Bearing Fault Diagnosis Using Deep Sparse Autoencoder
Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional mac...
Uloženo v:
| Vydáno v: | IOP conference series. Materials Science and Engineering Ročník 1062; číslo 1; s. 12002 - 12011 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.02.2021
|
| Témata: | |
| ISSN: | 1757-8981, 1757-899X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional machine learning such as Artificial Neural Network and Support Vector Machine have problems of lacking expression capacity, existing the curse of dimensionality, require manual feature extraction and require an additional feature selection. Deep learning model has the ability to effectively mine the high dimensional features and accurately recognize the health condition. In consequence, deep learning model has turned into an innovative and promising research in bearing fault diagnosis field. Thus, this paper tends to proposed Deep Sparse Autoencoder (DSAE) with Teager Kaiser Energy Operator (TKEO) to diagnose the bearing condition. DSAE is one of deep learning model which uses the architecture of neural network. During the analysis, the hyperparameter of DSAE model was optimized by Ant Lion Optimization. The analysis results show that the proposed TKEO-DSAE achieved 99.5% accuracy of the fault diagnosis. The comparative study between proposed model and ANN proved that deep learning model outperform traditional machine learning model on bearing fault diagnosis. |
|---|---|
| AbstractList | Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional machine learning such as Artificial Neural Network and Support Vector Machine have problems of lacking expression capacity, existing the curse of dimensionality, require manual feature extraction and require an additional feature selection. Deep learning model has the ability to effectively mine the high dimensional features and accurately recognize the health condition. In consequence, deep learning model has turned into an innovative and promising research in bearing fault diagnosis field. Thus, this paper tends to proposed Deep Sparse Autoencoder (DSAE) with Teager Kaiser Energy Operator (TKEO) to diagnose the bearing condition. DSAE is one of deep learning model which uses the architecture of neural network. During the analysis, the hyperparameter of DSAE model was optimized by Ant Lion Optimization. The analysis results show that the proposed TKEO-DSAE achieved 99.5% accuracy of the fault diagnosis. The comparative study between proposed model and ANN proved that deep learning model outperform traditional machine learning model on bearing fault diagnosis. |
| Author | Leong, M S Hee, L M Saufi, S R Ahmad, Z A B |
| Author_xml | – sequence: 1 givenname: S R surname: Saufi fullname: Saufi, S R email: msramadhan93@yahoo.com organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia – sequence: 2 givenname: Z A B surname: Ahmad fullname: Ahmad, Z A B organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia – sequence: 3 givenname: M S surname: Leong fullname: Leong, M S organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia – sequence: 4 givenname: L M surname: Hee fullname: Hee, L M organization: Institute of Noise and Vibration, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM) , Malaysia |
| BookMark | eNqNkE9LwzAYh4MouE0_gwVPHmqTtE3Sg4e5PypMPGyCt5CmyciYSU3ag9_elspEEfT0hjfPL7_wjMGxdVYBcIHgNYKMJYjmNGZF8ZIgSHCCEogwhPgIjA43x4czQ6dgHMIOQkKzDI5AfquEN3YbLUW7b6K5EVvrggnRc-i3c6XqaF0LH1Q0bRunrHSV8mfgRIt9UOefcwI2y8Vmdh-vnu4eZtNVLFMGcZwyjUtZQiQqJCnOS0JlVRWSFBWlgmhYlLokKMMsI7rAJKNa6ZzkNNOUSZFOwOXwbO3dW6tCw3eu9bZr5DhHKcwZhllH3QyU9C4ErzSXphGNcbbxwuw5grwXxXsFvNfBe1Ec8UFUl6c_8rU3r8K__yN5NSSNq7--9rhefOd4XemOTX9h_2r4ALY1iXA |
| CitedBy_id | crossref_primary_10_3390_app15073774 |
| Cites_doi | 10.1016/j.isatra.2012.12.006 10.1016/j.advengsoft.2015.01.010 10.1109/TIE.2010.2095391 10.1016/j.ymssp.2017.06.022 10.1016/j.rser.2014.12.005 10.1016/j.ymssp.2017.03.034 10.1088/0957-0233/26/11/115002 10.1007/s13369-017-2538-7 10.3390/s140100283 10.1016/j.measurement.2016.05.068 10.1016/j.eswa.2013.12.026 10.1016/j.ymssp.2016.02.067 10.1016/j.ymssp.2015.06.007 |
| ContentType | Journal Article |
| Copyright | Published under licence by IOP Publishing Ltd 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1088/1757-899X/1062/1/012002 |
| DatabaseName | IOP Open Access Journals (LUT & LAB) IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Bearing Fault Diagnosis Using Deep Sparse Autoencoder |
| EISSN | 1757-899X |
| ExternalDocumentID | 10_1088_1757_899X_1062_1_012002 MSE_1062_1_012002 |
| Genre | Conference Proceeding |
| GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3802-38f2bcb01ad1c725b67cdd9c69d77a6f09bfb6142846f92647fef56574f78ca3 |
| IEDL.DBID | O3W |
| ISSN | 1757-8981 |
| IngestDate | Wed Aug 13 05:23:29 EDT 2025 Sat Nov 29 03:24:57 EST 2025 Tue Nov 18 22:42:53 EST 2025 Wed Aug 21 03:34:07 EDT 2024 Wed Feb 24 05:40:50 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3802-38f2bcb01ad1c725b67cdd9c69d77a6f09bfb6142846f92647fef56574f78ca3 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Scholarly Journals-1 content type line 14 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1757-899X/1062/1/012002 |
| PQID | 2513058204 |
| PQPubID | 4998670 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2513058204 crossref_citationtrail_10_1088_1757_899X_1062_1_012002 crossref_primary_10_1088_1757_899X_1062_1_012002 iop_journals_10_1088_1757_899X_1062_1_012002 |
| PublicationCentury | 2000 |
| PublicationDate | 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 20210201 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | IOP conference series. Materials Science and Engineering |
| PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng |
| PublicationYear | 2021 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Mirjalili (MSE_1062_1_012002bib19) 2015; 83 Li (MSE_1062_1_012002bib6) 2016; 27 Zhao (MSE_1062_1_012002bib4) 2016; 91 Shao (MSE_1062_1_012002bib10) 2017; 95 Qu (MSE_1062_1_012002bib13) 2017 Zhang (MSE_1062_1_012002bib12) 2018; 100 Grasso (MSE_1062_1_012002bib8) 2016; 81 Kumar (MSE_1062_1_012002bib16) 2017; 42 Salakhutdinov (MSE_1062_1_012002bib9) 2009; 1 Zhang (MSE_1062_1_012002bib5) 2017 Liu (MSE_1062_1_012002bib2) 2015; 44 Qi (MSE_1062_1_012002bib3) 2013 Tran (MSE_1062_1_012002bib18) 2014; 41 Kwak (MSE_1062_1_012002bib14) 2013; 14 Bouzida (MSE_1062_1_012002bib1) 2011; 58 Henríquez Rodríguez (MSE_1062_1_012002bib17) 2013; 52 Shao (MSE_1062_1_012002bib11) 2015; 26 Dolenc (MSE_1062_1_012002bib7) 2016; 66 Kaiser (MSE_1062_1_012002bib15) 1993; 3 |
| References_xml | – volume: 52 start-page: 278 year: 2013 ident: MSE_1062_1_012002bib17 publication-title: ISA Trans. doi: 10.1016/j.isatra.2012.12.006 – volume: 83 start-page: 80 year: 2015 ident: MSE_1062_1_012002bib19 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 58 start-page: 4385 year: 2011 ident: MSE_1062_1_012002bib1 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2095391 – volume: 100 start-page: 439 year: 2018 ident: MSE_1062_1_012002bib12 publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2017.06.022 – volume: 44 start-page: 466 year: 2015 ident: MSE_1062_1_012002bib2 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.12.005 – volume: 95 start-page: 187 year: 2017 ident: MSE_1062_1_012002bib10 publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2017.03.034 – volume: 26 start-page: 115002 year: 2015 ident: MSE_1062_1_012002bib11 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/26/11/115002 – volume: 42 start-page: 5003 year: 2017 ident: MSE_1062_1_012002bib16 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2538-7 – volume: 14 start-page: 283 year: 2013 ident: MSE_1062_1_012002bib14 publication-title: Sensors (Basel) doi: 10.3390/s140100283 – start-page: 1 year: 2017 ident: MSE_1062_1_012002bib5 – volume: 91 start-page: 421 year: 2016 ident: MSE_1062_1_012002bib4 publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2016.05.068 – start-page: 1114 year: 2013 ident: MSE_1062_1_012002bib3 – volume: 41 start-page: 4113 year: 2014 ident: MSE_1062_1_012002bib18 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.026 – volume: 27 year: 2016 ident: MSE_1062_1_012002bib6 publication-title: Meas. Sci. Technol. – volume: 81 start-page: 126 year: 2016 ident: MSE_1062_1_012002bib8 publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2016.02.067 – volume: 66 start-page: 521 year: 2016 ident: MSE_1062_1_012002bib7 publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2015.06.007 – volume: 1 start-page: 448 year: 2009 ident: MSE_1062_1_012002bib9 publication-title: Aistats – year: 2017 ident: MSE_1062_1_012002bib13 – volume: 3 start-page: 149 year: 1993 ident: MSE_1062_1_012002bib15 |
| SSID | ssj0067440 |
| Score | 2.1804569 |
| Snippet | Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12002 |
| SubjectTerms | ant lion optimization Artificial neural networks bearing Comparative studies Deep learning deep sparse autoencoder Fault diagnosis Feature extraction Feature recognition Learning theory Machine learning Maintenance costs Model testing Neural networks Optimization Roller bearings Support vector machines teager kaiser energy operator |
| SummonAdditionalLinks | – databaseName: Materials Science Database dbid: KB. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5s9aAH32J9EcSjsXl1Hydp1eJBRWgPvS37hEJpYh_-fmfTjbUI9uAtJLMhzE6-md2Z_Qahm5TZKJKZCOPUsDBLlAkFkTKUWFuhiBQkKg8Kv5C3NzoYsHe_4Tb1ZZUVJpZArXPl9sib4IfBNMFfZffFR-i6Rrnsqm-hUUObcQKxvkvKdu4qJMaO_K48ENkCJGY0ruq7YNHn77EBwAZOmnHTHSL1eyuVd6oN8-IXRJd-p7v33y_eR7s-4gzaCxM5QBtmfIh2fvAQHqFWB-wdroKumI9mweOi_G44DcqCguDRmCLoFbAENkF7Pssd96U2k2PU7z71H55D308hVCkF4EupTaSSUSx0rEjSkpgorZnCTBMisI2YtBI7CrYMWwaRErHGurRoZglVIj1B9XE-NqcoIIxYLcG9w3syR5JGQdxQa4U1EMIlDYQrNXLlucZdy4sRL3PelHKnf-70z53-ecwX-m-g6HtgsaDbWD_kFuaJ-19vul78ekX8tfe0KsALbRvooprSpeRyPs_-fnyOthNX-VLWdl-g-mwyN5doS33OhtPJVWmiX9_r5TE priority: 102 providerName: ProQuest |
| Title | Bearing Fault Diagnosis Using Deep Sparse Autoencoder |
| URI | https://iopscience.iop.org/article/10.1088/1757-899X/1062/1/012002 https://www.proquest.com/docview/2513058204 |
| Volume | 1062 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: O3W dateStart: 20090201 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: M7S dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: KB. dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1757-899X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067440 issn: 1757-8981 databaseCode: PIMPY dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD54e9AH7-K8jCI-Wtfbcnl0uqGoczjB-RSSNIGBbGUXf78nbacOERF8C-05afianpyS73wBOI25DQKVSD-MDfeTSBtfUqV8RVIrNVWSBnmh8B1tt1mvx-dqYYZZGfrPsVkIBRcQloQ4VsMFDwMr5z28QqJaWHP1n05Pcjlm9bqj9T3Ez7NoTJwAXl4UmTuxcMbx-rmjuRVqEUfxLUzna09r4z9GvQnrZebpXRQeW7BgBtuw9kWPcAfqDZz32PJacvo68a4KGl5_7OXEAu_KmMzrZvgrbLyL6WToNDBTM9qFp1bz6fLaL89V8HXMMADGzEZKqyCUaahpVFeE6jTlmvCUUklswJVVxEmxJcRyzJioNdZtjyaWMi3jPVgaDAdmHzzKqU0VLvPYT-LE0hiaG2attAZTuagCZAal0KXmuDv64lXke9-MCQeLcLAIB4sIRQFLBYIPx6yQ3fjd5QyxF-UnOP7d_GTO_L7bnDcQWWorcDR785-WmBFikMTMKTn42yMPYTVyjJic830ES5PR1BzDin6b9MejKiw3mu3OYxUWbxvnVcdB7VbzqYx3Ojf3nZd3r03oNA |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxsxEB4Sp9Dm0HeJm7QVpb118b6sxyGUtI6JiW0M8cE9CT3BEOytHwn9Uf2PHe2jaSg0pxx6W3ZHQux8mhlpXgAfMuHjWOcqSjInojw1LlJM60hT65VhWrG4TBQesvGYz2ZisgM_m1yYEFbZyMRSUNulCXfkHdTDCE3UV_nn4nsUukYF72rTQqOCxbn7cY1HtvXxoIf8_Zim_dPp17Oo7ioQmYzj9s-4T7XRcaJsYlja1ZQZa4WhwjKmqI-F9pqGQmQ59QLtBeadD87B3DNuVIbT7sJejliPW7A3GYwm3xrRT0O1vTIDs4uiX_CkCSjDU2b9TsxQTtG0k3RC1mp9mdOow935svhLJ5SKrv_kP_tFT-FxbVGTk2oLPIMdt3gO-3_UWXwB3S-4KnwifbW93JBeFV44X5MyYIL0nCvIRYFHfEdOtptlqO1p3eolTO9j2a-gtVgu3AEQJpi3Gs0XnCcPReA4kjvuvfIOTdS0DbThmjR1LfXQ0uNSlj59zmVgtwzsloHdMpEVu9sQ_x5YVOVE7h7yCWEha9Gyvpv8_S3y0cXpbQJZWN-GowZBN5Q38Hn978_v4OHZdDSUw8H4_BAepSHKp4xjP4LWZrV1b-CBudrM16u39f4gIO8Zbr8A-PdDBQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB5aFdEHb7Gei_jo2r3M8ajWRVGr0IJ9C0k2AUHapYe_38nuVi0iIvgWlpls-JKdmSUz3wCcxNwGgUqkH8aG-0mkjS-pUr4imZWaKkmDolD4nrbbrNfjTzVIP2phBnll-s9wWBIFlxBWCXGsiQ4PDSvnPXxCombYdPWfQdTMM1uHeUdX4joZPMbPU4tMHAleURhZKLJwmuf182QzXqqOK_lmqgv_k67-18rXYKWKQL2LUmsdaqa_ActfeAk34fwSzz-OvFROXsdeq0zHexl5RYKB1zIm9zo5_hIb72IyHjguzMwMt6CbXnevbvyqv4KvY4aGMGY2UloFocxCTaNzRajOMq4JzyiVxAZcWUUcJVtCLMfIiVpj3TVpYinTMt6Guf6gb3bAo5zaTKG7x3kSR5rGUNwwa6U1GNJFDSBTOIWuuMddC4xXUdyBMyYcNMJBIxw0IhQlNA0IPhTzkn7jd5VTxF9Un-Lod_HjGfGHzvWsgMDdacD-dPc_JTEyRGOJEVSy-7dXHsHiUysV97ftuz1YilySTJEGvg9z4-HEHMCCfhu_jIaHxSl-Bw7E6HM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bearing+Fault+Diagnosis+Using+Deep+Sparse+Autoencoder&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Saufi%2C+S+R&rft.au=Ahmad%2C+Z+A+B&rft.au=Leong%2C+M+S&rft.au=Hee%2C+L+M&rft.date=2021-02-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=1062&rft.issue=1&rft.spage=12002&rft_id=info:doi/10.1088%2F1757-899X%2F1062%2F1%2F012002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_1062_1_012002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |