Signal-to-Noise Ratio Improvement for Multiple-Pinhole Imaging Using Supervised Encoder–Decoder Convolutional Neural Network Architecture
Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noi...
Gespeichert in:
| Veröffentlicht in: | Photonics Jg. 9; H. 2; S. 69 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2022
|
| Schlagworte: | |
| ISSN: | 2304-6732, 2304-6732 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noise is generated in the processing of transmission and compression from the unknown latent observation. Thus, it is essential to use image denoising techniques to remove noise and recover the latent observation from the given degraded image. In this research, a supervised encoder–decoder convolution neural network was used to fix image distortion stemming from the limited accuracy of inverse filter methods (Wiener filter, Lucy–Richardson deconvolution, etc.). Particularly, we will correct image degradation that mainly stems from duplications arising from multiple-pinhole array imaging. |
|---|---|
| AbstractList | Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noise is generated in the processing of transmission and compression from the unknown latent observation. Thus, it is essential to use image denoising techniques to remove noise and recover the latent observation from the given degraded image. In this research, a supervised encoder–decoder convolution neural network was used to fix image distortion stemming from the limited accuracy of inverse filter methods (Wiener filter, Lucy–Richardson deconvolution, etc.). Particularly, we will correct image degradation that mainly stems from duplications arising from multiple-pinhole array imaging. |
| Author | Danan, Eliezer Danan, Yossef Shabairou, Nadav Zalevsky, Zeev |
| Author_xml | – sequence: 1 givenname: Eliezer surname: Danan fullname: Danan, Eliezer – sequence: 2 givenname: Nadav surname: Shabairou fullname: Shabairou, Nadav – sequence: 3 givenname: Yossef surname: Danan fullname: Danan, Yossef – sequence: 4 givenname: Zeev orcidid: 0000-0002-4459-3421 surname: Zalevsky fullname: Zalevsky, Zeev |
| BookMark | eNp1UU1v1DAUtFCRKKV3jpY4B_yROPGxWkpZqRRE6dlynOddL1k72M4ibr33yD_kl-DdBQlVwgfP09PM2G_ec3TigweEXlLymnNJ3kzrkIN3JknCCBHyCTplnNSVaDk7-ad-hs5T2pByJOVdU5-ih1u38nqscqhugkuAP-vsAl5upxh2sAWfsQ0Rf5jH7KYRqk_Or8MIhaBXzq_wXdrft_MEcVfkA770JgwQf93_fAuHCi-C34VxLrblIXwDczxA_h7iV3wRzdplMHmO8AI9tXpMcP4Hz9Ddu8svi_fV9cer5eLiujK8lbkyNSVgKDV103dtw602ora9FKRvJJWMWkZ63RhbopF8aNvedNoUAKitIJSfoeXRdwh6o6botjr-UEE7dWiEuFI6ZmdGUNYK20BvgDNa28ZogBZsNzRUdr0AXrxeHb1KXt9mSFltwhzLoEkxwUvujNV7ljiyTAwpRbDKuLwP2ueo3agoUfs9qsd7LELySPj3u_-V_AYHu6n0 |
| CitedBy_id | crossref_primary_10_3390_jimaging8100284 |
| Cites_doi | 10.1364/OL.40.001814 10.1364/COSI.2016.CM2B.1 10.1016/S0169-7439(97)00061-0 10.1364/OPTICA.4.001437 10.1038/nature14539 10.3390/s20226551 10.1038/nature03139 10.1145/1275808.1276462 10.3390/s20113013 10.1364/AO.17.003562 10.1016/j.neunet.2014.09.003 10.1109/72.554195 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KR7 L7M LK8 L~C L~D M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/photonics9020069 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2304-6732 |
| ExternalDocumentID | oai_doaj_org_article_ff6f5ebce3214f5caee7ef8d5198b6e3 10_3390_photonics9020069 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABHFT ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ GX1 HCIFZ IAO KQ8 KZ1 LK8 LMP M7P MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ GS5 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c379t-c410ec11c45b8753fac64fb960b591921f20ba5cf33993d77bc8ac77bee4f6013 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2304-6732 |
