Use of convolutional neural networks for segmenting images of roads from satellite

The article developed a technique for using convolutional neural networks for automatic segmentation of roads in images obtained from satellites with a synthesized aperture. The analysis of the subject area and the relevance of this study. The development of a neural network based on U-net was carri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IOP conference series. Materials Science and Engineering Ročník 971; číslo 5; s. 52048 - 52052
Hlavní autoři: Seliverstov, Ya A, Seliverstov, S A, Naryshkin, R S, Kripak, M N
Médium: Journal Article
Jazyk:angličtina
Vydáno: IOP Publishing 01.11.2020
ISSN:1757-8981, 1757-899X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The article developed a technique for using convolutional neural networks for automatic segmentation of roads in images obtained from satellites with a synthesized aperture. The analysis of the subject area and the relevance of this study. The development of a neural network based on U-net was carried out in Python 3x using the libraries TensorFlow, TensorBoard, Pandas, Numpy, Scipy, Matplotlib, Sklearn. The neural network was trained on a training sample of 1200 images prepared by hand marking. The accuracy of the developed model when testing on prepared samples was 68%. According to the results of the study, conclusions were drawn and prospects for further functional development of the developed tools were determined.
AbstractList The article developed a technique for using convolutional neural networks for automatic segmentation of roads in images obtained from satellites with a synthesized aperture. The analysis of the subject area and the relevance of this study. The development of a neural network based on U-net was carried out in Python 3x using the libraries TensorFlow, TensorBoard, Pandas, Numpy, Scipy, Matplotlib, Sklearn. The neural network was trained on a training sample of 1200 images prepared by hand marking. The accuracy of the developed model when testing on prepared samples was 68%. According to the results of the study, conclusions were drawn and prospects for further functional development of the developed tools were determined.
Author Seliverstov, S A
Naryshkin, R S
Seliverstov, Ya A
Kripak, M N
Author_xml – sequence: 1
  givenname: Ya A
  surname: Seliverstov
  fullname: Seliverstov, Ya A
  email: silver8yr@gmail.com
  organization: Laboratory of Intelligent Transport Systems, Solomenko Institute of Transport Problems of the Russian Academy of Sciences , Russia
– sequence: 2
  givenname: S A
  surname: Seliverstov
  fullname: Seliverstov, S A
  organization: Laboratory of Intelligent Transport Systems, Solomenko Institute of Transport Problems of the Russian Academy of Sciences , Russia
– sequence: 3
  givenname: R S
  surname: Naryshkin
  fullname: Naryshkin, R S
  organization: Department of Programming Technologies, Saint-Petersburg State University , Russia
– sequence: 4
  givenname: M N
  surname: Kripak
  fullname: Kripak, M N
  organization: Automobile Transport Department, Sevastopol State University , Russia
BookMark eNqFkE1LAzEQhoNUsK3-BcnRy7rJbrLJghcp9QMqglrwFrJpUlK3SUlSxX_vrpWCIvQ0A-88w8wzAgPnnQbgHKNLjDjPMaMs43X9mtcM5zRHtECEH4HhPhjse45PwCjGFUIVIwQNwdM8augNVN69-3abrHeyhU5vw3dJHz68RWh8gFEv19ol65bQruVSxx4LXi66OPg1jDLptrVJn4JjI9uoz37qGMxvpi-Tu2z2eHs_uZ5lqmR1ylRFmZSYSmSKkhhGS1IR3ShumgIp1aBaLUiXyQYbSSVRiGqk6kpxgotKmnIMqt1eFXyMQRuxCd1l4VNgJHozon9a9AJEZ0ZQsTPTgVd_QGWT7F9PQdr2MF7scOs3YuW3oTMWD0MX_0APz9NfY2KzMOUX9c-KDg
CitedBy_id crossref_primary_10_3233_JIFS_212766
Cites_doi 10.1109/CTSYS.2017.8109528
10.1109/CTSYS.2017.8109506
10.1016/j.trpro.2017.01.006
10.1109/SCM.2017.7970626
10.1109/TGRS.2016.2645226
10.1088/1757-899X/709/3/033065
10.1016/J.TRPR0.2018.12.122
10.1117/12.2243798
10.1007/s11263-009-0275-4
10.1007/978-3-030-37436-5_30
10.1007/978-3-030-37436-5_33
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1757-899X/971/5/052048
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Use of convolutional neural networks for segmenting images of roads from satellite
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_971_5_052048
MSE_971_5_052048
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c379t-c657aa15a0f234f753464ebc8fb20ccb09cd40f2ab1fa5a4c05e0c96c84126af3
IEDL.DBID O3W
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646359100351&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-8981
IngestDate Tue Nov 18 21:11:11 EST 2025
Sat Nov 29 03:24:25 EST 2025
Thu Jan 07 14:56:12 EST 2021
Wed Aug 21 03:38:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-c657aa15a0f234f753464ebc8fb20ccb09cd40f2ab1fa5a4c05e0c96c84126af3
OpenAccessLink https://iopscience.iop.org/article/10.1088/1757-899X/971/5/052048
PageCount 5
ParticipantIDs iop_journals_10_1088_1757_899X_971_5_052048
crossref_citationtrail_10_1088_1757_899X_971_5_052048
crossref_primary_10_1088_1757_899X_971_5_052048
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Everingham (MSE_971_5_052048bib9) 2010; 88
Kripak (MSE_971_5_052048bib17) 2020; 709
Malygin (MSE_971_5_052048bib15); 1140
Seliverstov (MSE_971_5_052048bib12) 2017
Asaul (MSE_971_5_052048bib1) 2017; 20
Huang (MSE_971_5_052048bib5) 2017
Sherrah (MSE_971_5_052048bib6) 2016
Skorokhodov (MSE_971_5_052048bib14) 2018; 1140
Seliverstov (MSE_971_5_052048bib18) 2019; 18
Krizhevsky (MSE_971_5_052048bib3) 2012
Seliverstov (MSE_971_5_052048bib16) 2017
Geng (MSE_971_5_052048bib7) 2017; 55
Cheng (MSE_971_5_052048bib11) 2019
He (MSE_971_5_052048bib4) 2016
Seliverstov (MSE_971_5_052048bib2) 2017
Seliverstov (MSE_971_5_052048bib13) 2018; 36
Long (MSE_971_5_052048bib8) 2015
Mohammed El Amin (MSE_971_5_052048bib10) 2016
References_xml – year: 2019
  ident: MSE_971_5_052048bib11
  article-title: Recognizing Road From Satellite Images by Structured Neural Net-work, Neurocomputing
– start-page: 211
  year: 2017
  ident: MSE_971_5_052048bib12
  doi: 10.1109/CTSYS.2017.8109528
– start-page: 126
  year: 2017
  ident: MSE_971_5_052048bib16
  doi: 10.1109/CTSYS.2017.8109506
– volume: 18
  start-page: 354
  year: 2019
  ident: MSE_971_5_052048bib18
  article-title: Sentiment analysis of “AUT0STRADA.INF0/RU” users’ comments
  publication-title: Tr. SPIIRAN
– volume: 20
  start-page: 25
  year: 2017
  ident: MSE_971_5_052048bib1
  article-title: The Project of Intellectual Multimodal Transport System
  publication-title: Transportation Research Procedia
  doi: 10.1016/j.trpro.2017.01.006
– year: 2016
  ident: MSE_971_5_052048bib6
  article-title: Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
– start-page: 489
  year: 2017
  ident: MSE_971_5_052048bib2
  doi: 10.1109/SCM.2017.7970626
– volume: 55
  start-page: 2442
  year: 2017
  ident: MSE_971_5_052048bib7
  article-title: Deep Supervised and Contractive Neural Network for SAR Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2645226
– start-page: 3431
  year: 2015
  ident: MSE_971_5_052048bib8
– volume: 709
  start-page: 033065
  year: 2020
  ident: MSE_971_5_052048bib17
  article-title: Analytical support for effective functioning of intelligent manufacturing and transport systems
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/709/3/033065
– volume: 36
  start-page: 689
  year: 2018
  ident: MSE_971_5_052048bib13
  article-title: Developing principles for building transport networks of conflict-free continuous traffic
  publication-title: Transportation research procedia
  doi: 10.1016/J.TRPR0.2018.12.122
– year: 2016
  ident: MSE_971_5_052048bib10
  doi: 10.1117/12.2243798
– volume: 88
  start-page: 303
  year: 2010
  ident: MSE_971_5_052048bib9
  article-title: The pascal visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– start-page: 1097
  year: 2012
  ident: MSE_971_5_052048bib3
– start-page: 770
  year: 2016
  ident: MSE_971_5_052048bib4
– start-page: 2261
  year: 2017
  ident: MSE_971_5_052048bib5
– volume: 1140
  start-page: 339
  year: 2018
  ident: MSE_971_5_052048bib14
  doi: 10.1007/978-3-030-37436-5_30
– volume: 1140
  start-page: 384
  ident: MSE_971_5_052048bib15
  doi: 10.1007/978-3-030-37436-5_33
SSID ssj0067440
Score 2.1634119
Snippet The article developed a technique for using convolutional neural networks for automatic segmentation of roads in images obtained from satellites with a...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 52048
Title Use of convolutional neural networks for segmenting images of roads from satellite
URI https://iopscience.iop.org/article/10.1088/1757-899X/971/5/052048
Volume 971
WOSCitedRecordID wos000646359100351&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: M7S
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7u6kEPvsXnUsGbdJs2j6ZHFUUQH6iLewtJmi4Lul22q7_fSdoV9yAieGohmRAmycyEfPMNQifgEQnJuQkxT1QI8b8KdZrykFmMtbYU51j7YhPp3Z3o97OHBk3oc2HKcWP6u_BbEwXXKmwAcSIChweGNcv6UZbGEYsckoOKFlokgjGH6rsnLzNjzB3_nc-J9DIiniUJ_zjOnH9qwRy-uZurtX-Y6DpabWLN4KwW2EALdrSJVr4xEG6hx15lg7IIHPi82YQg4Ugu_cdDxKsAAtugsgOPLBoNguEbGKHKiU1KlUPzpHwLKuW5Pad2G_WuLp8vrsOmzEJoSJpNQ8NZqlTMFC4SQgu4v1BOrTai0Ak2RuPM5BTalI4LxRQ1GBbSZNwIGidcFWQHtUflyO6ioDBEG66NoZRQzYRQFuIZONk21wouwHuIzZQrTcNB7kphvEr_Fi6EdDqTTmcSdCaZrHW2h6IvuXHNwvGrxCksi2wOZPVr7-O53rdPl3PtcpwX-38a8QAtJ-5m7rMWD1F7Onm3R2jJfEyH1aSDWjfn3Y7fqZ_vV-Ib
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IXrwLb6t4E1q0zZN06PoLoq6ig_cW0jSVATdLtvV3-8k7Yp7EBE8tZBMCDPJPMjMNwCHaBHjOGfaJyySPvr_0ldpyvzEEKKUoSQnyjWbSDsd3u1mtxPQ-qqFKfuN6j_G3xoouGZhkxDHAzR4qFizrBtkaRgkgc3koDzo58UkTFu0EtvI4CZ-GilkZjHwXF2ko-PhqFD4x7XGbNQk7uObyWkv_tNml2Ch8Tm9k5poGSZMbwXmvyERrsLdY2W8svBsEnpzGJHCgl26j0sVrzx0cL3KPLsMo96z9_KGyqiyZINS5jg8KN-8SjqMz6FZg8d26-H03G_aLfg6TrOhr1mSShkmkhRRTAuMYyijRmleqIhorUimc4pjUoWFTCTVBAWqM6Y5DSMmi3gdpnplz2yAV-hYaaa0pjSmKuFcGvRr8IabXEkMhDchGTFY6AaL3LbEeBXuTZxzYfkmLN8E8k0koubbJgRfdP0ajeNXiiMUjWguZvXr7IOx2df3rbFxgXLb-tOK-zB7e9YWVxedy22Yi2yw7goZd2BqOHg3uzCjP4Yv1WDPHdlP0XXmng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+convolutional+neural+networks+for+segmenting+images+of+roads+from+satellite&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Seliverstov%2C+Ya+A&rft.au=Seliverstov%2C+S+A&rft.au=Naryshkin%2C+R+S&rft.au=Kripak%2C+M+N&rft.date=2020-11-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=971&rft.issue=5&rft.spage=52048&rft_id=info:doi/10.1088%2F1757-899X%2F971%2F5%2F052048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_971_5_052048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon