Bearing Fault Diagnosis Using Deep Sparse Autoencoder

Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional mac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IOP conference series. Materials Science and Engineering Ročník 1062; číslo 1; s. 12002 - 12011
Hlavní autoři: Saufi, S R, Ahmad, Z A B, Leong, M S, Hee, L M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.02.2021
Témata:
ISSN:1757-8981, 1757-899X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional machine learning such as Artificial Neural Network and Support Vector Machine have problems of lacking expression capacity, existing the curse of dimensionality, require manual feature extraction and require an additional feature selection. Deep learning model has the ability to effectively mine the high dimensional features and accurately recognize the health condition. In consequence, deep learning model has turned into an innovative and promising research in bearing fault diagnosis field. Thus, this paper tends to proposed Deep Sparse Autoencoder (DSAE) with Teager Kaiser Energy Operator (TKEO) to diagnose the bearing condition. DSAE is one of deep learning model which uses the architecture of neural network. During the analysis, the hyperparameter of DSAE model was optimized by Ant Lion Optimization. The analysis results show that the proposed TKEO-DSAE achieved 99.5% accuracy of the fault diagnosis. The comparative study between proposed model and ANN proved that deep learning model outperform traditional machine learning model on bearing fault diagnosis.
AbstractList Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional machine learning such as Artificial Neural Network and Support Vector Machine have problems of lacking expression capacity, existing the curse of dimensionality, require manual feature extraction and require an additional feature selection. Deep learning model has the ability to effectively mine the high dimensional features and accurately recognize the health condition. In consequence, deep learning model has turned into an innovative and promising research in bearing fault diagnosis field. Thus, this paper tends to proposed Deep Sparse Autoencoder (DSAE) with Teager Kaiser Energy Operator (TKEO) to diagnose the bearing condition. DSAE is one of deep learning model which uses the architecture of neural network. During the analysis, the hyperparameter of DSAE model was optimized by Ant Lion Optimization. The analysis results show that the proposed TKEO-DSAE achieved 99.5% accuracy of the fault diagnosis. The comparative study between proposed model and ANN proved that deep learning model outperform traditional machine learning model on bearing fault diagnosis.
Author Leong, M S
Hee, L M
Saufi, S R
Ahmad, Z A B
Author_xml – sequence: 1
  givenname: S R
  surname: Saufi
  fullname: Saufi, S R
  email: msramadhan93@yahoo.com
  organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia
– sequence: 2
  givenname: Z A B
  surname: Ahmad
  fullname: Ahmad, Z A B
  organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia
– sequence: 3
  givenname: M S
  surname: Leong
  fullname: Leong, M S
  organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia
– sequence: 4
  givenname: L M
  surname: Hee
  fullname: Hee, L M
  organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia
BookMark eNqNkE9LwzAYh4MouE0_gwVPHmqTtE3Sg4e5PypMPGyCt5CmyciYSU3ag9_elspEEfT0hjfPL7_wjMGxdVYBcIHgNYKMJYjmNGZF8ZIgSHCCEogwhPgIjA43x4czQ6dgHMIOQkKzDI5AfquEN3YbLUW7b6K5EVvrggnRc-i3c6XqaF0LH1Q0bRunrHSV8mfgRIt9UOefcwI2y8Vmdh-vnu4eZtNVLFMGcZwyjUtZQiQqJCnOS0JlVRWSFBWlgmhYlLokKMMsI7rAJKNa6ZzkNNOUSZFOwOXwbO3dW6tCw3eu9bZr5DhHKcwZhllH3QyU9C4ErzSXphGNcbbxwuw5grwXxXsFvNfBe1Ec8UFUl6c_8rU3r8K__yN5NSSNq7--9rhefOd4XemOTX9h_2r4ALY1iXA
CitedBy_id crossref_primary_10_3390_app15073774
Cites_doi 10.1016/j.isatra.2012.12.006
10.1016/j.advengsoft.2015.01.010
10.1109/TIE.2010.2095391
10.1016/j.ymssp.2017.06.022
10.1016/j.rser.2014.12.005
10.1016/j.ymssp.2017.03.034
10.1088/0957-0233/26/11/115002
10.1007/s13369-017-2538-7
10.3390/s140100283
10.1016/j.measurement.2016.05.068
10.1016/j.eswa.2013.12.026
10.1016/j.ymssp.2016.02.067
10.1016/j.ymssp.2015.06.007
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/1062/1/012002
DatabaseName IOP Open Access Journals (LUT & LAB)
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Bearing Fault Diagnosis Using Deep Sparse Autoencoder
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_1062_1_012002
MSE_1062_1_012002
Genre Conference Proceeding
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3802-38f2bcb01ad1c725b67cdd9c69d77a6f09bfb6142846f92647fef56574f78ca3
IEDL.DBID O3W
ISSN 1757-8981
IngestDate Wed Aug 13 05:23:29 EDT 2025
Sat Nov 29 03:24:57 EST 2025
Tue Nov 18 22:42:53 EST 2025
Wed Aug 21 03:34:07 EDT 2024
Wed Feb 24 05:40:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3802-38f2bcb01ad1c725b67cdd9c69d77a6f09bfb6142846f92647fef56574f78ca3
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1757-899X/1062/1/012002
PQID 2513058204
PQPubID 4998670
PageCount 10
ParticipantIDs proquest_journals_2513058204
crossref_citationtrail_10_1088_1757_899X_1062_1_012002
crossref_primary_10_1088_1757_899X_1062_1_012002
iop_journals_10_1088_1757_899X_1062_1_012002
PublicationCentury 2000
PublicationDate 20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 20210201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mirjalili (MSE_1062_1_012002bib19) 2015; 83
Li (MSE_1062_1_012002bib6) 2016; 27
Zhao (MSE_1062_1_012002bib4) 2016; 91
Shao (MSE_1062_1_012002bib10) 2017; 95
Qu (MSE_1062_1_012002bib13) 2017
Zhang (MSE_1062_1_012002bib12) 2018; 100
Grasso (MSE_1062_1_012002bib8) 2016; 81
Kumar (MSE_1062_1_012002bib16) 2017; 42
Salakhutdinov (MSE_1062_1_012002bib9) 2009; 1
Zhang (MSE_1062_1_012002bib5) 2017
Liu (MSE_1062_1_012002bib2) 2015; 44
Qi (MSE_1062_1_012002bib3) 2013
Tran (MSE_1062_1_012002bib18) 2014; 41
Kwak (MSE_1062_1_012002bib14) 2013; 14
Bouzida (MSE_1062_1_012002bib1) 2011; 58
Henríquez Rodríguez (MSE_1062_1_012002bib17) 2013; 52
Shao (MSE_1062_1_012002bib11) 2015; 26
Dolenc (MSE_1062_1_012002bib7) 2016; 66
Kaiser (MSE_1062_1_012002bib15) 1993; 3
References_xml – volume: 52
  start-page: 278
  year: 2013
  ident: MSE_1062_1_012002bib17
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2012.12.006
– volume: 83
  start-page: 80
  year: 2015
  ident: MSE_1062_1_012002bib19
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 58
  start-page: 4385
  year: 2011
  ident: MSE_1062_1_012002bib1
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2095391
– volume: 100
  start-page: 439
  year: 2018
  ident: MSE_1062_1_012002bib12
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2017.06.022
– volume: 44
  start-page: 466
  year: 2015
  ident: MSE_1062_1_012002bib2
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.12.005
– volume: 95
  start-page: 187
  year: 2017
  ident: MSE_1062_1_012002bib10
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 26
  start-page: 115002
  year: 2015
  ident: MSE_1062_1_012002bib11
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/11/115002
– volume: 42
  start-page: 5003
  year: 2017
  ident: MSE_1062_1_012002bib16
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-2538-7
– volume: 14
  start-page: 283
  year: 2013
  ident: MSE_1062_1_012002bib14
  publication-title: Sensors (Basel)
  doi: 10.3390/s140100283
– start-page: 1
  year: 2017
  ident: MSE_1062_1_012002bib5
– volume: 91
  start-page: 421
  year: 2016
  ident: MSE_1062_1_012002bib4
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2016.05.068
– start-page: 1114
  year: 2013
  ident: MSE_1062_1_012002bib3
– volume: 41
  start-page: 4113
  year: 2014
  ident: MSE_1062_1_012002bib18
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
– volume: 27
  year: 2016
  ident: MSE_1062_1_012002bib6
  publication-title: Meas. Sci. Technol.
– volume: 81
  start-page: 126
  year: 2016
  ident: MSE_1062_1_012002bib8
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2016.02.067
– volume: 66
  start-page: 521
  year: 2016
  ident: MSE_1062_1_012002bib7
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2015.06.007
– volume: 1
  start-page: 448
  year: 2009
  ident: MSE_1062_1_012002bib9
  publication-title: Aistats
– year: 2017
  ident: MSE_1062_1_012002bib13
– volume: 3
  start-page: 149
  year: 1993
  ident: MSE_1062_1_012002bib15
SSID ssj0067440
Score 2.1804569
Snippet Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12002
SubjectTerms ant lion optimization
Artificial neural networks
bearing
Comparative studies
Deep learning
deep sparse autoencoder
Fault diagnosis
Feature extraction
Feature recognition
Learning theory
Machine learning
Maintenance costs
Model testing
Neural networks
Optimization
Roller bearings
Support vector machines
teager kaiser energy operator
SummonAdditionalLinks – databaseName: Materials Science Database
  dbid: KB.
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5s9aAH32J9EcSjsXl1Hydp1eJBRWgPvS37hEJpYh_-fmfTjbUI9uAtJLMhzE6-md2Z_Qahm5TZKJKZCOPUsDBLlAkFkTKUWFuhiBQkKg8Kv5C3NzoYsHe_4Tb1ZZUVJpZArXPl9sib4IfBNMFfZffFR-i6Rrnsqm-hUUObcQKxvkvKdu4qJMaO_K48ENkCJGY0ruq7YNHn77EBwAZOmnHTHSL1eyuVd6oN8-IXRJd-p7v33y_eR7s-4gzaCxM5QBtmfIh2fvAQHqFWB-wdroKumI9mweOi_G44DcqCguDRmCLoFbAENkF7Pssd96U2k2PU7z71H55D308hVCkF4EupTaSSUSx0rEjSkpgorZnCTBMisI2YtBI7CrYMWwaRErHGurRoZglVIj1B9XE-NqcoIIxYLcG9w3syR5JGQdxQa4U1EMIlDYQrNXLlucZdy4sRL3PelHKnf-70z53-ecwX-m-g6HtgsaDbWD_kFuaJ-19vul78ekX8tfe0KsALbRvooprSpeRyPs_-fnyOthNX-VLWdl-g-mwyN5doS33OhtPJVWmiX9_r5TE
  priority: 102
  providerName: ProQuest
Title Bearing Fault Diagnosis Using Deep Sparse Autoencoder
URI https://iopscience.iop.org/article/10.1088/1757-899X/1062/1/012002
https://www.proquest.com/docview/2513058204
Volume 1062
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: M7S
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD54e9AH7-K8jCI-Wtfbcnl0uqGoczjB-RSSNIGBbGUXf78nbacOERF8C-05afianpyS73wBOI25DQKVSD-MDfeTSBtfUqV8RVIrNVWSBnmh8B1tt1mvx-dqYYZZGfrPsVkIBRcQloQ4VsMFDwMr5z28QqJaWHP1n05Pcjlm9bqj9T3Ez7NoTJwAXl4UmTuxcMbx-rmjuRVqEUfxLUzna09r4z9GvQnrZebpXRQeW7BgBtuw9kWPcAfqDZz32PJacvo68a4KGl5_7OXEAu_KmMzrZvgrbLyL6WToNDBTM9qFp1bz6fLaL89V8HXMMADGzEZKqyCUaahpVFeE6jTlmvCUUklswJVVxEmxJcRyzJioNdZtjyaWMi3jPVgaDAdmHzzKqU0VLvPYT-LE0hiaG2attAZTuagCZAal0KXmuDv64lXke9-MCQeLcLAIB4sIRQFLBYIPx6yQ3fjd5QyxF-UnOP7d_GTO_L7bnDcQWWorcDR785-WmBFikMTMKTn42yMPYTVyjJic830ES5PR1BzDin6b9MejKiw3mu3OYxUWbxvnVcdB7VbzqYx3Ojf3nZd3r03oNA
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxsxEB4Sp9Dm0HeJm7QVpb118b6sxyGUtI6JiW0M8cE9CT3BEOytHwn9Uf2PHe2jaSg0pxx6W3ZHQux8mhlpXgAfMuHjWOcqSjInojw1LlJM60hT65VhWrG4TBQesvGYz2ZisgM_m1yYEFbZyMRSUNulCXfkHdTDCE3UV_nn4nsUukYF72rTQqOCxbn7cY1HtvXxoIf8_Zim_dPp17Oo7ioQmYzj9s-4T7XRcaJsYlja1ZQZa4WhwjKmqI-F9pqGQmQ59QLtBeadD87B3DNuVIbT7sJejliPW7A3GYwm3xrRT0O1vTIDs4uiX_CkCSjDU2b9TsxQTtG0k3RC1mp9mdOow935svhLJ5SKrv_kP_tFT-FxbVGTk2oLPIMdt3gO-3_UWXwB3S-4KnwifbW93JBeFV44X5MyYIL0nCvIRYFHfEdOtptlqO1p3eolTO9j2a-gtVgu3AEQJpi3Gs0XnCcPReA4kjvuvfIOTdS0DbThmjR1LfXQ0uNSlj59zmVgtwzsloHdMpEVu9sQ_x5YVOVE7h7yCWEha9Gyvpv8_S3y0cXpbQJZWN-GowZBN5Q38Hn978_v4OHZdDSUw8H4_BAepSHKp4xjP4LWZrV1b-CBudrM16u39f4gIO8Zbr8A-PdDBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB5aFdEHb7Gei_jo2r3M8ajWRVGr0IJ9C0k2AUHapYe_38nuVi0iIvgWlpls-JKdmSUz3wCcxNwGgUqkH8aG-0mkjS-pUr4imZWaKkmDolD4nrbbrNfjTzVIP2phBnll-s9wWBIFlxBWCXGsiQ4PDSvnPXxCombYdPWfQdTMM1uHeUdX4joZPMbPU4tMHAleURhZKLJwmuf182QzXqqOK_lmqgv_k67-18rXYKWKQL2LUmsdaqa_ActfeAk34fwSzz-OvFROXsdeq0zHexl5RYKB1zIm9zo5_hIb72IyHjguzMwMt6CbXnevbvyqv4KvY4aGMGY2UloFocxCTaNzRajOMq4JzyiVxAZcWUUcJVtCLMfIiVpj3TVpYinTMt6Guf6gb3bAo5zaTKG7x3kSR5rGUNwwa6U1GNJFDSBTOIWuuMddC4xXUdyBMyYcNMJBIxw0IhQlNA0IPhTzkn7jd5VTxF9Un-Lod_HjGfGHzvWsgMDdacD-dPc_JTEyRGOJEVSy-7dXHsHiUysV97ftuz1YilySTJEGvg9z4-HEHMCCfhu_jIaHxSl-Bw7E6HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bearing+Fault+Diagnosis+Using+Deep+Sparse+Autoencoder&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Saufi%2C+S+R&rft.au=Ahmad%2C+Z+A+B&rft.au=Leong%2C+M+S&rft.au=Hee%2C+L+M&rft.date=2021-02-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=1062&rft.issue=1&rft.spage=12002&rft_id=info:doi/10.1088%2F1757-899X%2F1062%2F1%2F012002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_1062_1_012002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon