Parallel algorithms for hierarchical clustering

Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces. O( n 2) algorithms are known for this problem [3,4,11,19]. This paper reviews important results for sequential algorithms and describes previous work on parallel algorithms for hi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel computing Ročník 21; číslo 8; s. 1313 - 1325
Hlavní autor: Olson, Clark F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.1995
Elsevier
Témata:
ISSN:0167-8191, 1872-7336
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces. O( n 2) algorithms are known for this problem [3,4,11,19]. This paper reviews important results for sequential algorithms and describes previous work on parallel algorithms for hierarchical clustering. Parallel algorithms to perform hierarchical clustering using several distance metrics are then described. Optimal PRAM algorithms using n/log n processors are given for the average link, complete link, centroid, median, and minimum variance metrics. Optimal butterfly and tree algorithms using n/log n processors are given for the centroid, median, and minimum variance metrics. Optimal asymptotic speedups are achieved for the best practical algorithm to perform clustering using the single link metric on a n/log n processor PRAM, butterfly, or tree.
ISSN:0167-8191
1872-7336
DOI:10.1016/0167-8191(95)00017-I