Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm
The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated...
Gespeichert in:
| Veröffentlicht in: | Building and environment Jg. 155; S. 105 - 117 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
15.05.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0360-1323, 1873-684X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy.
•An artificial intelligence algorithm (AI) is developed for thermal comfort, air quality, and energy consumption.•The developed algorithm is applicable for subtropical environment with cooling-only demand.•The simulations are in line with the experimental results in a laboratory room and a classroom.•The AI agent shows better thermal comfort and much lower CO2 levels than those without AI agent.•AI reveals 4–5% lower energy consumption with superior thermal comfort and 10% lower CO2 levels. |
|---|---|
| AbstractList | The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy.
•An artificial intelligence algorithm (AI) is developed for thermal comfort, air quality, and energy consumption.•The developed algorithm is applicable for subtropical environment with cooling-only demand.•The simulations are in line with the experimental results in a laboratory room and a classroom.•The AI agent shows better thermal comfort and much lower CO2 levels than those without AI agent.•AI reveals 4–5% lower energy consumption with superior thermal comfort and 10% lower CO2 levels. The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy. |
| Author | Gutiérrez, Jorge Lu, Kuang-Chin Wu, Wu-Chieh Wang, Chi-Chuan Galindo, Marco Liao, Kuo-Kai Liao, Jen-Chung Valladares, William |
| Author_xml | – sequence: 1 givenname: William surname: Valladares fullname: Valladares, William email: williamvalladares@outlook.com organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan – sequence: 2 givenname: Marco surname: Galindo fullname: Galindo, Marco email: marcodavidg@gmail.com organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan – sequence: 3 givenname: Jorge surname: Gutiérrez fullname: Gutiérrez, Jorge email: ing.jorge.se@gmail.com organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan – sequence: 4 givenname: Wu-Chieh surname: Wu fullname: Wu, Wu-Chieh email: wcwu@cht.com.tw organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan – sequence: 5 givenname: Kuo-Kai surname: Liao fullname: Liao, Kuo-Kai email: kai1027@cht.com.tw organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan – sequence: 6 givenname: Jen-Chung surname: Liao fullname: Liao, Jen-Chung email: renjong@cht.com.tw organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan – sequence: 7 givenname: Kuang-Chin surname: Lu fullname: Lu, Kuang-Chin email: gcl@cht.com.tw organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan – sequence: 8 givenname: Chi-Chuan orcidid: 0000-0002-4451-3401 surname: Wang fullname: Wang, Chi-Chuan email: ccwang@mail.nctu.edu.tw organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan |
| BookMark | eNqFkE1r3DAQhkVJoJu0f6EIevZWH44tQw8tIWkCgV5ayE2MpfFGiy1tR9ot6a-v0k0vuQQGZhDv8wqeM3YSU0TGPkixlkJ2n7brcR9mj_GwVkIOa6HrmDdsJU2vm8609ydsJXQnGqmVfsvOct6KCg66XbHDVUTaPPK0K2EJf6CEFDnknFyAgp7_DuWBlwekBWbu0jIlKhyi5yH6lIhDoPocC6WZHwJw4B5xxwlDrFGHC8bCZwSKIW44zJtEtXF5x04nmDO-f97n7Of11Y_Lm-bu-7fby693jdP9UJpJT65tQShzIcTUwyDQjAOOF6PyEkwrJ2UAeoRxUF3btb3SRno9AUrRQb3O2cdj747Srz3mYrdpT7F-aZXStbeX_VBTn48pRylnwsm6UP6pKARhtlLYJ9N2a_-btk-mrdB1TMW7F_iOwgL0-Dr45QhiVXAISDa7gNGhD4SuWJ_CaxV_AT6Sog0 |
| CitedBy_id | crossref_primary_10_1016_j_enbuild_2025_116071 crossref_primary_10_3390_en15103526 crossref_primary_10_1016_j_apenergy_2022_120598 crossref_primary_10_1016_j_buildenv_2025_113501 crossref_primary_10_1109_JIOT_2021_3078462 crossref_primary_10_1109_TIE_2022_3204966 crossref_primary_10_1155_2023_8347598 crossref_primary_10_1016_j_buildenv_2023_110871 crossref_primary_10_3390_buildings14020371 crossref_primary_10_1016_j_applthermaleng_2023_120430 crossref_primary_10_1016_j_apenergy_2020_116131 crossref_primary_10_1063_5_0276384 crossref_primary_10_1016_j_apenergy_2025_125816 crossref_primary_10_1016_j_ijrefrig_2025_04_027 crossref_primary_10_1016_j_jobe_2025_113776 crossref_primary_10_1016_j_enbuild_2023_112779 crossref_primary_10_1016_j_scitotenv_2023_164858 crossref_primary_10_3390_su132111855 crossref_primary_10_3390_su16093627 crossref_primary_10_1016_j_energy_2022_125029 crossref_primary_10_1016_j_jobe_2025_114074 crossref_primary_10_1016_j_buildenv_2021_108026 crossref_primary_10_1016_j_jobe_2024_110491 crossref_primary_10_1016_j_egyr_2021_06_003 crossref_primary_10_3390_buildings12010038 crossref_primary_10_3390_su131810315 crossref_primary_10_3390_su15054303 crossref_primary_10_1016_j_buildenv_2020_106863 crossref_primary_10_1016_j_eswa_2025_128404 crossref_primary_10_1016_j_enbuild_2020_110225 crossref_primary_10_1016_j_egyr_2024_06_053 crossref_primary_10_5572_KOSAE_2023_39_5_615 crossref_primary_10_1016_j_bios_2022_115018 crossref_primary_10_1016_j_buildenv_2023_110766 crossref_primary_10_1016_j_buildenv_2025_112879 crossref_primary_10_1016_j_enbuild_2024_114420 crossref_primary_10_1016_j_buildenv_2021_108495 crossref_primary_10_1016_j_energy_2022_125679 crossref_primary_10_1016_j_jobe_2023_106805 crossref_primary_10_1016_j_apenergy_2022_119382 crossref_primary_10_1109_TSG_2020_2978061 crossref_primary_10_1016_j_enbuild_2025_116247 crossref_primary_10_1016_j_epsr_2022_108617 crossref_primary_10_1016_j_buildenv_2022_109747 crossref_primary_10_1109_JIOT_2022_3163772 crossref_primary_10_1109_TASE_2025_3566390 crossref_primary_10_1109_TAI_2021_3127483 crossref_primary_10_1109_TAI_2024_3366869 crossref_primary_10_1016_j_jobe_2024_109497 crossref_primary_10_1016_j_energy_2024_132440 crossref_primary_10_1016_j_buildenv_2025_112864 crossref_primary_10_1016_j_egyr_2021_12_058 crossref_primary_10_1016_j_decarb_2023_100023 crossref_primary_10_3390_buildings12112007 crossref_primary_10_1016_j_apenergy_2024_124815 crossref_primary_10_1016_j_energy_2025_135824 crossref_primary_10_1016_j_enbuild_2024_114808 crossref_primary_10_1016_j_scs_2021_103445 crossref_primary_10_3390_en13236354 crossref_primary_10_1016_j_apenergy_2022_119206 crossref_primary_10_1016_j_applthermaleng_2022_118552 crossref_primary_10_1016_j_buildenv_2023_110546 crossref_primary_10_1016_j_rser_2020_110436 crossref_primary_10_3390_en16135091 crossref_primary_10_1016_j_egyr_2023_05_225 crossref_primary_10_3390_en18133538 crossref_primary_10_3390_en15176392 crossref_primary_10_1109_JIOT_2019_2957289 crossref_primary_10_1016_j_buildenv_2023_110551 crossref_primary_10_1016_j_rser_2021_110969 crossref_primary_10_1016_j_buildenv_2021_108633 crossref_primary_10_1016_j_enbuild_2021_111771 crossref_primary_10_1016_j_jclepro_2022_131083 crossref_primary_10_1061__ASCE_CO_1943_7862_0002386 crossref_primary_10_1109_JIOT_2022_3175728 crossref_primary_10_1016_j_enbuild_2020_110055 crossref_primary_10_3390_en16145326 crossref_primary_10_1007_s10462_024_10819_x crossref_primary_10_1016_j_buildenv_2021_108581 crossref_primary_10_1016_j_energy_2023_127627 crossref_primary_10_1016_j_ijrefrig_2024_03_009 crossref_primary_10_1016_j_buildenv_2022_109458 crossref_primary_10_1016_j_asoc_2021_108299 crossref_primary_10_1080_23744731_2022_2043068 crossref_primary_10_3390_buildings13123062 crossref_primary_10_1016_j_enbenv_2020_08_005 crossref_primary_10_3390_s25175265 crossref_primary_10_2478_amns_2024_1827 crossref_primary_10_1007_s10489_022_04320_7 crossref_primary_10_1016_j_enbuild_2021_110860 crossref_primary_10_1016_j_jobe_2023_106213 crossref_primary_10_3390_app9163293 crossref_primary_10_1016_j_buildenv_2025_113123 crossref_primary_10_3390_en16217334 crossref_primary_10_3390_app12115473 crossref_primary_10_3390_buildings13112680 crossref_primary_10_1016_j_enbuild_2021_111439 crossref_primary_10_1016_j_enbuild_2025_115599 crossref_primary_10_1108_SASBE_10_2021_0185 crossref_primary_10_1016_j_buildenv_2021_108692 crossref_primary_10_1016_j_enbuild_2023_113771 crossref_primary_10_1061_JMENEA_MEENG_4883 crossref_primary_10_1051_itmconf_20235202003 crossref_primary_10_3390_pr7120967 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_1016_j_jobe_2024_111493 crossref_primary_10_1016_j_enbuild_2025_116045 crossref_primary_10_1016_j_jclepro_2022_131142 crossref_primary_10_1016_j_jobe_2024_110787 crossref_primary_10_1109_TSG_2022_3158814 crossref_primary_10_1016_j_energy_2024_130344 crossref_primary_10_1016_j_buildenv_2023_110716 crossref_primary_10_1016_j_compchemeng_2020_107077 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_1016_j_enbuild_2023_113769 crossref_primary_10_1007_s12273_023_1056_7 crossref_primary_10_1088_1742_6596_2042_1_012004 crossref_primary_10_3390_atmos12050629 crossref_primary_10_3992_jgb_19_1_29 crossref_primary_10_1007_s00607_024_01378_8 crossref_primary_10_1016_j_buildenv_2021_108681 crossref_primary_10_3390_su11195417 crossref_primary_10_1016_j_rineng_2025_103950 crossref_primary_10_1016_j_buildenv_2024_112121 crossref_primary_10_1007_s12273_025_1231_0 crossref_primary_10_3390_su14127514 crossref_primary_10_3390_en16207124 crossref_primary_10_1016_j_enbuild_2022_112491 crossref_primary_10_1016_j_jobe_2024_111080 |
| Cites_doi | 10.1016/j.applthermaleng.2014.03.055 10.1016/j.enbuild.2016.05.067 10.1016/j.rser.2017.10.044 10.1016/j.rser.2008.09.015 10.1016/j.eswa.2008.10.033 10.4236/jcc.2015.35021 10.1080/19401493.2010.518631 10.1016/S0378-7788(00)00114-6 10.1016/j.apenergy.2013.10.036 10.1016/j.buildenv.2006.07.010 10.1289/ehp.1104789 10.4236/me.2018.94038 10.1016/j.buildenv.2013.11.016 10.3233/AIS-140288 10.1016/j.enbuild.2017.08.052 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV May 15, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV May 15, 2019 |
| DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
| DOI | 10.1016/j.buildenv.2019.03.038 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| EndPage | 117 |
| ExternalDocumentID | 10_1016_j_buildenv_2019_03_038 S0360132319302008 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW VH1 WUQ ZMT ~HD 7ST 8FD AGCQF C1K F28 FR3 KR7 SOI |
| ID | FETCH-LOGICAL-c379t-f3fc44a028500f7a90e8b9eb5b2d1a841f28aa7eab92646472381d3fae106a1d3 |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464943500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Wed Aug 13 06:43:43 EDT 2025 Sat Nov 29 07:22:09 EST 2025 Tue Nov 18 21:43:23 EST 2025 Fri Feb 23 02:35:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Air conditioning Deep reinforcement learning Ventilation Thermal comfort Optimization Indoor air quality |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c379t-f3fc44a028500f7a90e8b9eb5b2d1a841f28aa7eab92646472381d3fae106a1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4451-3401 |
| PQID | 2230287179 |
| PQPubID | 2045275 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2230287179 crossref_citationtrail_10_1016_j_buildenv_2019_03_038 crossref_primary_10_1016_j_buildenv_2019_03_038 elsevier_sciencedirect_doi_10_1016_j_buildenv_2019_03_038 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-15 |
| PublicationDateYYYYMMDD | 2019-05-15 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Building and environment |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | ASHRAE (bib4) 2010 Wetter (bib45) 2011; 4 Madakam, Ramaswamy, Tripathi (bib47) 2015; 3 Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (bib10) 2013 Myhrvold, Olsen, Lauridsen (bib9) 1996; 96 Afram, Janabi-Sharifi (bib21) 2014; 67 Kelly (bib1) 2018 Simonini (bib40) 2018 Otterlo, Wiering (bib27) 2012 Dalamagkidis, Kolokotsa, Kalaitzakis, Stavrakakis (bib31) 2007; 42 Han, Zhang, Xu, May, Pan, Wu (bib34) 2018 Gao, Li, Wen (bib35) 2019 Google, Trimble (bib43) 2018 Guglielmetti, Macumber, Long (bib44) 2011 Liao, Chen, Hsu (bib6) 2018; 9 Boduch, Fincher (bib11) 2009 Education (bib19) 2018 Soyguder, Alli (bib24) 2009; 36 Nematchoua, Tchinda, Orosa (bib26) 2014; 114 Hwang (bib3) 2018 Ferry (bib7) 2018 Dounis, Caraiscos (bib23) 2009; 13 Hasselt, Guez, Silver (bib39) 2016 Wei, Wang, Zhu (bib37) 2017 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (bib41) 2016 Osha (bib16) 1988 Hwang (bib5) 2018 Fanger (bib13) 1970 ISO ISO Standard 7730 (bib14) 2005 Koulani, Hviid, Terkildsen (bib25) 2014 Kuo-Liang, Ming-Young, Chien-Sen (bib2) 2017; 9 Claessens, Vanhoudt, Desmedt, Ruelens (bib30) 2018; 159 Crawley, Lawrie, Winkelmann, Buhl, Huang, Pedersen, Strand, Liesen, Fisher, Witte, Glazer (bib42) 2001; 33 EnergyPlus (bib46) 2018 Liu, Henze (bib33) 2004; 1 Zhang, Chong, Pan, Zhang, Lu, Lam (bib38) 2018 Satish, Mendell, Shekhar, Hotchi, Sullivan, Streufert, Fisk (bib8) 2012; 120 W. Australia (bib17) 1995 Fazenda, Veeramachaneni, Lima, O'Reilly (bib32) 2014; 6 EN 15251 (bib12) 2007 Yuan (bib18) 2012 Afroz, Shafiullah, Urmee, Higgins (bib20) 2018; 83 Ashrae (bib15) 2010 Afram, Janabi-Sharifi (bib22) 2014; 72 Cheng, Zhao, Wang, Jiang, Xia, Ding (bib29) 2016; 127 Watkins, Dayan (bib28) 1992; 8 Namatēvs (bib36) 2018; vol.21 Google (10.1016/j.buildenv.2019.03.038_bib43) 2018 Cheng (10.1016/j.buildenv.2019.03.038_bib29) 2016; 127 Watkins (10.1016/j.buildenv.2019.03.038_bib28) 1992; 8 Liu (10.1016/j.buildenv.2019.03.038_bib33) 2004; 1 Mnih (10.1016/j.buildenv.2019.03.038_bib10) 2013 Yuan (10.1016/j.buildenv.2019.03.038_bib18) 2012 Soyguder (10.1016/j.buildenv.2019.03.038_bib24) 2009; 36 Gao (10.1016/j.buildenv.2019.03.038_bib35) 2019 Liao (10.1016/j.buildenv.2019.03.038_bib6) 2018; 9 Hwang (10.1016/j.buildenv.2019.03.038_bib5) 2018 Nematchoua (10.1016/j.buildenv.2019.03.038_bib26) 2014; 114 Madakam (10.1016/j.buildenv.2019.03.038_bib47) 2015; 3 Guglielmetti (10.1016/j.buildenv.2019.03.038_bib44) 2011 Ferry (10.1016/j.buildenv.2019.03.038_bib7) 2018 Kuo-Liang (10.1016/j.buildenv.2019.03.038_bib2) 2017; 9 ISO ISO Standard 7730 (10.1016/j.buildenv.2019.03.038_bib14) 2005 Myhrvold (10.1016/j.buildenv.2019.03.038_bib9) 1996; 96 Fazenda (10.1016/j.buildenv.2019.03.038_bib32) 2014; 6 Hwang (10.1016/j.buildenv.2019.03.038_bib3) 2018 ASHRAE (10.1016/j.buildenv.2019.03.038_bib4) 2010 Afroz (10.1016/j.buildenv.2019.03.038_bib20) 2018; 83 Fanger (10.1016/j.buildenv.2019.03.038_bib13) 1970 Osha (10.1016/j.buildenv.2019.03.038_bib16) 1988 Han (10.1016/j.buildenv.2019.03.038_bib34) 2018 Zhang (10.1016/j.buildenv.2019.03.038_bib38) 2018 Ashrae (10.1016/j.buildenv.2019.03.038_bib15) 2010 Dalamagkidis (10.1016/j.buildenv.2019.03.038_bib31) 2007; 42 Kelly (10.1016/j.buildenv.2019.03.038_bib1) 2018 Abadi (10.1016/j.buildenv.2019.03.038_bib41) 2016 EnergyPlus (10.1016/j.buildenv.2019.03.038_bib46) 2018 Boduch (10.1016/j.buildenv.2019.03.038_bib11) 2009 EN 15251 (10.1016/j.buildenv.2019.03.038_bib12) 2007 Afram (10.1016/j.buildenv.2019.03.038_bib22) 2014; 72 Namatēvs (10.1016/j.buildenv.2019.03.038_bib36) 2018; vol.21 Claessens (10.1016/j.buildenv.2019.03.038_bib30) 2018; 159 Crawley (10.1016/j.buildenv.2019.03.038_bib42) 2001; 33 W. Australia (10.1016/j.buildenv.2019.03.038_bib17) 1995 Education (10.1016/j.buildenv.2019.03.038_bib19) 2018 Afram (10.1016/j.buildenv.2019.03.038_bib21) 2014; 67 Satish (10.1016/j.buildenv.2019.03.038_bib8) 2012; 120 Wetter (10.1016/j.buildenv.2019.03.038_bib45) 2011; 4 Dounis (10.1016/j.buildenv.2019.03.038_bib23) 2009; 13 Koulani (10.1016/j.buildenv.2019.03.038_bib25) 2014 Simonini (10.1016/j.buildenv.2019.03.038_bib40) 2018 Wei (10.1016/j.buildenv.2019.03.038_bib37) 2017 Hasselt (10.1016/j.buildenv.2019.03.038_bib39) 2016 Otterlo (10.1016/j.buildenv.2019.03.038_bib27) 2012 |
| References_xml | – year: 1970 ident: bib13 article-title: a.i.e. engineering. Thermal comfort. Analysis and applications in environmental engineering – volume: 42 start-page: 2686 year: 2007 end-page: 2698 ident: bib31 article-title: Reinforcement learning for energy conservation and comfort in buildings publication-title: Build. Environ. – year: 2018 ident: bib19 article-title: Building Bulletin 101 Guidelines on Ventilation, Thermal Comfort and Indoor Air Quality in Schools – start-page: 247 year: 2018 end-page: 251 ident: bib5 article-title: Occupants' behavior in Taiwan publication-title: Sustainable Houses and Living in the Hot-Humid Climates of Asia – volume: 67 start-page: 507 year: 2014 end-page: 519 ident: bib21 article-title: Review of modeling methods for HVAC systems publication-title: Appl. Therm. Eng. – volume: 36 start-page: 8631 year: 2009 end-page: 8638 ident: bib24 article-title: Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system publication-title: Expert Syst. Appl. – volume: 9 start-page: 587 year: 2018 end-page: 605 ident: bib6 article-title: The non-linear relationship between electricity consumption and temperature in Taiwan: an application for STR (smooth transition regression) model publication-title: Mod. Econ. – year: 2007 ident: bib12 article-title: 2007 Indoor Environmental Input Parameters for Design Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics – start-page: 155 year: 2018 end-page: 163 ident: bib3 article-title: Comfort temperature and preferred temperature in Taiwan publication-title: Sustainable Houses and Living in the Hot-Humid Climates of Asia – volume: vol.21 year: 2018 ident: bib36 publication-title: Deep Reinforcement Learning on HVAC Control – volume: 6 start-page: 675 year: 2014 end-page: 690 ident: bib32 article-title: Using reinforcement learning to optimize occupant comfort and energy usage in HVAC systems publication-title: J. Ambient Intell. Smart Environ. – year: 2014 ident: bib25 article-title: Optimized Damper Control of Pressure and Airflow in Ventilation Systems, 10th Nordic Symposium on Building Physics – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: bib28 publication-title: Q-learning, Machine Learning – year: 2019 ident: bib35 article-title: Energy-Efficient Thermal Comfort Control in Smart Buildings via Deep Reinforcement Learning – volume: 33 start-page: 319 year: 2001 end-page: 331 ident: bib42 article-title: EnergyPlus: creating a new-generation building energy simulation program publication-title: Energy Build. – volume: 120 start-page: 1671 year: 2012 end-page: 1677 ident: bib8 article-title: Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance publication-title: Environ. Health Perspect. – volume: 83 start-page: 64 year: 2018 end-page: 84 ident: bib20 article-title: Modeling techniques used in building HVAC control systems: a review publication-title: Renew. Sustain. Energy Rev. – start-page: 16 year: 2018 end-page: 19 ident: bib7 article-title: The Number-One Concern: Electric Power, Taiwan Business TOPICS – start-page: 2094 year: 2016 end-page: 2100 ident: bib39 article-title: Deep reinforcement learning with double Q-Learning publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence – year: 2012 ident: bib18 article-title: Environmental Protection Agency of the Executive Yuan – volume: 1 year: 2004 ident: bib33 article-title: Investigation of reinforcement learning for building thermal mass control publication-title: Proc. SimBuild – year: 2018 ident: bib1 article-title: Taiwan Weather, Taiwan Climate in Spring, Summer, Autumn and Winter – year: 2018 ident: bib40 article-title: A Free Course in Deep Reinforcement Learning from Beginner to Expert – start-page: 265 year: 2016 end-page: 283 ident: bib41 article-title: TensorFlow: a system for large-scale machine learning publication-title: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation – start-page: 1 year: 2017 end-page: 6 ident: bib37 article-title: Deep reinforcement learning for building HVAC control publication-title: Proceedings of the 54th Annual Design Automation Conference 2017 – year: 1988 ident: bib16 article-title: Niosh 1988 OSHA PEL Project Documentation – year: 1995 ident: bib17 article-title: Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment [NOHSC: 1003 (1995)] – start-page: 3 year: 2012 end-page: 42 ident: bib27 article-title: Reinforcement learning and Markov decision processes publication-title: Reinforcement Learning: State-Of-The-Art – year: 2011 ident: bib44 article-title: OpenStudio: an open source integrated analysis platform publication-title: Proceedings of the 12th Conference of International Building Performance Simulation Association – year: 2018 ident: bib43 article-title: SketchUp, USA – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib22 article-title: Theory and applications of HVAC control systems–A review of model predictive control (MPC) publication-title: Build. Environ. – volume: 159 start-page: 1 year: 2018 end-page: 10 ident: bib30 article-title: Model-free control of thermostatically controlled loads connected to a district heating network publication-title: Energy Build. – volume: 3 start-page: 164 year: 2015 ident: bib47 article-title: Internet of things (IoT): a literature review publication-title: J. Comput. Commun. – volume: 4 start-page: 185 year: 2011 end-page: 203 ident: bib45 article-title: Co-simulation of building energy and control systems with the building controls virtual test bed publication-title: J. Build. Perform. Simulat. – volume: 127 start-page: 43 year: 2016 end-page: 55 ident: bib29 article-title: Satisfaction based Q-learning for integrated lighting and blind control publication-title: Energy Build. – year: 2013 ident: bib10 article-title: Playing Atari with Deep Reinforcement Learning – year: 2018 ident: bib34 article-title: A Review of Reinforcement Learning Methodologies on Control Systems for Building Energy, Working Papers in Transport, Tourism, Information Technology and Microdata Analysis – volume: 9 start-page: 1 year: 2017 end-page: 13 ident: bib2 article-title: Energy consumption analysis for concrete residences—a baseline study in Taiwan publication-title: Sustainability – volume: 114 start-page: 687 year: 2014 end-page: 699 ident: bib26 article-title: Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: a questionnaire-based statistical study publication-title: Appl. Energy – year: 2005 ident: bib14 article-title: 2005 Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria – volume: 96 start-page: 369 year: 1996 end-page: 371 ident: bib9 article-title: Indoor environment in schools–pupils health and performance in regard to CO2 concentrations publication-title: Indoor Air – year: 2018 ident: bib46 article-title: Weather Data by Region – year: 2010 ident: bib4 article-title: ASHRAE Standard 55-2010 Thermal Environmental Conditions for Human Occupancy – year: 2010 ident: bib15 article-title: Ashrae Standard 62.1-2010 Ventilation for Acceptable Indoor Air Quality – year: 2018 ident: bib38 article-title: A deep reinforcement learning approach to using whole building energy model for HVAC optimal control publication-title: 2018 Building Performance Analysis Conference and SimBuild – volume: 13 start-page: 1246 year: 2009 end-page: 1261 ident: bib23 article-title: Advanced control systems engineering for energy and comfort management in a building environment—a review publication-title: Renew. Sustain. Energy Rev. – year: 2009 ident: bib11 article-title: Standards of Human Comfort: Relative and Absolute – year: 1988 ident: 10.1016/j.buildenv.2019.03.038_bib16 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib1 – volume: 67 start-page: 507 issue: 1–2 year: 2014 ident: 10.1016/j.buildenv.2019.03.038_bib21 article-title: Review of modeling methods for HVAC systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.03.055 – volume: 127 start-page: 43 year: 2016 ident: 10.1016/j.buildenv.2019.03.038_bib29 article-title: Satisfaction based Q-learning for integrated lighting and blind control publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.05.067 – start-page: 155 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib3 article-title: Comfort temperature and preferred temperature in Taiwan – year: 2013 ident: 10.1016/j.buildenv.2019.03.038_bib10 – volume: 83 start-page: 64 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib20 article-title: Modeling techniques used in building HVAC control systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.044 – year: 1970 ident: 10.1016/j.buildenv.2019.03.038_bib13 – volume: 96 start-page: 369 year: 1996 ident: 10.1016/j.buildenv.2019.03.038_bib9 article-title: Indoor environment in schools–pupils health and performance in regard to CO2 concentrations publication-title: Indoor Air – volume: 9 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.buildenv.2019.03.038_bib2 article-title: Energy consumption analysis for concrete residences—a baseline study in Taiwan publication-title: Sustainability – year: 2007 ident: 10.1016/j.buildenv.2019.03.038_bib12 – volume: 13 start-page: 1246 issue: 6–7 year: 2009 ident: 10.1016/j.buildenv.2019.03.038_bib23 article-title: Advanced control systems engineering for energy and comfort management in a building environment—a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2008.09.015 – volume: 36 start-page: 8631 issue: 4 year: 2009 ident: 10.1016/j.buildenv.2019.03.038_bib24 article-title: Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.10.033 – year: 2012 ident: 10.1016/j.buildenv.2019.03.038_bib18 – volume: 3 start-page: 164 issue: 05 year: 2015 ident: 10.1016/j.buildenv.2019.03.038_bib47 article-title: Internet of things (IoT): a literature review publication-title: J. Comput. Commun. doi: 10.4236/jcc.2015.35021 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib43 – start-page: 2094 year: 2016 ident: 10.1016/j.buildenv.2019.03.038_bib39 article-title: Deep reinforcement learning with double Q-Learning – volume: 4 start-page: 185 issue: 3 year: 2011 ident: 10.1016/j.buildenv.2019.03.038_bib45 article-title: Co-simulation of building energy and control systems with the building controls virtual test bed publication-title: J. Build. Perform. Simulat. doi: 10.1080/19401493.2010.518631 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib40 – volume: 33 start-page: 319 year: 2001 ident: 10.1016/j.buildenv.2019.03.038_bib42 article-title: EnergyPlus: creating a new-generation building energy simulation program publication-title: Energy Build. doi: 10.1016/S0378-7788(00)00114-6 – volume: 1 issue: 1 year: 2004 ident: 10.1016/j.buildenv.2019.03.038_bib33 article-title: Investigation of reinforcement learning for building thermal mass control publication-title: Proc. SimBuild – volume: 114 start-page: 687 year: 2014 ident: 10.1016/j.buildenv.2019.03.038_bib26 article-title: Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: a questionnaire-based statistical study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.036 – volume: 8 start-page: 279 year: 1992 ident: 10.1016/j.buildenv.2019.03.038_bib28 publication-title: Q-learning, Machine Learning – year: 2010 ident: 10.1016/j.buildenv.2019.03.038_bib4 – year: 1995 ident: 10.1016/j.buildenv.2019.03.038_bib17 – volume: 42 start-page: 2686 issue: 7 year: 2007 ident: 10.1016/j.buildenv.2019.03.038_bib31 article-title: Reinforcement learning for energy conservation and comfort in buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.010 – volume: vol.21 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib36 – volume: 120 start-page: 1671 issue: 12 year: 2012 ident: 10.1016/j.buildenv.2019.03.038_bib8 article-title: Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104789 – year: 2005 ident: 10.1016/j.buildenv.2019.03.038_bib14 – volume: 9 start-page: 587 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib6 article-title: The non-linear relationship between electricity consumption and temperature in Taiwan: an application for STR (smooth transition regression) model publication-title: Mod. Econ. doi: 10.4236/me.2018.94038 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.buildenv.2019.03.038_bib22 article-title: Theory and applications of HVAC control systems–A review of model predictive control (MPC) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.016 – start-page: 3 year: 2012 ident: 10.1016/j.buildenv.2019.03.038_bib27 article-title: Reinforcement learning and Markov decision processes – start-page: 247 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib5 article-title: Occupants' behavior in Taiwan – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib34 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib38 article-title: A deep reinforcement learning approach to using whole building energy model for HVAC optimal control – year: 2010 ident: 10.1016/j.buildenv.2019.03.038_bib15 – volume: 6 start-page: 675 issue: 6 year: 2014 ident: 10.1016/j.buildenv.2019.03.038_bib32 article-title: Using reinforcement learning to optimize occupant comfort and energy usage in HVAC systems publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-140288 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib46 – year: 2011 ident: 10.1016/j.buildenv.2019.03.038_bib44 article-title: OpenStudio: an open source integrated analysis platform – year: 2019 ident: 10.1016/j.buildenv.2019.03.038_bib35 – year: 2009 ident: 10.1016/j.buildenv.2019.03.038_bib11 – start-page: 16 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib7 – year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib19 – year: 2014 ident: 10.1016/j.buildenv.2019.03.038_bib25 – start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2019.03.038_bib37 article-title: Deep reinforcement learning for building HVAC control – start-page: 265 year: 2016 ident: 10.1016/j.buildenv.2019.03.038_bib41 article-title: TensorFlow: a system for large-scale machine learning – volume: 159 start-page: 1 year: 2018 ident: 10.1016/j.buildenv.2019.03.038_bib30 article-title: Model-free control of thermostatically controlled loads connected to a district heating network publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.08.052 |
| SSID | ssj0016934 |
| Score | 2.6186945 |
| Snippet | The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105 |
| SubjectTerms | Air conditioners Air conditioning Air conditioning equipment Air quality Algorithms Artificial intelligence Carbon dioxide Computer simulation Control methods Control systems Deep reinforcement learning Energy consumption Indoor air pollution Indoor air quality Indoor environments Machine learning Optimization Subtropical zones Thermal comfort Ventilation Ventilation fans |
| Title | Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm |
| URI | https://dx.doi.org/10.1016/j.buildenv.2019.03.038 https://www.proquest.com/docview/2230287179 |
| Volume | 155 |
| WOSCitedRecordID | wos000464943500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_tofRJkqZFh94Wt_JDK-sYwpY2lNBDGvZmJEtONuzai7O75H_1D2ZkPeJNH2kOBWOMQIOk-SyNRvONEPpAK2r20SIaJ4xEmaAyEmMFvzutJOdalVWXwPTsGzs5yadT_n0w-Om5MJs5q-v8-pov_6uqoQyUbaizD1B3EAoF8A1KhzeoHd7_pPiJZfM1MBcsHMlyJJwSfKy5sfoWXWaQBRitK5eCSTUmonLWhvj1jWFsjZTWy1GruxSrZedN9HdNnI_E_LxpQeJi63DYXbXdie0x6bxyz4zzXhniUxfhZz0-IRAINgbQEscjKptQDkNmT_Xb1nq9j403Pywq607WOjq6mOmLvi_D0KdoZNmcgcNFItgfp1vzM6W9GTYmtLdYx5b4-cs6YF0Slx-l6TB01MTw2Wy2NpfMduLtOwtiCFP0EXCXhZdTGDkFSeHJH6GdhFGeD9HO4dfJ9DgcXo156rKW2c70iOm_b9GfbKI71kFn8pw-R8_cXgUfWoy9QANdv0RPexksX6GNRRvuow3fog0btGGHNuzQhgEW2KINA9qwQxsGtGGBDdrwFtqwRxsOaHuNfnyenB59idxVHlGZMr6KqrQqs0yAMUsJqZjgROeSa0llomKRZ3GV5EIwLSQHC91caQCWpEoroWMyFvD1Bg3rpta7CMPEQqXOGKGSZEIrCRscLhVNMpGqjJR7iPrBLEqX595ctzIv_q7OPfQp1FvaTC_31uBeV4WzV60dWgAM76174JVbuMnjqgBTnRgPBuP7D27MW_Tk9o86QMNVu9bv0ONys5pdte8dRG8AOXjMFQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+optimization+associated+with+thermal+comfort+and+indoor+air+control+via+a+deep+reinforcement+learning+algorithm&rft.jtitle=Building+and+environment&rft.au=Valladares%2C+William&rft.au=Galindo%2C+Marco&rft.au=Guti%C3%A9rrez%2C+Jorge&rft.au=Wu%2C+Wu-Chieh&rft.date=2019-05-15&rft.issn=0360-1323&rft.volume=155&rft.spage=105&rft.epage=117&rft_id=info:doi/10.1016%2Fj.buildenv.2019.03.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2019_03_038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |