Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm

The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment Jg. 155; S. 105 - 117
Hauptverfasser: Valladares, William, Galindo, Marco, Gutiérrez, Jorge, Wu, Wu-Chieh, Liao, Kuo-Kai, Liao, Jen-Chung, Lu, Kuang-Chin, Wang, Chi-Chuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 15.05.2019
Elsevier BV
Schlagworte:
ISSN:0360-1323, 1873-684X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy. •An artificial intelligence algorithm (AI) is developed for thermal comfort, air quality, and energy consumption.•The developed algorithm is applicable for subtropical environment with cooling-only demand.•The simulations are in line with the experimental results in a laboratory room and a classroom.•The AI agent shows better thermal comfort and much lower CO2 levels than those without AI agent.•AI reveals 4–5% lower energy consumption with superior thermal comfort and 10% lower CO2 levels.
AbstractList The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy. •An artificial intelligence algorithm (AI) is developed for thermal comfort, air quality, and energy consumption.•The developed algorithm is applicable for subtropical environment with cooling-only demand.•The simulations are in line with the experimental results in a laboratory room and a classroom.•The AI agent shows better thermal comfort and much lower CO2 levels than those without AI agent.•AI reveals 4–5% lower energy consumption with superior thermal comfort and 10% lower CO2 levels.
The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming the least amount of energy from air-conditioning units and ventilation fans. The proposed algorithm is first trained with 10 years of simulated past experiences in a subtropical environment in Taiwan. The simulations are carried out in a laboratory room having around 2–10 occupants and a classroom with up to 60 occupants. The proposed agent was first selected among different configurations of itself, with the 10th-year of training data set, then it was tested in real environments. Finally, a comparison between the current control methods and this new strategy is performed. It was found that the proposed AI agent can satisfactorily control and balance the needs of thermal comfort, indoor air quality (in terms of CO2 levels) and energy consumption caused by air-conditioning units and ventilation fans. For both environments, the AI agent can successfully manipulate the indoor environment within the accepted PMV values, ranging from about −0.1 to +0.07 during all the operating time. In regards to the indoor air quality, in terms of the CO2 levels, the results are also satisfactory. By utilizing the agent, the average CO2 levels fall below 800 ppm all the time. The results show that the proposed agent has a superior PMV and 10% lower CO2 levels than the current control system while consuming about 4–5% less energy.
Author Gutiérrez, Jorge
Lu, Kuang-Chin
Wu, Wu-Chieh
Wang, Chi-Chuan
Galindo, Marco
Liao, Kuo-Kai
Liao, Jen-Chung
Valladares, William
Author_xml – sequence: 1
  givenname: William
  surname: Valladares
  fullname: Valladares, William
  email: williamvalladares@outlook.com
  organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
– sequence: 2
  givenname: Marco
  surname: Galindo
  fullname: Galindo, Marco
  email: marcodavidg@gmail.com
  organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
– sequence: 3
  givenname: Jorge
  surname: Gutiérrez
  fullname: Gutiérrez, Jorge
  email: ing.jorge.se@gmail.com
  organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
– sequence: 4
  givenname: Wu-Chieh
  surname: Wu
  fullname: Wu, Wu-Chieh
  email: wcwu@cht.com.tw
  organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan
– sequence: 5
  givenname: Kuo-Kai
  surname: Liao
  fullname: Liao, Kuo-Kai
