Signal-to-Noise Ratio Improvement for Multiple-Pinhole Imaging Using Supervised Encoder–Decoder Convolutional Neural Network Architecture

Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics Jg. 9; H. 2; S. 69
Hauptverfasser: Danan, Eliezer, Shabairou, Nadav, Danan, Yossef, Zalevsky, Zeev
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2022
Schlagworte:
ISSN:2304-6732, 2304-6732
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noise is generated in the processing of transmission and compression from the unknown latent observation. Thus, it is essential to use image denoising techniques to remove noise and recover the latent observation from the given degraded image. In this research, a supervised encoder–decoder convolution neural network was used to fix image distortion stemming from the limited accuracy of inverse filter methods (Wiener filter, Lucy–Richardson deconvolution, etc.). Particularly, we will correct image degradation that mainly stems from duplications arising from multiple-pinhole array imaging.
AbstractList Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from the latent observation, where the degradation processing is affected by some factors, such as lighting and noise corruption. Specifically, noise is generated in the processing of transmission and compression from the unknown latent observation. Thus, it is essential to use image denoising techniques to remove noise and recover the latent observation from the given degraded image. In this research, a supervised encoder–decoder convolution neural network was used to fix image distortion stemming from the limited accuracy of inverse filter methods (Wiener filter, Lucy–Richardson deconvolution, etc.). Particularly, we will correct image degradation that mainly stems from duplications arising from multiple-pinhole array imaging.
Author Danan, Eliezer
Danan, Yossef
Shabairou, Nadav
Zalevsky, Zeev
Author_xml – sequence: 1
  givenname: Eliezer
  surname: Danan
  fullname: Danan, Eliezer
– sequence: 2
  givenname: Nadav
  surname: Shabairou
  fullname: Shabairou, Nadav
– sequence: 3
  givenname: Yossef
  surname: Danan
  fullname: Danan, Yossef
– sequence: 4
  givenname: Zeev
  orcidid: 0000-0002-4459-3421
  surname: Zalevsky
  fullname: Zalevsky, Zeev
BookMark eNp1UU1v1DAUtFCRKKV3jpY4B_yROPGxWkpZqRRE6dlynOddL1k72M4ibr33yD_kl-DdBQlVwgfP09PM2G_ec3TigweEXlLymnNJ3kzrkIN3JknCCBHyCTplnNSVaDk7-ad-hs5T2pByJOVdU5-ih1u38nqscqhugkuAP-vsAl5upxh2sAWfsQ0Rf5jH7KYRqk_Or8MIhaBXzq_wXdrft_MEcVfkA770JgwQf93_fAuHCi-C34VxLrblIXwDczxA_h7iV3wRzdplMHmO8AI9tXpMcP4Hz9Ddu8svi_fV9cer5eLiujK8lbkyNSVgKDV103dtw602ora9FKRvJJWMWkZ63RhbopF8aNvedNoUAKitIJSfoeXRdwh6o6botjr-UEE7dWiEuFI6ZmdGUNYK20BvgDNa28ZogBZsNzRUdr0AXrxeHb1KXt9mSFltwhzLoEkxwUvujNV7ljiyTAwpRbDKuLwP2ueo3agoUfs9qsd7LELySPj3u_-V_AYHu6n0
CitedBy_id crossref_primary_10_3390_jimaging8100284
Cites_doi 10.1364/OL.40.001814
10.1364/COSI.2016.CM2B.1
10.1016/S0169-7439(97)00061-0
10.1364/OPTICA.4.001437
10.1038/nature14539
10.3390/s20226551
10.1038/nature03139
10.1145/1275808.1276462
10.3390/s20113013
10.1364/AO.17.003562
10.1016/j.neunet.2014.09.003
10.1109/72.554195
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L7M
LK8
L~C
L~D
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/photonics9020069
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2304-6732
ExternalDocumentID oai_doaj_org_article_ff6f5ebce3214f5caee7ef8d5198b6e3
10_3390_photonics9020069
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABHFT
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
GX1
HCIFZ
IAO
KQ8
KZ1
LK8
LMP
M7P
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
GS5
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c379t-c410ec11c45b8753fac64fb960b591921f20ba5cf33993d77bc8ac77bee4f6013
IEDL.DBID PIMPY
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2304-6732
IngestDate Tue Oct 14 19:02:50 EDT 2025
Fri Jul 25 09:30:20 EDT 2025
Sat Nov 29 07:16:11 EST 2025
Tue Nov 18 22:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-c410ec11c45b8753fac64fb960b591921f20ba5cf33993d77bc8ac77bee4f6013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4459-3421
OpenAccessLink https://www.proquest.com/publiccontent/docview/2633042243?pq-origsite=%requestingapplication%
PQID 2633042243
PQPubID 2032352
ParticipantIDs doaj_primary_oai_doaj_org_article_ff6f5ebce3214f5caee7ef8d5198b6e3
proquest_journals_2633042243
crossref_citationtrail_10_3390_photonics9020069
crossref_primary_10_3390_photonics9020069
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Photonics
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Svozil (ref_8) 1997; 39
Fenimore (ref_1) 1978; 17
Eisebitt (ref_4) 2004; 432
Rivenson (ref_13) 2017; 4
ref_3
ref_2
Schmidhuber (ref_9) 2015; 61
Wang (ref_12) 2020; 42
ref_16
ref_15
LeCun (ref_11) 2015; 521
ref_5
Lawrence (ref_10) 1997; 8
Schwarz (ref_14) 2015; 40
ref_7
ref_6
References_xml – ident: ref_7
– volume: 40
  start-page: 1814
  year: 2015
  ident: ref_14
  article-title: Lensless Three-dimensional Integral Imaging using Variable and Time Multiplexed Pinhole Array
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001814
– ident: ref_15
  doi: 10.1364/COSI.2016.CM2B.1
– ident: ref_3
– volume: 39
  start-page: 43
  year: 1997
  ident: ref_8
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 4
  start-page: 1437
  year: 2017
  ident: ref_13
  article-title: Deep learning microscopy
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001437
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_11
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_5
  doi: 10.3390/s20226551
– volume: 432
  start-page: 885
  year: 2004
  ident: ref_4
  article-title: Lensless imaging of magnetic nanostructures by X-ray spectro-holography
  publication-title: Nature
  doi: 10.1038/nature03139
– ident: ref_16
– ident: ref_2
  doi: 10.1145/1275808.1276462
– volume: 42
  start-page: 2809
  year: 2020
  ident: ref_12
  article-title: Deep Learning for Image Super-resolution: A Survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_6
  doi: 10.3390/s20113013
– volume: 17
  start-page: 3562
  year: 1978
  ident: ref_1
  article-title: Coded aperture imaging with uniformly redundant arrays
  publication-title: Appl. Opt.
  doi: 10.1364/AO.17.003562
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_9
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 8
  start-page: 98
  year: 1997
  ident: ref_10
  article-title: Face recognition: A convolutional neural-network approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554195
SSID ssj0000913854
Score 2.1785147
Snippet Digital image devices have been widely applied in many fields, such as individual recognition and remote sensing. The captured image is a degraded image from...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 69
SubjectTerms Aperture
Artificial neural networks
Cameras
coded aperture imaging
Coders
Compression
Computer architecture
convolutional neural network
Corruption
Datasets
Deep learning
Digital imaging
Image degradation
Neural networks
Object recognition
Pinholes
Projectors
Remote sensing
Sensors
Signal to noise ratio
super-resolution
Wiener filtering
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TuwwELUQoqC5PK9YXnJBQ2FtsrHjuOQpGlaIh0QX2d4xrISS1SZQ01Pyh3wJHseg5V4JGipH0TixPGN7jj0-Q8heIoDrlI9YbhNgXHPHCmMVS2XCQVqlhNYh2YQcDovbW3Uxk-oLY8I6euCu4_rO5U6AsYAZdZywGkCCK0be8yhMDoHnM5FqBkyFOVilWSF4dy6ZeVzfn9zXLZLNNipBFK2-rEOBrv-_2TgsMafL5E_0DelB16YVMgfVKlmKfiKNo7BZIy9X4zsvyNqaDetxA_QSu5d2-wNhu496V5Sex1hBdjGuMAuuFwgpiWgIE6BXjxOcJxr_6ZMKb7ZP355fjyE80aO6eopG6VuEDB6hCCHj9GDm8GGd3JyeXB-dsZhUgdlMqpZZniZg09RyYRCrOG1z7owHMkYoJEdzg8RoYV2GrstISmMLbX0BwJ1Hb9lfMl_VFWwQCjkYZazW0ivco1FjwDsDmR_UyUgJAT3S_-ji0kbGcUx88VB65IFKKf9VSo_sf9aYdGwb38geotY-5ZAnO7zw1lNG6yl_sp4e2f7QeRkHb1MO8rDJM-DZ5m_8Y4ssDvDORAj13ibz7fQRdsiCfWrHzXQ32O07Sff8DA
  priority: 102
  providerName: Directory of Open Access Journals
Title Signal-to-Noise Ratio Improvement for Multiple-Pinhole Imaging Using Supervised Encoder–Decoder Convolutional Neural Network Architecture
URI https://www.proquest.com/docview/2633042243
https://doaj.org/article/ff6f5ebce3214f5caee7ef8d5198b6e3
Volume 9
WOSCitedRecordID wos000765118400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: P5Z
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2304-6732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913854
  issn: 2304-6732
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXKLgculBYQC2XlQy8crE02dhKfUFu2gkNXUT-kwiWynXFZCSXLJu0RcefIP-SX4HG8CwWpp17iKJlEljwez4zH7xGyHwngKuYVS00EjCtuWa6NZHEWcciMlEIpTzaRzef55aUswvHoNpRVrm2iN9Q92jPWbTsjPKkagxnzyTT1cfiUJ2-XXxlySOFeayDUeECGCLzFB2RYfDgpPm5yLoiBmQve71YmLtqfLD83HULQtjLC2FreWp08iP9_NtovPMfb99vlJ-RxcEDpQa8xO2QL6l2yHZxRGqZ6-5T8OFtcOUHWNWzeLFqgpziGtE9C-Jwidf4uPQkFiaxY1Ei16wQ87xH1tQj07HqJxqh1v57VeHx-9ev7z3fg7-hRU98EzXc9QpgQ3_i6dHrw1w7HM3JxPDs_es8CcwMzSSY7ZngcgYljw4XGgMgqk3KrXbSkhUQENjuNtBLGJugfVVmmTa6MawC4dSFi8pwM6qaGF4RCClpqo1TmtMqFvFqD8zgSZzmiSgoBIzJZj1hpAqw5smt8KV14g2Nc_jvGI_Jm88Wyh_S4Q_YQlWAjh2Dc_kGzuirD3C6tTa0AbQBJn6wwCiADm1fOOc51CsmI7K31owwWoi3_qMPLu1-_Io-meOTCFwztkUG3uobX5KG56RbtakyGh7N5cTr2uYQxVq4WeP02c9dCfBqHKfAbibQakg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKiwSbllfFQAEvYMHCmjzsJF4gVPpQq7ajES1SxSbYznUZCSXDJG3VXfcs-Q8-ii_B10mGAlJ3XbBKlNhW5Jz7sq_vIeRlIICrkBcsMQEwrrhlmTaShWnAITVSCqU82UQ6GmXHx3K8QH70Z2EwrbLXiV5RF5XBNfJhlPjIO-Lx2-lXhqxRuLvaU2i0sNiDi3MXstVvdjfd_30VRdtbRxs7rGMVYCZOZcMMDwMwYWi40OisW2USbrXz5LWQWB3MRoFWwtgYbXeRptpkyrgLALcufInduLfIEudRgBI1Fh_nazpYYzMTvN0Ndd2D4fRz1WCJ21oGGLvLP6yfJwn4xwZ4w7a98r9NyT2y3LnQdL3F_H2yAOUDstK507RTVvVD8u1wcuIasqZio2pSA32PKKTtMopfFaXOY6cHXUolG09KJAt2DTxzE_XZFPTwdIrqtHZDb5VYAGD28_L7Jvg7ulGVZ53sui_CQif-4jPr6fqVPZpH5MONTMkqWSyrEh4TCgloqY1SqZMLF7RrDc5nip3uCwopBAzIsMdEbrrC7MgP8iV3ARqiKP8bRQPyet5j2hYluabtO4TZvB2WE_cPqtlJ3mmn3NrECtAGkLbKCqMAUrBZ4dz7TCcQD8haj8C803F1_ht-T65__YLc2Tk62M_3d0d7T8ndCA-Q-Lz3NbLYzE7hGbltzppJPXvuxYmSTzcN1l8e8mU1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgN5VUxUMALWLCwJg87iRcItZ2OqAqjEQWpYhNs57qMhJJhMi1ix54lf8Pn9EvwdZzhJXXXBatEiW1Fzrkv-_oeQh5HAriKecUyEwHjiltWaCNZnEccciOlUMqTTeSTSXF0JKdr5Ed_FgbTKnud6BV11RhcIx8mmY-8E54ObUiLmI7Gz-efGDJI4U5rT6fRQeQAvnx24Vv7bH_k_vWTJBnvvdl9wQLDADNpLpfM8DgCE8eGC42Ou1Um41Y7r14LiZXCbBJpJYxN0Y5Xea5NoYy7AHDrQpnUjXuJXM5djInsCVPxbrW-g_U2C8G7nVHXPRrOPzRLLHfbygjjePmHJfSEAf_YA2_kxhv_8_TcINeDa023O1m4SdagvkU2gptNgxJrb5Nvh7Nj15AtGzZpZi3Q14hO2i2v-NVS6jx5-iqkWrLprEYSYdfAMzpRn2VBD0_mqGZbN_RejYUBFmdfv4_A39Hdpj4NMu2-CAug-IvPuKfbv-3d3CFvL2RKNsl63dRwl1DIQEttlMqdvLhgXmtwvlTqdGJUSSFgQIY9PkoTCrYjb8jH0gVuiKjyb0QNyNNVj3lXrOSctjsIuVU7LDPuHzSL4zJordLazArQBpDOygqjAHKwReXc_kJnkA7IVo_GMui-tvwFxXvnv35ErjqMli_3Jwf3ybUEz5X4dPgtsr5cnMADcsWcLmft4qGXLEreXzRWfwJkQW3_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signal-to-Noise+Ratio+Improvement+for+Multiple-Pinhole+Imaging+Using+Supervised+Encoder%E2%80%93Decoder+Convolutional+Neural+Network+Architecture&rft.jtitle=Photonics&rft.au=Danan%2C+Eliezer&rft.au=Shabairou%2C+Nadav&rft.au=Danan%2C+Yossef&rft.au=Zalevsky%2C+Zeev&rft.date=2022-02-01&rft.issn=2304-6732&rft.eissn=2304-6732&rft.volume=9&rft.issue=2&rft.spage=69&rft_id=info:doi/10.3390%2Fphotonics9020069&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_photonics9020069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon