The Filtering Based Maximum Likelihood Recursive Least Squares Parameter Estimation Algorithms for a Class of Nonlinear Stochastic Systems with Colored Noise
This paper focuses on the maximum likelihood estimation for bilinear systems in the presence of colored noise. The state variables in the model is eliminated and an input-output expression is provided. The input-output data of the system is filtered by an estimated noise transfer function, and the s...
Saved in:
| Published in: | International journal of control, automation, and systems Vol. 21; no. 1; pp. 151 - 160 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bucheon / Seoul
Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers
01.01.2023
Springer Nature B.V 제어·로봇·시스템학회 |
| Subjects: | |
| ISSN: | 1598-6446, 2005-4092 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper focuses on the maximum likelihood estimation for bilinear systems in the presence of colored noise. The state variables in the model is eliminated and an input-output expression is provided. The input-output data of the system is filtered by an estimated noise transfer function, and the system is transformed into two subsystems. A filtering based maximum likelihood recursive least squares algorithm is proposed to strengthen the identification accuracy and improve computational efficiency. The superior performance of the developed methods are demonstrated by numerical simulations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 http://link.springer.com/article/10.1007/s12555-021-0923-1 |
| ISSN: | 1598-6446 2005-4092 |
| DOI: | 10.1007/s12555-021-0923-1 |