  email: kai1027@cht.com.tw
  organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan
– sequence: 6
  givenname: Jen-Chung
  surname: Liao
  fullname: Liao, Jen-Chung
  email: renjong@cht.com.tw
  organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan
– sequence: 7
  givenname: Kuang-Chin
  surname: Lu
  fullname: Lu, Kuang-Chin
  email: gcl@cht.com.tw
  organization: Internet of Things Laboratory, Teleco Labs, Chunghwa Telecom Co. Ltd, Taoyuan, Taiwan
– sequence: 8
  givenname: Chi-Chuan
  orcidid: 0000-0002-4451-3401
  surname: Wang
  fullname: Wang, Chi-Chuan
  email: ccwang@mail.nctu.edu.tw
  organization: Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
BookMark eNqFkE1r3DAQhkVJoJu0f6EIevZWH44tQw8tIWkCgV5ayE2MpfFGiy1tR9ot6a-v0k0vuQQGZhDv8wqeM3YSU0TGPkixlkJ2n7brcR9mj_GwVkIOa6HrmDdsJU2vm8609ydsJXQnGqmVfsvOct6KCg66XbHDVUTaPPK0K2EJf6CEFDnknFyAgp7_DuWBlwekBWbu0jIlKhyi5yH6lIhDoPocC6WZHwJw4B5xxwlDrFGHC8bCZwSKIW44zJtEtXF5x04nmDO-f97n7Of11Y_Lm-bu-7fby693jdP9UJpJT65tQShzIcTUwyDQjAOOF6PyEkwrJ2UAeoRxUF3btb3SRno9AUrRQb3O2cdj747Srz3mYrdpT7F-aZXStbeX_VBTn48pRylnwsm6UP6pKARhtlLYJ9N2a_-btk-mrdB1TMW7F_iOwgL0-Dr45QhiVXAISDa7gNGhD4SuWJ_CaxV_AT6Sog0
CitedBy_id crossref_primary_10_1016_j_enbuild_2025_116071
crossref_primary_10_3390_en15103526
crossref_primary_10_1016_j_apenergy_2022_120598
crossref_primary_10_1016_j_buildenv_2025_113501
crossref_primary_10_1109_JIOT_2021_3078462
crossref_primary_10_1109_TIE_2022_3204966
crossref_primary_10_1155_2023_8347598
crossref_primary_10_1016_j_buildenv_2023_110871
crossref_primary_10_3390_buildings14020371
crossref_primary_10_1016_j_applthermaleng_2023_120430
crossref_primary_10_1016_j_apenergy_2020_116131
crossref_primary_10_1063_5_0276384
crossref_primary_10_1016_j_apenergy_2025_125816
crossref_primary_10_1016_j_ijrefrig_2025_04_027
crossref_primary_10_1016_j_jobe_2025_113776
crossref_primary_10_1016_j_enbuild_2023_112779
crossref_primary_10_1016_j_scitotenv_2023_164858
crossref_primary_10_3390_su132111855
crossref_primary_10_3390_su16093627
crossref_primary_10_1016_j_energy_2022_125029
crossref_primary_10_1016_j_jobe_2025_114074
crossref_primary_10_1016_j_buildenv_2021_108026
crossref_primary_10_1016_j_jobe_2024_110491
crossref_primary_10_1016_j_egyr_2021_06_003
crossref_primary_10_3390_buildings12010038
crossref_primary_10_3390_su131810315
crossref_primary_10_3390_su15054303
crossref_primary_10_1016_j_buildenv_2020_106863
crossref_primary_10_1016_j_eswa_2025_128404
crossref_primary_10_1016_j_enbuild_2020_110225
crossref_primary_10_1016_j_egyr_2024_06_053
crossref_primary_10_5572_KOSAE_2023_39_5_615
crossref_primary_10_1016_j_bios_2022_115018
crossref_primary_10_1016_j_buildenv_2023_110766
crossref_primary_10_1016_j_buildenv_2025_112879
crossref_primary_10_1016_j_enbuild_2024_114420
crossref_primary_10_1016_j_buildenv_2021_108495
crossref_primary_10_1016_j_energy_2022_125679
crossref_primary_10_1016_j_jobe_2023_106805
crossref_primary_10_1016_j_apenergy_2022_119382
crossref_primary_10_1109_TSG_2020_2978061
crossref_primary_10_1016_j_enbuild_2025_116247
crossref_primary_10_1016_j_epsr_2022_108617
crossref_primary_10_1016_j_buildenv_2022_109747
crossref_primary_10_1109_JIOT_2022_3163772
crossref_primary_10_1109_TASE_2025_3566390
crossref_primary_10_1109_TAI_2021_3127483
crossref_primary_10_1109_TAI_2024_3366869
crossref_primary_10_1016_j_jobe_2024_109497
crossref_primary_10_1016_j_energy_2024_132440
crossref_primary_10_1016_j_buildenv_2025_112864
crossref_primary_10_1016_j_egyr_2021_12_058
crossref_primary_10_1016_j_decarb_2023_100023
crossref_primary_10_3390_buildings12112007
crossref_primary_10_1016_j_apenergy_2024_124815
crossref_primary_10_1016_j_energy_2025_135824
crossref_primary_10_1016_j_enbuild_2024_114808
crossref_primary_10_1016_j_scs_2021_103445
crossref_primary_10_3390_en13236354
crossref_primary_10_1016_j_apenergy_2022_119206
crossref_primary_10_1016_j_applthermaleng_2022_118552
crossref_primary_10_1016_j_buildenv_2023_110546
crossref_primary_10_1016_j_rser_2020_110436
crossref_primary_10_3390_en16135091
crossref_primary_10_1016_j_egyr_2023_05_225
crossref_primary_10_3390_en18133538
crossref_primary_10_3390_en15176392
crossref_primary_10_1109_JIOT_2019_2957289
crossref_primary_10_1016_j_buildenv_2023_110551
crossref_primary_10_1016_j_rser_2021_110969
crossref_primary_10_1016_j_buildenv_2021_108633
crossref_primary_10_1016_j_enbuild_2021_111771
crossref_primary_10_1016_j_jclepro_2022_131083
crossref_primary_10_1061__ASCE_CO_1943_7862_0002386
crossref_primary_10_1109_JIOT_2022_3175728
crossref_primary_10_1016_j_enbuild_2020_110055
crossref_primary_10_3390_en16145326
crossref_primary_10_1007_s10462_024_10819_x
crossref_primary_10_1016_j_buildenv_2021_108581
crossref_primary_10_1016_j_energy_2023_127627
crossref_primary_10_1016_j_ijrefrig_2024_03_009
crossref_primary_10_1016_j_buildenv_2022_109458
crossref_primary_10_1016_j_asoc_2021_108299
crossref_primary_10_1080_23744731_2022_2043068
crossref_primary_10_3390_buildings13123062
crossref_primary_10_1016_j_enbenv_2020_08_005
crossref_primary_10_3390_s25175265
crossref_primary_10_2478_amns_2024_1827
crossref_primary_10_1007_s10489_022_04320_7
crossref_primary_10_1016_j_enbuild_2021_110860
crossref_primary_10_1016_j_jobe_2023_106213
crossref_primary_10_3390_app9163293
crossref_primary_10_1016_j_buildenv_2025_113123
crossref_primary_10_3390_en16217334
crossref_primary_10_3390_app12115473
crossref_primary_10_3390_buildings13112680
crossref_primary_10_1016_j_enbuild_2021_111439
crossref_primary_10_1016_j_enbuild_2025_115599
crossref_primary_10_1108_SASBE_10_2021_0185
crossref_primary_10_1016_j_buildenv_2021_108692
crossref_primary_10_1016_j_enbuild_2023_113771
crossref_primary_10_1061_JMENEA_MEENG_4883
crossref_primary_10_1051_itmconf_20235202003
crossref_primary_10_3390_pr7120967
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_1016_j_jobe_2024_111493
crossref_primary_10_1016_j_enbuild_2025_116045
crossref_primary_10_1016_j_jclepro_2022_131142
crossref_primary_10_1016_j_jobe_2024_110787
crossref_primary_10_1109_TSG_2022_3158814
crossref_primary_10_1016_j_energy_2024_130344
crossref_primary_10_1016_j_buildenv_2023_110716
crossref_primary_10_1016_j_compchemeng_2020_107077
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_enbuild_2023_113769
crossref_primary_10_1007_s12273_023_1056_7
crossref_primary_10_1088_1742_6596_2042_1_012004
crossref_primary_10_3390_atmos12050629
crossref_primary_10_3992_jgb_19_1_29
crossref_primary_10_1007_s00607_024_01378_8
crossref_primary_10_1016_j_buildenv_2021_108681
crossref_primary_10_3390_su11195417
crossref_primary_10_1016_j_rineng_2025_103950
crossref_primary_10_1016_j_buildenv_2024_112121
crossref_primary_10_1007_s12273_025_1231_0
crossref_primary_10_3390_su14127514
crossref_primary_10_3390_en16207124
crossref_primary_10_1016_j_enbuild_2022_112491
crossref_primary_10_1016_j_jobe_2024_111080
Cites_doi 10.1016/j.applthermaleng.2014.03.055
10.1016/j.enbuild.2016.05.067
10.1016/j.rser.2017.10.044
10.1016/j.rser.2008.09.015
10.1016/j.eswa.2008.10.033
10.4236/jcc.2015.35021
10.1080/19401493.2010.518631
10.1016/S0378-7788(00)00114-6
10.1016/j.apenergy.2013.10.036
10.1016/j.buildenv.2006.07.010
10.1289/ehp.1104789
10.4236/me.2018.94038
10.1016/j.buildenv.2013.11.016
10.3233/AIS-140288
10.1016/j.enbuild.2017.08.052
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV May 15, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV May 15, 2019
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2019.03.038
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
EndPage 117
ExternalDocumentID 10_1016_j_buildenv_2019_03_038
S0360132319302008
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c379t-f3fc44a028500f7a90e8b9eb5b2d1a841f28aa7eab92646472381d3fae106a1d3
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464943500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Wed Aug 13 06:43:43 EDT 2025
Sat Nov 29 07:22:09 EST 2025
Tue Nov 18 21:43:23 EST 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Air conditioning
Deep reinforcement learning
Ventilation
Thermal comfort
Optimization
Indoor air quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-f3fc44a028500f7a90e8b9eb5b2d1a841f28aa7eab92646472381d3fae106a1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4451-3401
PQID 2230287179
PQPubID 2045275
PageCount 13
ParticipantIDs proquest_journals_2230287179
crossref_citationtrail_10_1016_j_buildenv_2019_03_038
crossref_primary_10_1016_j_buildenv_2019_03_038
elsevier_sciencedirect_doi_10_1016_j_buildenv_2019_03_038
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References ASHRAE (bib4) 2010
Wetter (bib45) 2011; 4
Madakam, Ramaswamy, Tripathi (bib47) 2015; 3
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (bib10) 2013
Myhrvold, Olsen, Lauridsen (bib9) 1996; 96
Afram, Janabi-Sharifi (bib21) 2014; 67
Kelly (bib1) 2018
Simonini (bib40) 2018
Otterlo, Wiering (bib27) 2012
Dalamagkidis, Kolokotsa, Kalaitzakis, Stavrakakis (bib31) 2007; 42
Han, Zhang, Xu, May, Pan, Wu (bib34) 2018
Gao, Li, Wen (bib35) 2019
Google, Trimble (bib43) 2018
Guglielmetti, Macumber, Long (bib44) 2011
Liao, Chen, Hsu (bib6) 2018; 9
Boduch, Fincher (bib11) 2009
Education (bib19) 2018
Soyguder, Alli (bib24) 2009; 36
Nematchoua, Tchinda, Orosa (bib26) 2014; 114
Hwang (bib3) 2018
Ferry (bib7) 2018
Dounis, Caraiscos (bib23) 2009; 13
Hasselt, Guez, Silver (bib39) 2016
Wei, Wang, Zhu (bib37) 2017
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (bib41) 2016
Osha (bib16) 1988
Hwang (bib5) 2018
Fanger (bib13) 1970
ISO ISO Standard 7730 (bib14) 2005
Koulani, Hviid, Terkildsen (bib25) 2014
Kuo-Liang, Ming-Young, Chien-Sen (bib2) 2017; 9
Claessens, Vanhoudt, Desmedt, Ruelens (bib30) 2018; 159
Crawley, Lawrie, Winkelmann, Buhl, Huang, Pedersen, Strand, Liesen, Fisher, Witte, Glazer (bib42) 2001; 33
EnergyPlus (bib46) 2018
Liu, Henze (bib33) 2004; 1
Zhang, Chong, Pan, Zhang, Lu, Lam (bib38) 2018
Satish, Mendell, Shekhar, Hotchi, Sullivan, Streufert, Fisk (bib8) 2012; 120
W. Australia (bib17) 1995
Fazenda, Veeramachaneni, Lima, O'Reilly (bib32) 2014; 6
EN 15251 (bib12) 2007
Yuan (bib18) 2012
Afroz, Shafiullah, Urmee, Higgins (bib20) 2018; 83
Ashrae (bib15) 2010
Afram, Janabi-Sharifi (bib22) 2014; 72
Cheng, Zhao, Wang, Jiang, Xia, Ding (bib29) 2016; 127
Watkins, Dayan (bib28) 1992; 8
Namatēvs (bib36) 2018; vol.21
Google (10.1016/j.buildenv.2019.03.038_bib43) 2018
Cheng (10.1016/j.buildenv.2019.03.038_bib29) 2016; 127
Watkins (10.1016/j.buildenv.2019.03.038_bib28) 1992; 8
Liu (10.1016/j.buildenv.2019.03.038_bib33) 2004; 1
Mnih (10.1016/j.buildenv.2019.03.038_bib10) 2013
Yuan (10.1016/j.buildenv.2019.03.038_bib18) 2012
Soyguder (10.1016/j.buildenv.2019.03.038_bib24) 2009; 36
Gao (10.1016/j.buildenv.2019.03.038_bib35) 2019
Liao (10.1016/j.buildenv.2019.03.038_bib6) 2018; 9
Hwang (10.1016/j.buildenv.2019.03.038_bib5) 2018
Nematchoua (10.1016/j.buildenv.2019.03.038_bib26) 2014; 114
Madakam (10.1016/j.buildenv.2019.03.038_bib47) 2015; 3
Guglielmetti (10.1016/j.buildenv.2019.03.038_bib44) 2011
Ferry (10.1016/j.buildenv.2019.03.038_bib7) 2018
Kuo-Liang (10.1016/j.buildenv.2019.03.038_bib2) 2017; 9
ISO ISO Standard 7730 (10.1016/j.buildenv.2019.03.038_bib14) 2005
Myhrvold (10.1016/j.buildenv.2019.03.038_bib9) 1996; 96
Fazenda (10.1016/j.buildenv.2019.03.038_bib32) 2014; 6
Hwang (10.1016/j.buildenv.2019.03.038_bib3) 2018
ASHRAE (10.1016/j.buildenv.2019.03.038_bib4) 2010
Afroz (10.1016/j.buildenv.2019.03.038_bib20) 2018; 83
Fanger (10.1016/j.buildenv.2019.03.038_bib13) 1970
Osha (10.1016/j.buildenv.2019.03.038_bib16) 1988
Han (10.1016/j.buildenv.2019.03.038_bib34) 2018
Zhang (10.1016/j.buildenv.2019.03.038_bib38) 2018
Ashrae (10.1016/j.buildenv.2019.03.038_bib15) 2010
Dalamagkidis (10.1016/j.buildenv.2019.03.038_bib31) 2007; 42
Kelly (10.1016/j.buildenv.2019.03.038_bib1) 2018
Abadi (10.1016/j.buildenv.2019.03.038_bib41) 2016
EnergyPlus (10.1016/j.buildenv.2019.03.038_bib46) 2018
Boduch (10.1016/j.buildenv.2019.03.038_bib11) 2009
EN 15251 (10.1016/j.buildenv.2019.03.038_bib12) 2007
Afram (10.1016/j.buildenv.2019.03.038_bib22) 2014; 72
Namatēvs (10.1016/j.buildenv.2019.03.038_bib36) 2018; vol.21
Claessens (10.1016/j.buildenv.2019.03.038_bib30) 2018; 159
Crawley (10.1016/j.buildenv.2019.03.038_bib42) 2001; 33
W. Australia (10.1016/j.buildenv.2019.03.038_bib17) 1995
Education (10.1016/j.buildenv.2019.03.038_bib19) 2018
Afram (10.1016/j.buildenv.2019.03.038_bib21) 2014; 67
Satish (10.1016/j.buildenv.2019.03.038_bib8) 2012; 120
Wetter (10.1016/j.buildenv.2019.03.038_bib45) 2011; 4
Dounis (10.1016/j.buildenv.2019.03.038_bib23) 2009; 13
Koulani (10.1016/j.buildenv.2019.03.038_bib25) 2014
Simonini (10.1016/j.buildenv.2019.03.038_bib40) 2018
Wei (10.1016/j.buildenv.2019.03.038_bib37) 2017
Hasselt (10.1016/j.buildenv.2019.03.038_bib39) 2016
Otterlo (10.1016/j.buildenv.2019.03.038_bib27) 2012
References_xml – year: 1970
  ident: bib13
  article-title: a.i.e. engineering. Thermal comfort. Analysis and applications in environmental engineering
– volume: 42
  start-page: 2686
  year: 2007
  end-page: 2698
  ident: bib31
  article-title: Reinforcement learning for energy conservation and comfort in buildings
  publication-title: Build. Environ.
– year: 2018
  ident: bib19
  article-title: Building Bulletin 101 Guidelines on Ventilation, Thermal Comfort and Indoor Air Quality in Schools
– start-page: 247
  year: 2018
  end-page: 251
  ident: bib5
  article-title: Occupants' behavior in Taiwan
  publication-title: Sustainable Houses and Living in the Hot-Humid Climates of Asia
– volume: 67
  start-page: 507
  year: 2014
  end-page: 519
  ident: bib21
  article-title: Review of modeling methods for HVAC systems
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 8631
  year: 2009
  end-page: 8638
  ident: bib24
  article-title: Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 587
  year: 2018
  end-page: 605
  ident: bib6
  article-title: The non-linear relationship between electricity consumption and temperature in Taiwan: an application for STR (smooth transition regression) model
  publication-title: Mod. Econ.
– year: 2007
  ident: bib12
  article-title: 2007 Indoor Environmental Input Parameters for Design Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics
– start-page: 155
  year: 2018
  end-page: 163
  ident: bib3
  article-title: Comfort temperature and preferred temperature in Taiwan
  publication-title: Sustainable Houses and Living in the Hot-Humid Climates of Asia
– volume: vol.21
  year: 2018
  ident: bib36
  publication-title: Deep Reinforcement Learning on HVAC Control
– volume: 6
  start-page: 675
  year: 2014
  end-page: 690
  ident: bib32
  article-title: Using reinforcement learning to optimize occupant comfort and energy usage in HVAC systems
  publication-title: J. Ambient Intell. Smart Environ.
– year: 2014
  ident: bib25
  article-title: Optimized Damper Control of Pressure and Airflow in Ventilation Systems, 10th Nordic Symposium on Building Physics
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: bib28
  publication-title: Q-learning, Machine Learning
– year: 2019
  ident: bib35
  article-title: Energy-Efficient Thermal Comfort Control in Smart Buildings via Deep Reinforcement Learning
– volume: 33
  start-page: 319
  year: 2001
  end-page: 331
  ident: bib42
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build.
– volume: 120
  start-page: 1671
  year: 2012
  end-page: 1677
  ident: bib8
  article-title: Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance
  publication-title: Environ. Health Perspect.
– volume: 83
  start-page: 64
  year: 2018
  end-page: 84
  ident: bib20
  article-title: Modeling techniques used in building HVAC control systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 16
  year: 2018
  end-page: 19
  ident: bib7
  article-title: The Number-One Concern: Electric Power, Taiwan Business TOPICS
– start-page: 2094
  year: 2016
  end-page: 2100
  ident: bib39
  article-title: Deep reinforcement learning with double Q-Learning
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– year: 2012
  ident: bib18
  article-title: Environmental Protection Agency of the Executive Yuan
– volume: 1
  year: 2004
  ident: bib33
  article-title: Investigation of reinforcement learning for building thermal mass control
  publication-title: Proc. SimBuild
– year: 2018
  ident: bib1
  article-title: Taiwan Weather, Taiwan Climate in Spring, Summer, Autumn and Winter
– year: 2018
  ident: bib40
  article-title: A Free Course in Deep Reinforcement Learning from Beginner to Expert
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib41
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib37
  article-title: Deep reinforcement learning for building HVAC control
  publication-title: Proceedings of the 54th Annual Design Automation Conference 2017
– year: 1988
  ident: bib16
  article-title: Niosh 1988 OSHA PEL Project Documentation
– year: 1995
  ident: bib17
  article-title: Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment [NOHSC: 1003 (1995)]
– start-page: 3
  year: 2012
  end-page: 42
  ident: bib27
  article-title: Reinforcement learning and Markov decision processes
  publication-title: Reinforcement Learning: State-Of-The-Art
– year: 2011
  ident: bib44
  article-title: OpenStudio: an open source integrated analysis platform
  publication-title: Proceedings of the 12th Conference of International Building Performance Simulation Association
– year: 2018
  ident: bib43
  article-title: SketchUp, USA
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib22
  article-title: Theory and applications of HVAC control systems–A review of model predictive control (MPC)
  publication-title: Build. Environ.
– volume: 159
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib30
  article-title: Model-free control of thermostatically controlled loads connected to a district heating network
  publication-title: Energy Build.
– volume: 3
  start-page: 164
  year: 2015
  ident: bib47
  article-title: Internet of things (IoT): a literature review
  publication-title: J. Comput. Commun.
– volume: 4
  start-page: 185
  year: 2011
  end-page: 203
  ident: bib45
  article-title: Co-simulation of building energy and control systems with the building controls virtual test bed
  publication-title: J. Build. Perform. Simulat.
– volume: 127
  start-page: 43
  year: 2016
  end-page: 55
  ident: bib29
  article-title: Satisfaction based Q-learning for integrated lighting and blind control
  publication-title: Energy Build.
– year: 2013
  ident: bib10
  article-title: Playing Atari with Deep Reinforcement Learning
– year: 2018
  ident: bib34
  article-title: A Review of Reinforcement Learning Methodologies on Control Systems for Building Energy, Working Papers in Transport, Tourism, Information Technology and Microdata Analysis
– volume: 9
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib2
  article-title: Energy consumption analysis for concrete residences—a baseline study in Taiwan
  publication-title: Sustainability
– volume: 114
  start-page: 687
  year: 2014
  end-page: 699
  ident: bib26
  article-title: Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: a questionnaire-based statistical study
  publication-title: Appl. Energy
– year: 2005
  ident: bib14
  article-title: 2005 Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria
– volume: 96
  start-page: 369
  year: 1996
  end-page: 371
  ident: bib9
  article-title: Indoor environment in schools–pupils health and performance in regard to CO2 concentrations
  publication-title: Indoor Air
– year: 2018
  ident: bib46
  article-title: Weather Data by Region
– year: 2010
  ident: bib4
  article-title: ASHRAE Standard 55-2010 Thermal Environmental Conditions for Human Occupancy
– year: 2010
  ident: bib15
  article-title: Ashrae Standard 62.1-2010 Ventilation for Acceptable Indoor Air Quality
– year: 2018
  ident: bib38
  article-title: A deep reinforcement learning approach to using whole building energy model for HVAC optimal control
  publication-title: 2018 Building Performance Analysis Conference and SimBuild
– volume: 13
  start-page: 1246
  year: 2009
  end-page: 1261
  ident: bib23
  article-title: Advanced control systems engineering for energy and comfort management in a building environment—a review
  publication-title: Renew. Sustain. Energy Rev.
– year: 2009
  ident: bib11
  article-title: Standards of Human Comfort: Relative and Absolute
– year: 1988
  ident: 10.1016/j.buildenv.2019.03.038_bib16
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib1
– volume: 67
  start-page: 507
  issue: 1–2
  year: 2014
  ident: 10.1016/j.buildenv.2019.03.038_bib21
  article-title: Review of modeling methods for HVAC systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.03.055
– volume: 127
  start-page: 43
  year: 2016
  ident: 10.1016/j.buildenv.2019.03.038_bib29
  article-title: Satisfaction based Q-learning for integrated lighting and blind control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.05.067
– start-page: 155
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib3
  article-title: Comfort temperature and preferred temperature in Taiwan
– year: 2013
  ident: 10.1016/j.buildenv.2019.03.038_bib10
– volume: 83
  start-page: 64
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib20
  article-title: Modeling techniques used in building HVAC control systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.10.044
– year: 1970
  ident: 10.1016/j.buildenv.2019.03.038_bib13
– volume: 96
  start-page: 369
  year: 1996
  ident: 10.1016/j.buildenv.2019.03.038_bib9
  article-title: Indoor environment in schools–pupils health and performance in regard to CO2 concentrations
  publication-title: Indoor Air
– volume: 9
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.buildenv.2019.03.038_bib2
  article-title: Energy consumption analysis for concrete residences—a baseline study in Taiwan
  publication-title: Sustainability
– year: 2007
  ident: 10.1016/j.buildenv.2019.03.038_bib12
– volume: 13
  start-page: 1246
  issue: 6–7
  year: 2009
  ident: 10.1016/j.buildenv.2019.03.038_bib23
  article-title: Advanced control systems engineering for energy and comfort management in a building environment—a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2008.09.015
– volume: 36
  start-page: 8631
  issue: 4
  year: 2009
  ident: 10.1016/j.buildenv.2019.03.038_bib24
  article-title: Predicting of fan speed for energy saving in HVAC system based on adaptive network based fuzzy inference system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.10.033
– year: 2012
  ident: 10.1016/j.buildenv.2019.03.038_bib18
– volume: 3
  start-page: 164
  issue: 05
  year: 2015
  ident: 10.1016/j.buildenv.2019.03.038_bib47
  article-title: Internet of things (IoT): a literature review
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2015.35021
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib43
– start-page: 2094
  year: 2016
  ident: 10.1016/j.buildenv.2019.03.038_bib39
  article-title: Deep reinforcement learning with double Q-Learning
– volume: 4
  start-page: 185
  issue: 3
  year: 2011
  ident: 10.1016/j.buildenv.2019.03.038_bib45
  article-title: Co-simulation of building energy and control systems with the building controls virtual test bed
  publication-title: J. Build. Perform. Simulat.
  doi: 10.1080/19401493.2010.518631
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib40
– volume: 33
  start-page: 319
  year: 2001
  ident: 10.1016/j.buildenv.2019.03.038_bib42
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(00)00114-6
– volume: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.buildenv.2019.03.038_bib33
  article-title: Investigation of reinforcement learning for building thermal mass control
  publication-title: Proc. SimBuild
– volume: 114
  start-page: 687
  year: 2014
  ident: 10.1016/j.buildenv.2019.03.038_bib26
  article-title: Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: a questionnaire-based statistical study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.036
– volume: 8
  start-page: 279
  year: 1992
  ident: 10.1016/j.buildenv.2019.03.038_bib28
  publication-title: Q-learning, Machine Learning
– year: 2010
  ident: 10.1016/j.buildenv.2019.03.038_bib4
– year: 1995
  ident: 10.1016/j.buildenv.2019.03.038_bib17
– volume: 42
  start-page: 2686
  issue: 7
  year: 2007
  ident: 10.1016/j.buildenv.2019.03.038_bib31
  article-title: Reinforcement learning for energy conservation and comfort in buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.010
– volume: vol.21
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib36
– volume: 120
  start-page: 1671
  issue: 12
  year: 2012
  ident: 10.1016/j.buildenv.2019.03.038_bib8
  article-title: Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104789
– year: 2005
  ident: 10.1016/j.buildenv.2019.03.038_bib14
– volume: 9
  start-page: 587
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib6
  article-title: The non-linear relationship between electricity consumption and temperature in Taiwan: an application for STR (smooth transition regression) model
  publication-title: Mod. Econ.
  doi: 10.4236/me.2018.94038
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.buildenv.2019.03.038_bib22
  article-title: Theory and applications of HVAC control systems–A review of model predictive control (MPC)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.016
– start-page: 3
  year: 2012
  ident: 10.1016/j.buildenv.2019.03.038_bib27
  article-title: Reinforcement learning and Markov decision processes
– start-page: 247
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib5
  article-title: Occupants' behavior in Taiwan
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib34
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib38
  article-title: A deep reinforcement learning approach to using whole building energy model for HVAC optimal control
– year: 2010
  ident: 10.1016/j.buildenv.2019.03.038_bib15
– volume: 6
  start-page: 675
  issue: 6
  year: 2014
  ident: 10.1016/j.buildenv.2019.03.038_bib32
  article-title: Using reinforcement learning to optimize occupant comfort and energy usage in HVAC systems
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-140288
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib46
– year: 2011
  ident: 10.1016/j.buildenv.2019.03.038_bib44
  article-title: OpenStudio: an open source integrated analysis platform
– year: 2019
  ident: 10.1016/j.buildenv.2019.03.038_bib35
– year: 2009
  ident: 10.1016/j.buildenv.2019.03.038_bib11
– start-page: 16
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib7
– year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib19
– year: 2014
  ident: 10.1016/j.buildenv.2019.03.038_bib25
– start-page: 1
  year: 2017
  ident: 10.1016/j.buildenv.2019.03.038_bib37
  article-title: Deep reinforcement learning for building HVAC control
– start-page: 265
  year: 2016
  ident: 10.1016/j.buildenv.2019.03.038_bib41
  article-title: TensorFlow: a system for large-scale machine learning
– volume: 159
  start-page: 1
  year: 2018
  ident: 10.1016/j.buildenv.2019.03.038_bib30
  article-title: Model-free control of thermostatically controlled loads connected to a district heating network
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.052
SSID ssj0016934
Score 2.6186945
Snippet The aim of this work is to propose an artificial intelligence algorithm that maintains thermal comfort and air quality within optimal levels while consuming...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms Air conditioners
Air conditioning
Air conditioning equipment
Air quality
Algorithms
Artificial intelligence
Carbon dioxide
Computer simulation
Control methods
Control systems
Deep reinforcement learning
Energy consumption
Indoor air pollution
Indoor air quality
Indoor environments
Machine learning
Optimization
Subtropical zones
Thermal comfort
Ventilation
Ventilation fans
Title Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm
URI https://dx.doi.org/10.1016/j.buildenv.2019.03.038
https://www.proquest.com/docview/2230287179
Volume 155
WOSCitedRecordID wos000464943500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_tofRJkqZFh94Wt_JDK-sYwpY2lNBDGvZmJEtONuzai7O75H_1D2ZkPeJNH2kOBWOMQIOk-SyNRvONEPpAK2r20SIaJ4xEmaAyEmMFvzutJOdalVWXwPTsGzs5yadT_n0w-Om5MJs5q-v8-pov_6uqoQyUbaizD1B3EAoF8A1KhzeoHd7_pPiJZfM1MBcsHMlyJJwSfKy5sfoWXWaQBRitK5eCSTUmonLWhvj1jWFsjZTWy1GruxSrZedN9HdNnI_E_LxpQeJi63DYXbXdie0x6bxyz4zzXhniUxfhZz0-IRAINgbQEscjKptQDkNmT_Xb1nq9j403Pywq607WOjq6mOmLvi_D0KdoZNmcgcNFItgfp1vzM6W9GTYmtLdYx5b4-cs6YF0Slx-l6TB01MTw2Wy2NpfMduLtOwtiCFP0EXCXhZdTGDkFSeHJH6GdhFGeD9HO4dfJ9DgcXo156rKW2c70iOm_b9GfbKI71kFn8pw-R8_cXgUfWoy9QANdv0RPexksX6GNRRvuow3fog0btGGHNuzQhgEW2KINA9qwQxsGtGGBDdrwFtqwRxsOaHuNfnyenB59idxVHlGZMr6KqrQqs0yAMUsJqZjgROeSa0llomKRZ3GV5EIwLSQHC91caQCWpEoroWMyFvD1Bg3rpta7CMPEQqXOGKGSZEIrCRscLhVNMpGqjJR7iPrBLEqX595ctzIv_q7OPfQp1FvaTC_31uBeV4WzV60dWgAM76174JVbuMnjqgBTnRgPBuP7D27MW_Tk9o86QMNVu9bv0ONys5pdte8dRG8AOXjMFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+optimization+associated+with+thermal+comfort+and+indoor+air+control+via+a+deep+reinforcement+learning+algorithm&rft.jtitle=Building+and+environment&rft.au=Valladares%2C+William&rft.au=Galindo%2C+Marco&rft.au=Guti%C3%A9rrez%2C+Jorge&rft.au=Wu%2C+Wu-Chieh&rft.date=2019-05-15&rft.issn=0360-1323&rft.volume=155&rft.spage=105&rft.epage=117&rft_id=info:doi/10.1016%2Fj.buildenv.2019.03.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2019_03_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon