
crossref_primary_10_1002_cssc_202002931
crossref_primary_10_1016_j_cej_2025_162914
crossref_primary_10_1002_adsu_202400780
crossref_primary_10_1002_slct_202304071
crossref_primary_10_1016_j_jpowsour_2024_234146
crossref_primary_10_1002_cssc_202100299
crossref_primary_10_1007_s12274_022_4726_3
crossref_primary_10_1016_j_jelechem_2020_114936
crossref_primary_10_1016_S1872_5805_22_60642_5
crossref_primary_10_1007_s11581_022_04587_3
Cites_doi 10.1016/j.synthmet.2014.04.014
10.1039/C4NR03574G
10.1016/j.carbon.2018.02.021
10.1002/adma.201702698
10.1016/j.electacta.2017.10.166
10.1021/acsami.7b14390
10.1002/admi.201800430
10.1021/acs.jpcc.7b09494
10.1002/aenm.201800266
10.1016/j.electacta.2018.12.070
10.1002/adma.201705580
10.1039/C6CP01285J
10.1016/j.cej.2017.12.019
10.1007/s40820-019-0278-9
10.1016/j.electacta.2019.03.165
10.1039/C9TA02678A
10.1039/c3ee22325f
10.1039/C6EE03367A
10.1039/c3ta10897j
10.1016/j.ensm.2018.10.020
10.1002/adma.201600586
10.1021/ja402552h
10.1002/adma.201205332
10.1016/j.ensm.2018.01.003
10.1039/C6SC03961H
10.1016/j.rser.2017.04.117
10.1002/adma.201802396
10.1016/j.electacta.2017.01.163
10.1016/j.micromeso.2015.06.041
10.1021/acs.nanolett.9b00697
10.1039/C8NR03256D
10.1016/j.electacta.2018.10.014
10.1002/smll.201703850
10.1002/admi.201700004
10.1039/C7EE01040K
10.1021/acsnano.7b09003
10.1016/j.cej.2015.08.014
10.1039/C7TA08046H
10.1002/aenm.201803865
10.1002/smll.201700358
10.1002/bbb.198
10.1038/s41467-018-04060-8
10.1039/C8CC05366A
10.1016/j.electacta.2014.04.001
10.1021/nn302147s
10.1016/j.jpowsour.2018.04.103
10.1002/adfm.201800508
10.1039/C8EE01415A
10.1021/ja312241y
10.1002/batt.201800138
10.1016/j.jpowsour.2017.06.029
10.1016/j.nanoen.2017.09.041
10.1016/j.carbon.2017.07.050
10.1016/j.mseb.2013.12.004
10.1038/ncomms15520
10.1016/j.nanoen.2018.06.017
10.1039/C8NR03889A
10.1016/j.electacta.2018.01.172
10.1016/j.electacta.2017.11.116
10.1021/acssuschemeng.6b00388
10.1002/adma.201701677
10.1002/adfm.201806722
10.1016/j.ensm.2017.12.022
10.1039/C6RA21607B
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 10, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 10, 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2019.134999
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Architecture
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2019_134999
S0013468619318705
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
~HD
7SR
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
L7M
SSH
ID FETCH-LOGICAL-c380t-20a6e4e9835608757d2eec2b4140e8c6649e9f26129c05aadbf1ea65b93e07aa3
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-4686
IngestDate Mon Jul 14 09:33:38 EDT 2025
Sat Nov 29 07:35:21 EST 2025
Tue Nov 18 22:11:23 EST 2025
Fri Feb 23 02:25:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cycling stability
Hierarchical porous carbon
High energy density
Molecular-scale mixing strategy
Zinc-ion hybrid supercapacitors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-20a6e4e9835608757d2eec2b4140e8c6649e9f26129c05aadbf1ea65b93e07aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2323408137
PQPubID 2045485
ParticipantIDs proquest_journals_2323408137
crossref_citationtrail_10_1016_j_electacta_2019_134999
crossref_primary_10_1016_j_electacta_2019_134999
elsevier_sciencedirect_doi_10_1016_j_electacta_2019_134999
PublicationCentury 2000
PublicationDate 2019-12-10
PublicationDateYYYYMMDD 2019-12-10
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-10
  day: 10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Ou, Cui, Ma, Yang, Tang (bib8) 2019; 29
Sun, Zheng, Hu, Dong, Liang, Xiao, Lei, Liu (bib65) 2018; 336
Hao, Mou, Zhang, Dong, Liu, Xu, Kang (bib25) 2018; 259
Wang, Wang, Tang (bib27) 2018; 13
Charles, Feygenson, Page, Neuefeind, Xu, Teng (bib13) 2017; 8
Liu, Chi, Zhang, Chen, Zhang, Zhu, Cao (bib14) 2018; 54
Da-Wei, Feng, Min, Gao Qing, Hui-Ming (bib34) 2010; 47
Huang, Liang, Hu, Liu, Cai, Dong, Zheng, Xiao, Liu (bib46) 2017; 5
Han, Wang, Liu, Li, Sun, Zhang, An, Yi, Ma (bib29) 2018; 10
Liang, Chen, Zhuang, Liu, Fu, Zhang, Wu, Matyjaszewski (bib49) 2017; 8
Yang, Cui, Ge, Tang, Liu, Li, Li, Zhang, Liang, Zhi (bib12) 2018; 50
Xu, Tan, Zeng, Chen, Wu, Zhao, Ni, Tao, Ikram, Ji (bib3) 2016; 28
Li, Liu, Liang, Huang, Huan, Zhu, Pei, Xue, Tang, Wang, Li, Zhi (bib57) 2018; 12
Lang, Li, Zhang, Ding, Zapien, Tang (bib23) 2019; 2
Zhao, Lei, He, Yuan, Yun, Ni, Lv, Li, Yang, Kang, Lu (bib9) 2018; 8
Ma, Cheng, Dong, Liu, Mou, Zhao, Wang, Ren, Wu, Xu, Kang (bib30) 2019; 20
Funke, Ziegler (bib43) 2010; 4
Li, Li, Shen (bib47) 2013; 25
Xiao, Han, Xiao, Song, Zhang, Kong, Yang, Zhi (bib18) 2018; 10
Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao, Liu, Sushko, Liu, Zhang (bib51) 2013; 135
Madhu, Veeramani, Chen, Veerakumar, Liu, Miyamoto (bib36) 2016; 18
Islam, Alfaruqi, Song, Kim, Pham, Jo, Kim, Mathew, Baboo, Xiu, Kim (bib56) 2017; 26
Hashemi, Kasiri, La Mantia (bib10) 2017; 258
Sun, Tian, Li, Meng, Wang, Wang, Yin, Fu (bib39) 2013; 1
Chou, Huang, Doong (bib35) 2014; 194
Li, Yu, Yang, Zhao, Zhang, Huang, Liu, Guo, Qiu (bib59) 2017; 10
Wang, Zhou, Gao, Zhu, Liu, Gao, Wu (bib7) 2019; 298
Zhang, Xu, Ma, Li, Wang, Zhang, Li, Liu, Cheng, Du, Cheng, Du (bib60) 2017; 29
Liang, Cao, Ming, Zhang, Anjum, Cui, Cavallo, Alshareef (bib53) 2019; 19
Jain, Tripathi (bib38) 2014; 183
Gonzalez-Garcia (bib41) 2018; 82
Chen, Zhang, Liang, Kong, Guan, Chen, Wu, Yu (bib58) 2012; 6
Wu, Yao, Song, Zhang, Chen, Yang, Tang (bib22) 2019; 9
Dong, Ma, Yang, Ling, Liu, Cheng, Xu, Li, Yang, Kang (bib31) 2018; 13
Pan, Cao, Xie, Zhang, Xia (bib20) 2018; 292
Jain, Xu, Jayaraman, Balasubramanian, Lee, Srinivasan (bib40) 2015; 218
Zeng, Meng, Lai, Zhang, Yu, Fang, Wu, Tong, Lu (bib1) 2017; 29
Lei, Su, Tian (bib44) 2016; 6
Zhang, Wang, Lv, Zhang, Liang, Zheng, Kang, Yang (bib19) 2017; 10
Liu, Cai, Zhao, Liang, Zheng, Hu, Dong, Jiang, Liu, Xiao (bib62) 2017; 360
Lahan, Boruah, Hazarika, Das (bib15) 2017; 121
Xu, Li, Wei, He, Du, Chu, Qin, Yang, Kang (bib55) 2014; 133
Deng, Xiong, Wang, Zheng, Wang (bib42) 2016; 4
Wu, Zhang, Yan, Xiong, He, He, Xu, Mai (bib54) 2018; 14
Du, Zheng, Lv, Deng, Pan, Kang, Yang (bib5) 2017; 4
Huang, Mou, Liu, Wang, Dong, Kang, Xu (bib26) 2019; 11
Jain, Balasubramanian, Srinivasan (bib45) 2016; 283
Sevilla, Ferrero, Diez, Fuertes (bib63) 2018; 131
Xia, Guo, Lei, Liang, Zhao, Alshareef (bib17) 2018; 30
Dong, Yang, Yang, Li, Wu, Wang (bib32) 2019; 7
Luo, Lv, Deng, Zhou, Pan, Niu, Li, Kang, Yang (bib48) 2017; 13
Zeng, Lai, Han, Zhang, Xie, Lu (bib4) 2018; 30
Biswal, Banerjee, Deo, Ogale (bib61) 2013; 6
Long, Xi, Fan, Guankui, Tengfei, Kai, Yawei, Yi, Yanfeng, Mingtao (bib52) 2013; 135
Wu, Wang, Huang, Zou, Chen, Cheng, Jiang, Gao, Niu (bib21) 2019; 306
Lee, Jeong (bib16) 2018; 265
Shi, Lv, Zhang, Wang, Ling, He, Kang, Yang (bib6) 2018; 28
Ma, Chen, Li, Ruan, Tang, Liu, Wang, Huang, Pei, Zapien, Zhi (bib28) 2018; 11
Hao, Zhao, Tian, Li, Sang, Yu, Cai, Liu, Wong, Umar (bib37) 2014; 6
Wei, Zou, Gao (bib66) 2017; 123
Wan, Zhang, Dai, Wang, Niu, Chen (bib50) 2018; 9
Liang, Zhang, Wu, Ni, Zhang (bib2) 2018; 5
Jiang, Xu, Wu, Dong, Li, Kang (bib24) 2017; 229
Niu, Liang, Shao, Liu, Dou, Li, Huang, Wang (bib33) 2017; 41
Shao, Niu, Liang, Liu, Zhang, Dou, Huang, Wang (bib64) 2017; 9
Chen, Zhai, Chen, Li, Ma, Ai, Xu, Hou, Zhang, Feng, Si, Ci (bib11) 2018; 392
Lee (10.1016/j.electacta.2019.134999_bib16) 2018; 265
Jiang (10.1016/j.electacta.2019.134999_bib24) 2017; 229
Wu (10.1016/j.electacta.2019.134999_bib54) 2018; 14
Wang (10.1016/j.electacta.2019.134999_bib7) 2019; 298
Charles (10.1016/j.electacta.2019.134999_bib13) 2017; 8
Chou (10.1016/j.electacta.2019.134999_bib35) 2014; 194
Jain (10.1016/j.electacta.2019.134999_bib45) 2016; 283
Li (10.1016/j.electacta.2019.134999_bib59) 2017; 10
Han (10.1016/j.electacta.2019.134999_bib29) 2018; 10
Funke (10.1016/j.electacta.2019.134999_bib43) 2010; 4
Xia (10.1016/j.electacta.2019.134999_bib17) 2018; 30
Liu (10.1016/j.electacta.2019.134999_bib62) 2017; 360
Ding (10.1016/j.electacta.2019.134999_bib51) 2013; 135
Sun (10.1016/j.electacta.2019.134999_bib65) 2018; 336
Long (10.1016/j.electacta.2019.134999_bib52) 2013; 135
Islam (10.1016/j.electacta.2019.134999_bib56) 2017; 26
Wei (10.1016/j.electacta.2019.134999_bib66) 2017; 123
Xu (10.1016/j.electacta.2019.134999_bib55) 2014; 133
Hashemi (10.1016/j.electacta.2019.134999_bib10) 2017; 258
Yang (10.1016/j.electacta.2019.134999_bib12) 2018; 50
Zhao (10.1016/j.electacta.2019.134999_bib9) 2018; 8
Shi (10.1016/j.electacta.2019.134999_bib6) 2018; 28
Liu (10.1016/j.electacta.2019.134999_bib14) 2018; 54
Jain (10.1016/j.electacta.2019.134999_bib38) 2014; 183
Du (10.1016/j.electacta.2019.134999_bib5) 2017; 4
Chen (10.1016/j.electacta.2019.134999_bib58) 2012; 6
Lahan (10.1016/j.electacta.2019.134999_bib15) 2017; 121
Li (10.1016/j.electacta.2019.134999_bib47) 2013; 25
Pan (10.1016/j.electacta.2019.134999_bib20) 2018; 292
Madhu (10.1016/j.electacta.2019.134999_bib36) 2016; 18
Li (10.1016/j.electacta.2019.134999_bib57) 2018; 12
Zhang (10.1016/j.electacta.2019.134999_bib19) 2017; 10
Luo (10.1016/j.electacta.2019.134999_bib48) 2017; 13
Chen (10.1016/j.electacta.2019.134999_bib11) 2018; 392
Wu (10.1016/j.electacta.2019.134999_bib22) 2019; 9
Wang (10.1016/j.electacta.2019.134999_bib27) 2018; 13
Gonzalez-Garcia (10.1016/j.electacta.2019.134999_bib41) 2018; 82
Deng (10.1016/j.electacta.2019.134999_bib42) 2016; 4
Lei (10.1016/j.electacta.2019.134999_bib44) 2016; 6
Sevilla (10.1016/j.electacta.2019.134999_bib63) 2018; 131
Wu (10.1016/j.electacta.2019.134999_bib21) 2019; 306
Liang (10.1016/j.electacta.2019.134999_bib53) 2019; 19
Zeng (10.1016/j.electacta.2019.134999_bib4) 2018; 30
Dong (10.1016/j.electacta.2019.134999_bib32) 2019; 7
Biswal (10.1016/j.electacta.2019.134999_bib61) 2013; 6
Hao (10.1016/j.electacta.2019.134999_bib37) 2014; 6
Xiao (10.1016/j.electacta.2019.134999_bib18) 2018; 10
Liang (10.1016/j.electacta.2019.134999_bib2) 2018; 5
Lang (10.1016/j.electacta.2019.134999_bib23) 2019; 2
Huang (10.1016/j.electacta.2019.134999_bib46) 2017; 5
Wan (10.1016/j.electacta.2019.134999_bib50) 2018; 9
Da-Wei (10.1016/j.electacta.2019.134999_bib34) 2010; 47
Hao (10.1016/j.electacta.2019.134999_bib25) 2018; 259
Sun (10.1016/j.electacta.2019.134999_bib39) 2013; 1
Ma (10.1016/j.electacta.2019.134999_bib28) 2018; 11
Zhang (10.1016/j.electacta.2019.134999_bib60) 2017; 29
Zeng (10.1016/j.electacta.2019.134999_bib1) 2017; 29
Huang (10.1016/j.electacta.2019.134999_bib26) 2019; 11
Dong (10.1016/j.electacta.2019.134999_bib31) 2018; 13
Jain (10.1016/j.electacta.2019.134999_bib40) 2015; 218
Liang (10.1016/j.electacta.2019.134999_bib49) 2017; 8
Shao (10.1016/j.electacta.2019.134999_bib64) 2017; 9
Niu (10.1016/j.electacta.2019.134999_bib33) 2017; 41
Xu (10.1016/j.electacta.2019.134999_bib3) 2016; 28
Zhang (10.1016/j.electacta.2019.134999_bib8) 2019; 29
Ma (10.1016/j.electacta.2019.134999_bib30) 2019; 20
References_xml – volume: 18
  start-page: 16466
  year: 2016
  ident: bib36
  article-title: Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications
  publication-title: Phys. Chem. Chem. Phys. Pccp
– volume: 194
  start-page: 29
  year: 2014
  end-page: 37
  ident: bib35
  article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications
  publication-title: Synthetic Met
– volume: 9
  start-page: 42797
  year: 2017
  end-page: 42805
  ident: bib64
  article-title: Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 26241
  year: 2017
  end-page: 26249
  ident: bib15
  article-title: Anatase TiO
  publication-title: J. Phys. Chem. C
– volume: 82
  start-page: 1393
  year: 2018
  end-page: 1414
  ident: bib41
  article-title: Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 4
  start-page: 1700004
  year: 2017
  ident: bib5
  article-title: A three-layer all-in-one flexible graphene film used as an integrated supercapacitor
  publication-title: Adv Mater Interfaces
– volume: 4
  start-page: 160
  year: 2010
  end-page: 177
  ident: bib43
  article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioproducts and Biorefining
– volume: 265
  start-page: 430
  year: 2018
  end-page: 436
  ident: bib16
  article-title: Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a prussian blue electrode/aqueous electrolyte system for calcium-ion batteries
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 107829
  year: 2016
  end-page: 107835
  ident: bib44
  article-title: Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk
  publication-title: RSC Adv.
– volume: 360
  start-page: 373
  year: 2017
  end-page: 382
  ident: bib62
  article-title: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor
  publication-title: J. Power Sources
– volume: 133
  start-page: 254
  year: 2014
  end-page: 261
  ident: bib55
  article-title: Preparation and characterization of MnO
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 49
  year: 2019
  ident: bib26
  article-title: Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO
  publication-title: Nano-Micro Lett.
– volume: 47
  year: 2010
  ident: bib34
  article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
  publication-title: Angew. Chem.
– volume: 30
  start-page: 1705580
  year: 2018
  ident: bib17
  article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode
  publication-title: Adv. Mater.
– volume: 306
  start-page: 446
  year: 2019
  end-page: 453
  ident: bib21
  article-title: Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 131
  start-page: 193
  year: 2018
  end-page: 200
  ident: bib63
  article-title: One-step synthesis of sltra-high surface area nanoporous carbons and their application for electrochemical energy storage
  publication-title: Carbon
– volume: 9
  start-page: 1803865
  year: 2019
  ident: bib22
  article-title: A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature
  publication-title: Adv. Energy Mater
– volume: 12
  start-page: 3140
  year: 2018
  end-page: 3148
  ident: bib57
  article-title: Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte
  publication-title: ACS Nano
– volume: 10
  start-page: 13083
  year: 2018
  end-page: 13091
  ident: bib29
  article-title: Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell
  publication-title: Nanoscale
– volume: 2
  start-page: 440
  year: 2019
  end-page: 447
  ident: bib23
  article-title: Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type Anode for enhanced rate and cycling performance
  publication-title: Batteries & Supercaps
– volume: 298
  start-page: 552
  year: 2019
  end-page: 560
  ident: bib7
  article-title: Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 623
  year: 2018
  end-page: 631
  ident: bib12
  article-title: Porous single-crystal NaTi
  publication-title: Nano Energy
– volume: 6
  start-page: 1249
  year: 2013
  end-page: 1259
  ident: bib61
  article-title: From dead leaves to high energy density supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 3199
  year: 2019
  end-page: 3206
  ident: bib53
  article-title: Aqueous zinc ion storage in MoS
  publication-title: Nano Lett.
– volume: 28
  start-page: 1800508
  year: 2018
  ident: bib6
  article-title: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 9474
  year: 2018
  end-page: 9477
  ident: bib14
  article-title: Superior high rate capability of MgMn
  publication-title: Chem. Commun.
– volume: 7
  start-page: 13810
  year: 2019
  end-page: 13832
  ident: bib32
  article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 24775
  year: 2017
  end-page: 24781
  ident: bib46
  article-title: Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors
  publication-title: J. Mater. Chem.
– volume: 25
  start-page: 2474
  year: 2013
  end-page: 2480
  ident: bib47
  article-title: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors
  publication-title: Adv. Mater.
– volume: 183
  start-page: 54
  year: 2014
  end-page: 60
  ident: bib38
  article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode
  publication-title: Mater Sci Eng B-Adv
– volume: 13
  start-page: 1700358
  year: 2017
  ident: bib48
  article-title: A dual-function Na
  publication-title: Small
– volume: 229
  start-page: 422
  year: 2017
  end-page: 428
  ident: bib24
  article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 285
  year: 2017
  end-page: 292
  ident: bib33
  article-title: Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors
  publication-title: Nano Energy
– volume: 135
  start-page: 5921
  year: 2013
  end-page: 5929
  ident: bib52
  article-title: Controlling the effective surface area and pore size distribution of sp
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 5222
  year: 2016
  end-page: 5228
  ident: bib3
  article-title: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes
  publication-title: Adv. Mater.
– volume: 336
  start-page: 550
  year: 2018
  end-page: 561
  ident: bib65
  article-title: From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 1802396
  year: 2018
  ident: bib4
  article-title: Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2101
  year: 2017
  ident: bib49
  article-title: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes
  publication-title: Chem. Sci.
– volume: 283
  start-page: 789
  year: 2016
  end-page: 805
  ident: bib45
  article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 1800266
  year: 2018
  ident: bib9
  article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 10351
  year: 2018
  end-page: 10356
  ident: bib18
  article-title: A facile and processable integration strategy towards schiff-base polymer-derived carbonaceous materials with high lithium storage performance
  publication-title: Nanoscale
– volume: 6
  start-page: 12120
  year: 2014
  end-page: 12129
  ident: bib37
  article-title: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
  publication-title: Nanoscale
– volume: 259
  start-page: 170
  year: 2018
  end-page: 178
  ident: bib25
  article-title: Electrochemically induced spinel-layered phase transition of Mn
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 7092
  year: 2012
  end-page: 7102
  ident: bib58
  article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors
  publication-title: ACS Nano
– volume: 135
  start-page: 4450
  year: 2013
  end-page: 4456
  ident: bib51
  article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1702698
  year: 2017
  ident: bib1
  article-title: An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode
  publication-title: Adv. Mater.
– volume: 10
  start-page: 370
  year: 2017
  end-page: 376
  ident: bib19
  article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 6462
  year: 2013
  end-page: 6470
  ident: bib39
  article-title: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 2521
  year: 2018
  end-page: 2530
  ident: bib28
  article-title: Initiating a mild aqueous electrolyte Co
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 3750
  year: 2016
  end-page: 3756
  ident: bib42
  article-title: Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons
  publication-title: Acs Sustain Chem Eng
– volume: 10
  start-page: 1958
  year: 2017
  end-page: 1965
  ident: bib59
  article-title: A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 123
  start-page: 471
  year: 2017
  end-page: 480
  ident: bib66
  article-title: Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid-polyvinyl alcohol gels for high-performance electrochemical capacitors
  publication-title: Carbon
– volume: 29
  start-page: 1806722
  year: 2019
  ident: bib8
  article-title: High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 15520
  year: 2017
  ident: bib13
  article-title: Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib27
  article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications
  publication-title: Energy Storage Mater
– volume: 218
  start-page: 55
  year: 2015
  end-page: 61
  ident: bib40
  article-title: Mesoporous activated carbons with enhanced porosity by pptimal hydrothermal pre-treatment of biomass for supercapacitor applications
  publication-title: Microporous Mesoporous Mater.
– volume: 13
  start-page: 96
  year: 2018
  end-page: 102
  ident: bib31
  article-title: Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors
  publication-title: Energy Storage Mater
– volume: 5
  start-page: 1800430
  year: 2018
  ident: bib2
  article-title: Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage
  publication-title: Adv Mater Interfaces
– volume: 392
  start-page: 116
  year: 2018
  end-page: 122
  ident: bib11
  article-title: Nanostructured LiMn
  publication-title: J. Power Sources
– volume: 9
  start-page: 1656
  year: 2018
  ident: bib50
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1703850
  year: 2018
  ident: bib54
  article-title: Graphene scroll-coated α-MnO
  publication-title: Small
– volume: 26
  start-page: 815
  year: 2017
  end-page: 819
  ident: bib56
  article-title: Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications
  publication-title: J Energy Chem
– volume: 258
  start-page: 703
  year: 2017
  end-page: 708
  ident: bib10
  article-title: The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries
  publication-title: Electrochim. Acta
– volume: 20
  start-page: 335
  year: 2019
  end-page: 342
  ident: bib30
  article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors
  publication-title: Energy Storage Mater.
– volume: 29
  start-page: 1701677
  year: 2017
  ident: bib60
  article-title: Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors
  publication-title: Adv. Mater.
– volume: 292
  start-page: 935
  year: 2018
  end-page: 941
  ident: bib20
  article-title: Nickel nanoparticles activated highly porous carbon for excellent sodium storage
  publication-title: Electrochim. Acta
– volume: 194
  start-page: 29
  year: 2014
  ident: 10.1016/j.electacta.2019.134999_bib35
  article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications
  publication-title: Synthetic Met
  doi: 10.1016/j.synthmet.2014.04.014
– volume: 6
  start-page: 12120
  year: 2014
  ident: 10.1016/j.electacta.2019.134999_bib37
  article-title: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
  publication-title: Nanoscale
  doi: 10.1039/C4NR03574G
– volume: 131
  start-page: 193
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib63
  article-title: One-step synthesis of sltra-high surface area nanoporous carbons and their application for electrochemical energy storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.02.021
– volume: 29
  start-page: 1702698
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib1
  article-title: An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702698
– volume: 259
  start-page: 170
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib25
  article-title: Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.166
– volume: 9
  start-page: 42797
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib64
  article-title: Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14390
– volume: 5
  start-page: 1800430
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib2
  article-title: Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201800430
– volume: 121
  start-page: 26241
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib15
  article-title: Anatase TiO2 as an anode material for rechargeable aqueous aluminum-ion batteries: Remarkable graphene induced aluminum ion storage phenomenon
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09494
– volume: 8
  start-page: 1800266
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib9
  article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800266
– volume: 298
  start-page: 552
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib7
  article-title: Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.070
– volume: 30
  start-page: 1705580
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib17
  article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705580
– volume: 18
  start-page: 16466
  year: 2016
  ident: 10.1016/j.electacta.2019.134999_bib36
  article-title: Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications
  publication-title: Phys. Chem. Chem. Phys. Pccp
  doi: 10.1039/C6CP01285J
– volume: 336
  start-page: 550
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib65
  article-title: From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.019
– volume: 11
  start-page: 49
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib26
  article-title: Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0278-9
– volume: 306
  start-page: 446
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib21
  article-title: Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.165
– volume: 7
  start-page: 13810
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib32
  article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA02678A
– volume: 6
  start-page: 1249
  year: 2013
  ident: 10.1016/j.electacta.2019.134999_bib61
  article-title: From dead leaves to high energy density supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee22325f
– volume: 26
  start-page: 815
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib56
  article-title: Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications
  publication-title: J Energy Chem
– volume: 10
  start-page: 370
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib19
  article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03367A
– volume: 1
  start-page: 6462
  year: 2013
  ident: 10.1016/j.electacta.2019.134999_bib39
  article-title: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta10897j
– volume: 20
  start-page: 335
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib30
  article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.10.020
– volume: 28
  start-page: 5222
  year: 2016
  ident: 10.1016/j.electacta.2019.134999_bib3
  article-title: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600586
– volume: 135
  start-page: 5921
  year: 2013
  ident: 10.1016/j.electacta.2019.134999_bib52
  article-title: Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402552h
– volume: 25
  start-page: 2474
  year: 2013
  ident: 10.1016/j.electacta.2019.134999_bib47
  article-title: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205332
– volume: 13
  start-page: 96
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib31
  article-title: Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.01.003
– volume: 8
  start-page: 2101
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib49
  article-title: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03961H
– volume: 82
  start-page: 1393
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib41
  article-title: Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.117
– volume: 30
  start-page: 1802396
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib4
  article-title: Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802396
– volume: 229
  start-page: 422
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib24
  article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.01.163
– volume: 218
  start-page: 55
  year: 2015
  ident: 10.1016/j.electacta.2019.134999_bib40
  article-title: Mesoporous activated carbons with enhanced porosity by pptimal hydrothermal pre-treatment of biomass for supercapacitor applications
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.06.041
– volume: 19
  start-page: 3199
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib53
  article-title: Aqueous zinc ion storage in MoS2 by tuning the intercalation energy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00697
– volume: 10
  start-page: 10351
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib18
  article-title: A facile and processable integration strategy towards schiff-base polymer-derived carbonaceous materials with high lithium storage performance
  publication-title: Nanoscale
  doi: 10.1039/C8NR03256D
– volume: 47
  year: 2010
  ident: 10.1016/j.electacta.2019.134999_bib34
  article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
  publication-title: Angew. Chem.
– volume: 292
  start-page: 935
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib20
  article-title: Nickel nanoparticles activated highly porous carbon for excellent sodium storage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.014
– volume: 14
  start-page: 1703850
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib54
  article-title: Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery
  publication-title: Small
  doi: 10.1002/smll.201703850
– volume: 4
  start-page: 1700004
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib5
  article-title: A three-layer all-in-one flexible graphene film used as an integrated supercapacitor
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201700004
– volume: 10
  start-page: 1958
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib59
  article-title: A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01040K
– volume: 12
  start-page: 3140
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib57
  article-title: Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09003
– volume: 283
  start-page: 789
  year: 2016
  ident: 10.1016/j.electacta.2019.134999_bib45
  article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.014
– volume: 5
  start-page: 24775
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib46
  article-title: Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA08046H
– volume: 9
  start-page: 1803865
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib22
  article-title: A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201803865
– volume: 13
  start-page: 1700358
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib48
  article-title: A dual-function Na2SO4 template directed formation of cathode materials with a high content of sulfur nanodots for lithium-sulfur batteries
  publication-title: Small
  doi: 10.1002/smll.201700358
– volume: 4
  start-page: 160
  year: 2010
  ident: 10.1016/j.electacta.2019.134999_bib43
  article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering
  publication-title: Biofuels, Bioproducts and Biorefining
  doi: 10.1002/bbb.198
– volume: 9
  start-page: 1656
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib50
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 54
  start-page: 9474
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib14
  article-title: Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05366A
– volume: 133
  start-page: 254
  year: 2014
  ident: 10.1016/j.electacta.2019.134999_bib55