| IngestDate | Tue Oct 14 19:02:50 EDT 2025 Fri Jul 25 09:30:20 EDT 2025 Sat Nov 29 07:16:11 EST 2025 Tue Nov 18 22:37:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-c410ec11c45b8753fac64fb960b591921f20ba5cf33993d77bc8ac77bee4f6013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4459-3421 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2633042243?pq-origsite=%requestingapplication% |
| PQID | 2633042243 |
| PQPubID | 2032352 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff6f5ebce3214f5caee7ef8d5198b6e3 proquest_journals_2633042243 crossref_citationtrail_10_3390_photonics9020069 crossref_primary_10_3390_photonics9020069 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Photonics |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Svozil (ref_8) 1997; 39 Fenimore (ref_1) 1978; 17 Eisebitt (ref_4) 2004; 432 Rivenson (ref_13) 2017; 4 ref_3 ref_2 Schmidhuber (ref_9) 2015; 61 Wang (ref_12) 2020; 42 ref_16 ref_15 LeCun (ref_11) 2015; 521 ref_5 Lawrence (ref_10) 1997; 8 Schwarz (ref_14) 2015; 40 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 40 start-page: 1814 year: 2015 ident: ref_14 article-title: Lensless Three-dimensional Integral Imaging using Variable and Time Multiplexed Pinhole Array publication-title: Opt. Lett. doi: 10.1364/OL.40.001814 – ident: ref_15 doi: 10.1364/COSI.2016.CM2B.1 – ident: ref_3 – volume: 39 start-page: 43 year: 1997 ident: ref_8 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – volume: 4 start-page: 1437 year: 2017 ident: ref_13 article-title: Deep learning microscopy publication-title: Optica doi: 10.1364/OPTICA.4.001437 – volume: 521 start-page: 436 year: 2015 ident: ref_11 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_5 doi: 10.3390/s20226551 – volume: 432 start-page: 885 year: 2004 ident: ref_4 article-title: Lensless imaging of magnetic nanostructures by X-ray spectro-holography publication-title: Nature doi: 10.1038/nature03139 – ident: ref_16 – ident: ref_2 doi: 10.1145/1275808.1276462 – volume: 42 start-page: 2809 year: 2020 ident: ref_12 article-title: Deep Learning for Image Super-resolution: A Survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_6 doi: 10.3390/s20113013 – volume: 17 start-page: 3562 year: 1978 ident: ref_1 article-title: Coded aperture imaging with uniformly redundant arrays publication-title: Appl. Opt. doi: 10.1364/AO.17.003562 – volume: 61 start-page: 85 year: 2015 ident: ref_9 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 8 start-page: 98 year: 1997 ident: ref_10 article-title: Face recognition: A convolutional neural-network approach publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554195 |
| SSID | ssj0000913854 |
| Score | 2.1785147 |
| Snippet | Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 69 |
| SubjectTerms | Aperture Artificial neural networks Cameras coded aperture imaging Coders Compression Computer architecture convolutional neural network Corruption Datasets Deep learning Digital imaging Image degradation Neural networks Object recognition Pinholes Projectors Remote sensing Sensors Signal to noise ratio super-resolution Wiener filtering |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TuwwELUQoqC5PK9YXnJBQ2FtsrHjuOQpGlaIh0QX2d4xrISS1SZQ01Pyh3wJHseg5V4JGipH0TixPGN7jj0-Q8heIoDrlI9YbhNgXHPHCmMVS2XCQVqlhNYh2YQcDovbW3Uxk-oLY8I6euCu4_rO5U6AsYAZdZywGkCCK0be8yhMDoHnM5FqBkyFOVilWSF4dy6ZeVzfn9zXLZLNNipBFK2-rEOBrv-_2TgsMafL5E_0DelB16YVMgfVKlmKfiKNo7BZIy9X4zsvyNqaDetxA_QSu5d2-wNhu496V5Sex1hBdjGuMAuuFwgpiWgIE6BXjxOcJxr_6ZMKb7ZP355fjyE80aO6eopG6VuEDB6hCCHj9GDm8GGd3JyeXB-dsZhUgdlMqpZZniZg09RyYRCrOG1z7owHMkYoJEdzg8RoYV2GrstISmMLbX0BwJ1Hb9lfMl_VFWwQCjkYZazW0ivco1FjwDsDmR_UyUgJAT3S_-ji0kbGcUx88VB65IFKKf9VSo_sf9aYdGwb38geotY-5ZAnO7zw1lNG6yl_sp4e2f7QeRkHb1MO8rDJM-DZ5m_8Y4ssDvDORAj13ibz7fQRdsiCfWrHzXQ32O07Sff8DA priority: 102 providerName: Directory of Open Access Journals |
| Title | Signal-to-Noise Ratio Improvement for Multiple-Pinhole Imaging Using Supervised Encoder–Decoder Convolutional Neural Network Architecture |
| URI | https://www.proquest.com/docview/2633042243 https://doaj.org/article/ff6f5ebce3214f5caee7ef8d5198b6e3 |
| Volume | 9 |
| WOSCitedRecordID | wos000765118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: P5Z dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2304-6732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913854 issn: 2304-6732 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXKLgculBYQC2XlQy8crE02dhKfUFu2gkNXUT-kwiWynXFZCSXLJu0RcefIP-SX4HG8CwWpp17iKJlEljwez4zH7xGyHwngKuYVS00EjCtuWa6NZHEWcciMlEIpTzaRzef55aUswvHoNpRVrm2iN9Q92jPWbTsjPKkagxnzyTT1cfiUJ2-XXxlySOFeayDUeECGCLzFB2RYfDgpPm5yLoiBmQve71YmLtqfLD83HULQtjLC2FreWp08iP9_NtovPMfb99vlJ-RxcEDpQa8xO2QL6l2yHZxRGqZ6-5T8OFtcOUHWNWzeLFqgpziGtE9C-Jwidf4uPQkFiaxY1Ei16wQ87xH1tQj07HqJxqh1v57VeHx-9ev7z3fg7-hRU98EzXc9QpgQ3_i6dHrw1w7HM3JxPDs_es8CcwMzSSY7ZngcgYljw4XGgMgqk3KrXbSkhUQENjuNtBLGJugfVVmmTa6MawC4dSFi8pwM6qaGF4RCClpqo1TmtMqFvFqD8zgSZzmiSgoBIzJZj1hpAqw5smt8KV14g2Nc_jvGI_Jm88Wyh_S4Q_YQlWAjh2Dc_kGzuirD3C6tTa0AbQBJn6wwCiADm1fOOc51CsmI7K31owwWoi3_qMPLu1-_Io-meOTCFwztkUG3uobX5KG56RbtakyGh7N5cTr2uYQxVq4WeP02c9dCfBqHKfAbibQakg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKiwSbllfFQAEvYMHCmjzsJF4gVPpQq7ajES1SxSbYznUZCSXDJG3VXfcs-Q8-ii_B10mGAlJ3XbBKlNhW5Jz7sq_vIeRlIICrkBcsMQEwrrhlmTaShWnAITVSCqU82UQ6GmXHx3K8QH70Z2EwrbLXiV5RF5XBNfJhlPjIO-Lx2-lXhqxRuLvaU2i0sNiDi3MXstVvdjfd_30VRdtbRxs7rGMVYCZOZcMMDwMwYWi40OisW2USbrXz5LWQWB3MRoFWwtgYbXeRptpkyrgLALcufInduLfIEudRgBI1Fh_nazpYYzMTvN0Ndd2D4fRz1WCJ21oGGLvLP6yfJwn4xwZ4w7a98r9NyT2y3LnQdL3F_H2yAOUDstK507RTVvVD8u1wcuIasqZio2pSA32PKKTtMopfFaXOY6cHXUolG09KJAt2DTxzE_XZFPTwdIrqtHZDb5VYAGD28_L7Jvg7ulGVZ53sui_CQif-4jPr6fqVPZpH5MONTMkqWSyrEh4TCgloqY1SqZMLF7RrDc5nip3uCwopBAzIsMdEbrrC7MgP8iV3ARqiKP8bRQPyet5j2hYluabtO4TZvB2WE_cPqtlJ3mmn3NrECtAGkLbKCqMAUrBZ4dz7TCcQD8haj8C803F1_ht-T65__YLc2Tk62M_3d0d7T8ndCA-Q-Lz3NbLYzE7hGbltzppJPXvuxYmSTzcN1l8e8mU1 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgN5VUxUMALWLCwJg87iRcItZ2OqAqjEQWpYhNs57qMhJJhMi1ix54lf8Pn9EvwdZzhJXXXBatEiW1Fzrkv-_oeQh5HAriKecUyEwHjiltWaCNZnEccciOlUMqTTeSTSXF0JKdr5Ed_FgbTKnud6BV11RhcIx8mmY-8E54ObUiLmI7Gz-efGDJI4U5rT6fRQeQAvnx24Vv7bH_k_vWTJBnvvdl9wQLDADNpLpfM8DgCE8eGC42Ou1Um41Y7r14LiZXCbBJpJYxN0Y5Xea5NoYy7AHDrQpnUjXuJXM5djInsCVPxbrW-g_U2C8G7nVHXPRrOPzRLLHfbygjjePmHJfSEAf_YA2_kxhv_8_TcINeDa023O1m4SdagvkU2gptNgxJrb5Nvh7Nj15AtGzZpZi3Q14hO2i2v-NVS6jx5-iqkWrLprEYSYdfAMzpRn2VBD0_mqGZbN_RejYUBFmdfv4_A39Hdpj4NMu2-CAug-IvPuKfbv-3d3CFvL2RKNsl63dRwl1DIQEttlMqdvLhgXmtwvlTqdGJUSSFgQIY9PkoTCrYjb8jH0gVuiKjyb0QNyNNVj3lXrOSctjsIuVU7LDPuHzSL4zJordLazArQBpDOygqjAHKwReXc_kJnkA7IVo_GMui-tvwFxXvnv35ErjqMli_3Jwf3ybUEz5X4dPgtsr5cnMADcsWcLmft4qGXLEreXzRWfwJkQW3_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal-to-Noise+Ratio+Improvement+for+Multiple-Pinhole+Imaging+Using+Supervised+Encoder%E2%80%93Decoder+Convolutional+Neural+Network+Architecture&rft.jtitle=Photonics&rft.au=Danan%2C+Eliezer&rft.au=Shabairou%2C+Nadav&rft.au=Danan%2C+Yossef&rft.au=Zalevsky%2C+Zeev&rft.date=2022-02-01&rft.issn=2304-6732&rft.eissn=2304-6732&rft.volume=9&rft.issue=2&rft.spage=69&rft_id=info:doi/10.3390%2Fphotonics9020069&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_photonics9020069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon |