Two-Stage Robust Network Flow and Design Under Demand Uncertainty

We describe a two-stage robust optimization approach for solving network flow and design problems with uncertain demand. In two-stage network optimization, one defers a subset of the flow decisions until after the realization of the uncertain demand. Availability of such a recourse action allows one...

Full description

Saved in:
Bibliographic Details
Published in:Operations research Vol. 55; no. 4; pp. 662 - 673
Main Authors: Atamturk, Alper, Zhang, Muhong
Format: Journal Article
Language:English
Published: Linthicum, MD INFORMS 01.07.2007
Institute for Operations Research and the Management Sciences
Subjects:
ISSN:0030-364X, 1526-5463
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a two-stage robust optimization approach for solving network flow and design problems with uncertain demand. In two-stage network optimization, one defers a subset of the flow decisions until after the realization of the uncertain demand. Availability of such a recourse action allows one to come up with less conservative solutions compared to single-stage optimization. However, this advantage often comes at a price: two-stage optimization is, in general, significantly harder than single-stage optimization. For network flow and design under demand uncertainty, we give a characterization of the first-stage robust decisions with an exponential number of constraints and prove that the corresponding separation problem is -hard even for a network flow problem on a bipartite graph. We show, however, that if the second-stage network topology is totally ordered or an arborescence, then the separation problem is tractable. Unlike single-stage robust optimization under demand uncertainty, two-stage robust optimization allows one to control conservatism of the solutions by means of an allowed "budget for demand uncertainty." Using a budget of uncertainty, we provide an upper bound on the probability of infeasibility of a robust solution for a random demand vector. We generalize the approach to multicommodity network flow and design, and give applications to lot-sizing and location-transportation problems. By projecting out second-stage flow variables, we define an upper bounding problem for the two-stage min-max-min optimization problem. Finally, we present computational results comparing the proposed two-stage robust optimization approach with single-stage robust optimization as well as scenario-based two-stage stochastic optimization.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1070.0428