  article-title: Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.001
– volume: 6
  start-page: 7092
  year: 2012
  ident: 10.1016/j.electacta.2019.134999_bib58
  article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/nn302147s
– volume: 392
  start-page: 116
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib11
  article-title: Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.103
– volume: 28
  start-page: 1800508
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib6
  article-title: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800508
– volume: 11
  start-page: 2521
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib28
  article-title: Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01415A
– volume: 135
  start-page: 4450
  year: 2013
  ident: 10.1016/j.electacta.2019.134999_bib51
  article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312241y
– volume: 2
  start-page: 440
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib23
  article-title: Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type Anode for enhanced rate and cycling performance
  publication-title: Batteries & Supercaps
  doi: 10.1002/batt.201800138
– volume: 360
  start-page: 373
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib62
  article-title: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.06.029
– volume: 41
  start-page: 285
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib33
  article-title: Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.041
– volume: 123
  start-page: 471
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib66
  article-title: Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid-polyvinyl alcohol gels for high-performance electrochemical capacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.050
– volume: 183
  start-page: 54
  year: 2014
  ident: 10.1016/j.electacta.2019.134999_bib38
  article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode
  publication-title: Mater Sci Eng B-Adv
  doi: 10.1016/j.mseb.2013.12.004
– volume: 8
  start-page: 15520
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib13
  article-title: Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15520
– volume: 50
  start-page: 623
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib12
  article-title: Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.017
– volume: 10
  start-page: 13083
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib29
  article-title: Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell
  publication-title: Nanoscale
  doi: 10.1039/C8NR03889A
– volume: 265
  start-page: 430
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib16
  article-title: Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a prussian blue electrode/aqueous electrolyte system for calcium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.172
– volume: 258
  start-page: 703
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib10
  article-title: The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.116
– volume: 4
  start-page: 3750
  year: 2016
  ident: 10.1016/j.electacta.2019.134999_bib42
  article-title: Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons
  publication-title: Acs Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b00388
– volume: 29
  start-page: 1701677
  year: 2017
  ident: 10.1016/j.electacta.2019.134999_bib60
  article-title: Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701677
– volume: 29
  start-page: 1806722
  year: 2019
  ident: 10.1016/j.electacta.2019.134999_bib8
  article-title: High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806722
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.electacta.2019.134999_bib27
  article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2017.12.022
– volume: 6
  start-page: 107829
  year: 2016
  ident: 10.1016/j.electacta.2019.134999_bib44
  article-title: Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21607B
SSID ssj0007670
Score 2.6316166
Snippet Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134999
SubjectTerms Architecture
Carbon
Cathodes
Cycles
Cycling stability
Electrical resistivity
Energy storage
Flux density
Graphitization
Hierarchical porous carbon
High energy density
Ion storage
Molecular-scale mixing strategy
Morphology
Specific surface
Stability
Structural engineering
Structural hierarchy
Supercapacitors
Surface area
Zinc
Zinc-ion hybrid supercapacitors
Title Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture
URI https://dx.doi.org/10.1016/j.electacta.2019.134999
https://www.proquest.com/docview/2323408137
Volume 327
WOSCitedRecordID wos000494834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007670
  issn: 0013-4686
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKh8RFQlBADAbyA-Jl8pSLc-OtGp0GmgoPHeqeIsc50TJVoaTN6Hjn1_AnOY6dNJ0KgwekKoqcOr2cL8fH9jnfR8jriNtWKCQwwR3JeH0mIGGBcNLU4T4HGdZiE8F4HE6n0ade72dTC3M5C4oiXK2i-X81NbahsVXp7D-Yu70pNuA5Gh2PaHY8_pXhh_I8h3qZQFERM6iL-1iqEtWXmmypmi1LwTAsVFVT3_NCMoWB8ytVvLW_qOZQShxCZV4L8WB4CmvOwn0lnV1vPijbYuyuMmilKBOV1NzZk9hY8NdKO3hRURMo9o52KDirdI5wnoEZQdUaNmj_c1atkdu25cUKAd2-953JKD4Wxbequ4Jh1_ILJpe1XlZrS2s-dz217TLuNzTZ2jmHgcvc0DCIG-_tamoB43_traOCXqC4OKiVhdSvVCl90YFiZtTqTJs83OOP8dHpyUk8GU0nb-ZfmZIoU1v5Rq_lFtlxAi8K-2Rn-H40_dAO_IEfWI1ghvrqG-mEWz_7d8HQtbCgjnUmD8kDM0mhQw2uR6QHxYDcH3bsOyB3DhupwAG512G1fEx-tAikWxBIEYG0i0DaIJBqBNJrCKTJFe0gkHYRSDUCqUYg7SLwCTk9Gk0Oj5lR-2DSDa0lPsPCBw4RTgn8WmYhdQCkk3CbWxBK3-cRRJlivIuk5QmRJpkNwveSyAUrEMJ9SvrFlwKeEQqB46SeJz0A7MUzkeELZwZOGmV-4Ni7xG_-9lgaKnylyDKLm5zHi7i1V6zsFWt77RKr7TjXbDA3d3nb2DU2Qa0OVmNE582d9xokxMbFLGKcA7kcI3k3eP7nyy_I3fXjtkf6y7KCl-S2vFzmi_KVQe8vF9_WOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+high-energy-density+and+ultra-stable+zinc-ion+hybrid+supercapacitors+by+engineering+hierarchical+porous+carbon+architecture&rft.jtitle=Electrochimica+acta&rft.au=Yu%2C+Peifeng&rft.au=Zeng%2C+Yuan&rft.au=Zeng%2C+Yinxiang&rft.au=Dong%2C+Hanwu&rft.date=2019-12-10&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=327&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2019.134999&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon