Assembly line balancing and optimal scheduling for flexible manufacturing workshop

In order to adapt to the changing and personalized market demand, the traditional single-type mass production manufacturing mode is gradually changing to multi-species small batch personalized custom production, flexible manufacturing in machinery manufacturing occupies an increasingly important pos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mechanical science and technology Ročník 38; číslo 6; s. 2757 - 2772
Hlavní autoři: Hou, Wen, Zhang, Song
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul Korean Society of Mechanical Engineers 01.06.2024
Springer Nature B.V
대한기계학회
Témata:
ISSN:1738-494X, 1976-3824
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to adapt to the changing and personalized market demand, the traditional single-type mass production manufacturing mode is gradually changing to multi-species small batch personalized custom production, flexible manufacturing in machinery manufacturing occupies an increasingly important position. However, complexity, uncertainty, multi-objective and multi-constraints are the problems faced by production scheduling in flexible manufacturing workshop, which restricts the intelligent transformation of enterprises. This paper takes an assembly shop as the research object, and carries out research on assembly line balancing and multi-automatic guided vehicle (AGV) scheduling problems in shop production. Firstly, for the multi-objective assembly line balancing problem with fluctuating demand, the relevant assembly line model is established by changing only the number of workstations and replanning the boundary, and an improved multi-objective whale optimization algorithm is proposed to reduce the rebalancing cost of the assembly line. Secondly, the multi-AGV dynamic scheduling problem with corresponding scheduling objective weights according to the current number of AGVs is analyzed, and a mathematical model is established to maximize the value of the objective function by considering a variety of factors under the premise of meeting the production requirements of the assembly line. Then, a scheduling rule selection method based on neural network and knowledge base is proposed to determine the optimal combination of scheduling rules for different system states. Finally, a simulation analysis of an assembly workshop example is carried out to verify the feasibility and effectiveness of the proposed method in solving the assembly line balancing problem and the multi-AGV scheduling problem, which improves the manufacturing efficiency and the resilience of the workshop.
AbstractList In order to adapt to the changing and personalized market demand, the traditional single-type mass production manufacturing mode is gradually changing to multi-species small batch personalized custom production, flexible manufacturing in machinery manufacturing occupies an increasingly important position. However, complexity, uncertainty, multi-objective and multi-constraints are the problems faced by production scheduling in flexible manufacturing workshop, which restricts the intelligent transformation of enterprises. This paper takes an assembly shop as the research object, and carries out research on assembly line balancing and multi-automatic guided vehicle (AGV) scheduling problems in shop production. Firstly, for the multi-objective assembly line balancing problem with fluctuating demand, the relevant assembly line model is established by changing only the number of workstations and replanning the boundary, and an improved multi-objective whale optimization algorithm is proposed to reduce the rebalancing cost of the assembly line. Secondly, the multi-AGV dynamic scheduling problem with corresponding scheduling objective weights according to the current number of AGVs is analyzed, and a mathematical model is established to maximize the value of the objective function by considering a variety of factors under the premise of meeting the production requirements of the assembly line. Then, a scheduling rule selection method based on neural network and knowledge base is proposed to determine the optimal combination of scheduling rules for different system states. Finally, a simulation analysis of an assembly workshop example is carried out to verify the feasibility and effectiveness of the proposed method in solving the assembly line balancing problem and the multi-AGV scheduling problem, which improves the manufacturing efficiency and the resilience of the workshop.
In order to adapt to the changing and personalized market demand, the traditional single-type mass production manufacturing mode is gradually changing to multi-species small batch personalized custom production, flexible manufacturing in machinery manufacturing occupies an increasingly important position. However, complexity, uncertainty, multiobjective and multi-constraints are the problems faced by production scheduling in flexible manufacturing workshop, which restricts the intelligent transformation of enterprises. This paper takes an assembly shop as the research object, and carries out research on assembly line balancing and multi-automatic guided vehicle (AGV) scheduling problems in shop production. Firstly, for the multi-objective assembly line balancing problem with fluctuating demand, the relevant assembly line model is established by changing only the number of workstations and replanning the boundary, and an improved multi-objective whale optimization algorithm is proposed to reduce the rebalancing cost of the assembly line. Secondly, the multi-AGV dynamic scheduling problem with corresponding scheduling objective weights according to the current number of AGVs is analyzed, and a mathematical model is established to maximize the value of the objective function by considering a variety of factors under the premise of meeting the production requirements of the assembly line. Then, a scheduling rule selection method based on neural network and knowledge base is proposed to determine the optimal combination of scheduling rules for different system states. Finally, a simulation analysis of an assembly workshop example is carried out to verify the feasibility and effectiveness of the proposed method in solving the assembly line balancing problem and the multi-AGV scheduling problem, which improves the manufacturing efficiency and the resilience of the workshop. KCI Citation Count: 0
Author Zhang, Song
Hou, Wen
Author_xml – sequence: 1
  givenname: Wen
  surname: Hou
  fullname: Hou, Wen
  organization: School of Mechanical Engineering, Shandong University, Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University
– sequence: 2
  givenname: Song
  surname: Zhang
  fullname: Zhang, Song
  email: zhangsong@sdu.edu.cn
  organization: School of Mechanical Engineering, Shandong University, Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003086826$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UctKAzEUDaLg8wPcDbgTRvOYSZplEV9QEKSCu5BJkxqbJmMyg_bvzXQEQbCre7g5596Te47Bvg9eA3CO4BWCkF0nhDGkJcRVuQV4DxwhzmhJJrjaz5iRSVnx6vUQHKf0DiHFFUJH4Hmakl43blM463XRSCe9sn5ZSL8oQtvZtXRFUm960buhbUIsjNNftnG6WEvfG6m6Pg5PnyGu0ltoT8GBkS7ps596Al7ubuc3D-Xs6f7xZjorFWG8KxkzvIaLhaQNZhAb2Mi6IZo3lMKaKqOxQhRqTpBWda1kpWnFNDUwf8hwJskJuBzn-mjESlkRpN3WZRCrKKbP80eBYA05ZpNMvhjJbQwfvU6deA999NmfIJjVJFsi1U4WZDWniCGcWWxkqRhSitoIZTvZ2eC7KK3LS8WQiRgzETkTsQWDEv1RtjFfOG52avCoSe1wZh1_Pf0v-galbZ84
CitedBy_id crossref_primary_10_1371_journal_pone_0327217
crossref_primary_10_1016_j_cie_2024_110795
crossref_primary_10_1007_s00170_025_15987_w
Cites_doi 10.1108/AA-04-2019-0064
10.1016/j.aei.2021.101506
10.1016/j.rcim.2021.102198
10.1016/j.jmsy.2021.02.019
10.1016/j.jmsy.2022.06.017
10.1016/j.asoc.2015.09.027
10.1007/s00500-019-04609-9
10.1016/j.procir.2022.05.172
10.1080/00207543.2020.1818000
10.1016/j.cie.2021.107685
10.1016/j.asoc.2020.106945
10.1016/j.cie.2018.03.039
10.1108/AA-03-2019-0057
10.1016/j.swevo.2023.101227
10.1016/j.cie.2023.108993
10.1016/j.cie.2020.106540
10.1007/s12206-015-0242-7
10.1016/j.advengsoft.2016.01.008
10.1016/j.jmsy.2023.01.001
10.1016/j.cie.2020.106749
10.1016/j.asoc.2017.07.062
10.1016/j.asoc.2019.105552
10.1108/AA-07-2018-106
10.1016/j.procs.2022.07.074
10.1287/ijoc.1110.0462
10.1016/j.ejor.2020.01.032
10.1080/0305215X.2020.1741569
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
7TB
8FD
FR3
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
ACYCR
DOI 10.1007/s12206-024-2206-2
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Technology Research Database
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 2772
ExternalDocumentID oai_kci_go_kr_ARTI_10509278
10_1007_s12206_024_2206_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7TB
8FD
FR3
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ACYCR
ID FETCH-LOGICAL-c379t-77f950dda6b2702f0ba5b3e9b66056cfe2c160e931ec55ca4e647e6f0824f97a3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001243359000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1738-494X
IngestDate Thu Jul 10 08:45:22 EDT 2025
Thu Nov 27 04:23:03 EST 2025
Thu Sep 18 00:00:34 EDT 2025
Tue Nov 18 22:23:12 EST 2025
Sat Nov 29 06:31:44 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Intelligent manufacturing
Dynamic scheduling
Assembly line balancing
Neural network
Whale optimization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-77f950dda6b2702f0ba5b3e9b66056cfe2c160e931ec55ca4e647e6f0824f97a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3275337934
PQPubID 326249
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10509278
proquest_journals_3275337934
proquest_journals_3075961712
crossref_citationtrail_10_1007_s12206_024_2206_2
crossref_primary_10_1007_s12206_024_2206_2
springer_journals_10_1007_s12206_024_2206_2
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2024
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References Li, Chen, Gao, Liu, Gao, Dai (CR1) 2022; 51
Mirjalili, Lewis (CR28) 2016; 95
Li, Fuad (CR12) 2021; 53
Shiue, Lee, Su (CR20) 2018; 125
Hu, Jia, He, Fu, Liu (CR25) 2020; 149
Schmid (CR2) 2021
Sarkar, Park (CR15) 2023; 177
Çil, Mete, Özceylan, Agpak (CR11) 2017; 61
Li, Kucukkoc, Tang (CR9) 2020; 24
Liu, Yang, Lei (CR5) 2021; 59
Navas-Barrios, Riquett-Rodríguez, Macías-Jiménez, Romero-Conrado (CR27) 2022; 203
Rahman, Janardhanan, Nielsen (CR21) 2020; 40
Wang, Wu, Xing, Chen, Zhang, Niu (CR23) 2022; 64
Nourmohammadi, Fathi, Ng, Mahmoodi (CR14) 2022; 107
Yang, Ba, Xu, Li, Liu, Gao (CR4) 2020; 40
Rahman, Nielsen, Nielsen, Izabela (CR19) 2019; 82
Driss, Mouss, Laggoun (CR18) 2015; 29
Zou, Pan, Tasgetiren (CR16) 2020; 99
Lopes, Michels, Sikora, Brauner, Magato (CR6) 2021; 162
Li, Sang, Li, Han, Gao, Zheng, Liu (CR22) 2023; 77
Sewell, Jacobson (CR8) 2012; 24
Li, Peng, Kuchkkoc, Tand, Wei (CR7) 2020; 146
Serin, Mete, Çelik (CR3) 2019; 39
Yan, Liu, Zhang, Zhang, Zhang, Yang (CR17) 2021; 72
Li, Kucukkoc, Zhang (CR10) 2020; 284
Álvarez-Miranda, Chace, Pereira (CR13) 2021; 59
Choe, Kim, Ryu (CR24) 2016; 38
Albus, Huber (CR26) 2023; 67
A Nourmohammadi (2206_CR14) 2022; 107
Y R Shiue (2206_CR20) 2018; 125
Z Li (2206_CR10) 2020; 284
X Wang (2206_CR23) 2022; 64
E Navas-Barrios (2206_CR27) 2022; 203
Y Li (2206_CR7) 2020; 146
H F Rahman (2206_CR19) 2019; 82
T C Lopes (2206_CR6) 2021; 162
E C Sewell (2206_CR8) 2012; 24
W Q Zou (2206_CR16) 2020; 99
M Albus (2206_CR26) 2023; 67
Z-K Li (2206_CR22) 2023; 77
M Sarkar (2206_CR15) 2023; 177
H F Rahman (2206_CR21) 2020; 40
S Mirjalili (2206_CR28) 2016; 95
N Schmid (2206_CR2) 2021
N R Li (2206_CR12) 2021; 53
E Álvarez-Miranda (2206_CR13) 2021; 59
F Serin (2206_CR3) 2019; 39
R Choe (2206_CR24) 2016; 38
L Li (2206_CR1) 2022; 51
J Yan (2206_CR17) 2021; 72
X Liu (2206_CR5) 2021; 59
Z Li (2206_CR9) 2020; 24
M Yang (2206_CR4) 2020; 40
Z A Çil (2206_CR11) 2017; 61
I Driss (2206_CR18) 2015; 29
H Hu (2206_CR25) 2020; 149
References_xml – volume: 40
  start-page: 273
  year: 2020
  end-page: 282
  ident: CR4
  article-title: Optimization of a multi-constraint two-sided assembly line balancing problem using an improved imperialist competitive algorithm
  publication-title: Assembly Automation
  doi: 10.1108/AA-04-2019-0064
– volume: 51
  start-page: 101506
  year: 2022
  ident: CR1
  article-title: Research on optimizing-assembly and optimizing-adjustment technologies of aero-engine fan rotor blades
  publication-title: Advanced Engineering informatics
  doi: 10.1016/j.aei.2021.101506
– volume: 72
  start-page: 102198
  year: 2021
  ident: CR17
  article-title: Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop
  publication-title: Robotics and Computer-integrated Manufacturing
  doi: 10.1016/j.rcim.2021.102198
– volume: 59
  start-page: 214
  year: 2021
  end-page: 227
  ident: CR5
  article-title: Optimisation of mixed-model assembly line balancing problem under uncertain demand
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.02.019
– volume: 64
  start-page: 344
  year: 2022
  end-page: 355
  ident: CR23
  article-title: A neural network based multi-state scheduling algorithm for multi-AGV system in FMS
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.06.017
– volume: 38
  start-page: 647
  year: 2016
  end-page: 660
  ident: CR24
  article-title: Online preference learning for adaptive dispatching of AGVs in an automated container terminal
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.027
– volume: 24
  start-page: 11459
  year: 2020
  end-page: 11475
  ident: CR9
  article-title: A comparative study of exact methods for the simple assembly line balancing problem
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04609-9
– volume: 107
  start-page: 1444
  year: 2022
  end-page: 1448
  ident: CR14
  article-title: A genetic algorithm for heterogenous human-robot collaboration assembly line balancing problems
  publication-title: Procedia CiRP
  doi: 10.1016/j.procir.2022.05.172
– volume: 59
  start-page: 6486
  year: 2021
  end-page: 6506
  ident: CR13
  article-title: Assembly line balancing with parallel workstations
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1818000
– volume: 162
  start-page: 107685
  year: 2021
  ident: CR6
  article-title: Assembly line balancing for two cycle times: anticipating demand fluctuations
  publication-title: Computers & industrial Engineering
  doi: 10.1016/j.cie.2021.107685
– volume: 99
  start-page: 106945
  year: 2020
  ident: CR16
  article-title: An effective iterated greedy algorithm for solving a multi-compartment AGV scheduling problem in a matrix manufacturing workshop
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106945
– volume: 125
  start-page: 604
  year: 2018
  end-page: 614
  ident: CR20
  article-title: Real-time scheduling for a smart factory using a reinforcement learning approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.039
– volume: 40
  start-page: 219
  year: 2020
  end-page: 234
  ident: CR21
  article-title: An integrated approach for line balancing and AGV scheduling towards smart assembly systems
  publication-title: Assembly Automation
  doi: 10.1108/AA-03-2019-0057
– volume: 77
  start-page: 101227
  year: 2023
  ident: CR22
  article-title: Invasive weed optimization for multi-AGVs dispatching problem in a matrix manufacturing workshop
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101227
– volume: 177
  start-page: 108993
  year: 2023
  ident: CR15
  article-title: Reduction of makespan through flexible production and remanufacturing to maintain the multistage automated complex production system
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.108993
– volume: 146
  start-page: 106540
  year: 2020
  ident: CR7
  article-title: System reliability optimization for an assembly line under uncertain random environment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106540
– volume: 29
  start-page: 1273
  year: 2015
  end-page: 1281
  ident: CR18
  article-title: A new genetic algorithm for flexible job-shop scheduling problems
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0242-7
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR28
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 67
  start-page: 132
  year: 2023
  end-page: 142
  ident: CR26
  article-title: Resource reconfiguration and optimization in brownfield constrained robotic assembly line balancing problems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.01.001
– volume: 149
  start-page: 106749
  year: 2020
  ident: CR25
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106749
– volume: 61
  start-page: 129
  year: 2017
  end-page: 138
  ident: CR11
  article-title: A beam search approach for solving type II robotic parallel assembly line balancing problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.07.062
– volume: 82
  start-page: 105552
  year: 2019
  ident: CR19
  article-title: Scheduling automated transport vehicles for material distribution systems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105552
– volume: 39
  start-page: 581
  year: 2019
  end-page: 595
  ident: CR3
  article-title: An efficient algorithm for U-type assembly line re-balancing problem with stochastic task times
  publication-title: Assembly Automation
  doi: 10.1108/AA-07-2018-106
– volume: 203
  start-page: 525
  year: 2022
  end-page: 530
  ident: CR27
  article-title: An assembling line balancing problem: lead-acid batteries case study
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.07.074
– volume: 24
  start-page: 433
  year: 2012
  end-page: 442
  ident: CR8
  article-title: A branch, bound, and remember algorithm for the simple assembly line balancing problem
  publication-title: Informs Journal on Computing
  doi: 10.1287/ijoc.1110.0462
– year: 2021
  ident: CR2
  publication-title: Managing complex assembly lines: solving assembly line balancing and feeding problems
– volume: 284
  start-page: 896
  year: 2020
  end-page: 905
  ident: CR10
  article-title: Branch, bound and remember algorithm for two-sided assembly line balancing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.01.032
– volume: 53
  start-page: 594
  year: 2021
  end-page: 608
  ident: CR12
  article-title: Enhanced beam search heuristic for U-shaped assembly line balancing problems
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2020.1741569
– volume: 95
  start-page: 51
  year: 2016
  ident: 2206_CR28
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 77
  start-page: 101227
  year: 2023
  ident: 2206_CR22
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101227
– volume: 40
  start-page: 219
  year: 2020
  ident: 2206_CR21
  publication-title: Assembly Automation
  doi: 10.1108/AA-03-2019-0057
– volume: 64
  start-page: 344
  year: 2022
  ident: 2206_CR23
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.06.017
– volume: 24
  start-page: 11459
  year: 2020
  ident: 2206_CR9
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04609-9
– volume: 61
  start-page: 129
  year: 2017
  ident: 2206_CR11
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.07.062
– volume: 72
  start-page: 102198
  year: 2021
  ident: 2206_CR17
  publication-title: Robotics and Computer-integrated Manufacturing
  doi: 10.1016/j.rcim.2021.102198
– volume: 29
  start-page: 1273
  year: 2015
  ident: 2206_CR18
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0242-7
– volume: 82
  start-page: 105552
  year: 2019
  ident: 2206_CR19
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105552
– volume: 59
  start-page: 214
  year: 2021
  ident: 2206_CR5
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.02.019
– volume: 149
  start-page: 106749
  year: 2020
  ident: 2206_CR25
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106749
– volume: 40
  start-page: 273
  year: 2020
  ident: 2206_CR4
  publication-title: Assembly Automation
  doi: 10.1108/AA-04-2019-0064
– volume: 107
  start-page: 1444
  year: 2022
  ident: 2206_CR14
  publication-title: Procedia CiRP
  doi: 10.1016/j.procir.2022.05.172
– volume: 38
  start-page: 647
  year: 2016
  ident: 2206_CR24
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.027
– volume: 162
  start-page: 107685
  year: 2021
  ident: 2206_CR6
  publication-title: Computers & industrial Engineering
  doi: 10.1016/j.cie.2021.107685
– volume: 51
  start-page: 101506
  year: 2022
  ident: 2206_CR1
  publication-title: Advanced Engineering informatics
  doi: 10.1016/j.aei.2021.101506
– volume-title: Managing complex assembly lines: solving assembly line balancing and feeding problems
  year: 2021
  ident: 2206_CR2
– volume: 177
  start-page: 108993
  year: 2023
  ident: 2206_CR15
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.108993
– volume: 53
  start-page: 594
  year: 2021
  ident: 2206_CR12
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2020.1741569
– volume: 203
  start-page: 525
  year: 2022
  ident: 2206_CR27
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.07.074
– volume: 39
  start-page: 581
  year: 2019
  ident: 2206_CR3
  publication-title: Assembly Automation
  doi: 10.1108/AA-07-2018-106
– volume: 24
  start-page: 433
  year: 2012
  ident: 2206_CR8
  publication-title: Informs Journal on Computing
  doi: 10.1287/ijoc.1110.0462
– volume: 146
  start-page: 106540
  year: 2020
  ident: 2206_CR7
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106540
– volume: 125
  start-page: 604
  year: 2018
  ident: 2206_CR20
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.03.039
– volume: 67
  start-page: 132
  year: 2023
  ident: 2206_CR26
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.01.001
– volume: 59
  start-page: 6486
  year: 2021
  ident: 2206_CR13
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1818000
– volume: 99
  start-page: 106945
  year: 2020
  ident: 2206_CR16
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106945
– volume: 284
  start-page: 896
  year: 2020
  ident: 2206_CR10
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.01.032
SSID ssj0062411
Score 2.3546226
Snippet In order to adapt to the changing and personalized market demand, the traditional single-type mass production manufacturing mode is gradually changing to...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2757
SubjectTerms Algorithms
Assembly lines
Automated guided vehicles
Balancing
Control
Customization
Dynamical Systems
Effectiveness
Engineering
Flexible manufacturing systems
Industrial and Production Engineering
Knowledge bases (artificial intelligence)
Knowledge management
Manufacturing
Mass production
Mechanical Engineering
Multiple objective analysis
Neural networks
Optimization
Original Article
Production scheduling
Scheduling
Vibration
Workshops
기계공학
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6AEOLRQQCxRZghNVROI4Nj5VVVVULghBK-3Nih0bVuwmy-6CxL9nxiRQKsqFUyw5jqzMeOYbzwtgX4Tgq0xXiRIuTQS3OtG592jzKK2oBJoKNjabUKenR_2-Pmsv3KZtWGUnE6OgrhpHd-SHOUdgnSM3iW_jm4S6RpF3tW2hMQ-LVCUhi6F7F50klqidosGl8FALLfqdVzOmznFOtjQXSRzwF3ppvp6EF5DzHy9pVD7Hn9677RX42MJO9v2RT1ZhztefYfmvYoRrcE7-35Ed3jNCnsxSzKPDGVbWFWtQsozwA2gLo26iFHaGaJcFKqdph56NyvqWciRi0iOjYK_pVTNehz_HP3__-JW0HRcSh3ucIdQOukirqpSW8tRCasvC5l5biVaPdMFzl8nU6zzzrihcKbwUysuAOEIErcp8AxbqpvabwIQlS6nkLmjKQMlKhDpeyYAWVi5dZnuQdv_buLYcOXXFGJrnQspEGYMkMnHAe3DwtGT8WIvjrZf3kIjm2g0MVdCm52VjricG7YQTXINAiaujHux0ZDPt4Z0aFHuFRmSX8denn0jag68dXzxP_3dHW29_bBuWOLFjvOHZgYXZ5NZ_gQ_ubjaYTnYjYz8AUIn8Fg
  priority: 102
  providerName: ProQuest
Title Assembly line balancing and optimal scheduling for flexible manufacturing workshop
URI https://link.springer.com/article/10.1007/s12206-024-2206-2
https://www.proquest.com/docview/3075961712
https://www.proquest.com/docview/3275337934
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003086826
Volume 38
WOSCitedRecordID wos001243359000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2024, 38(6), , pp.2757-2772
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjYfxsPGxicKoLMETKFLiOHb9ONAmeKmqFlDFixU79la1Tau2Q-K_585LKJ0GErwkkfwh63y-u1_uwwBvRAi-ynSVKOHSRHCrE517j5hHaUUl0FSw8bIJ1e_3xmM9aPK41220e-uSjJJ6m-zGOaFfLpL4gXL3ALVdj-5rGI6-tuJXokqKKEvhSRZajFtX5n1T7CijvXoVduzMO67RqHEuj_9rrY_hqDEw2fktRzyBB75-Co9-Kzv4DIbk6Z3b2Q9GNiazFN3osIWVdcUWKEPmOAGiXtRClKzO0K5lgQpn2pln87K-oWyImN7IKKxrfb1YnsCXy4vPHz4mzd0KicuV3qBRHXSRVlUpLWWkhdSWhc29thLxjXTBc5fJ1Os8864oXCm8FMrLgBaDCFqV-Sns14vaPwcmLGGikrugKdckK9Go8UoGxFK5dJntQNoS2bim8DjdfzEz25LJRCWD5DLxg3fg7a8hy9uqG3_r_Bp3zkzdxFCtbHpfLcx0ZRARfMIxyCRc9Tpw1u6saY7p2qCAKzTacBm_v5kjmENy5aID79qN3jb_cUUv_qn3SzjkxCnx184Z7G9WN_4VPHTfN5P1qgsH7y_6g2GXglJH-BwU37qR4X8Cr4v00g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD4BNFEevBNWUZuoL5qJM51OSx-MIShhA26MYrJvZdppkbA7s-4uEP6Uv9FzujsgRnnjwadp0mkzl6_nfKc9F4CXIgRfZbpKlHBpIrjVic69R5tHaUUp0FSwsdiE6vXW-339eQF-trEw5FbZysQoqKvG0R7525wjsc4RTeL96EdCVaPodLUtoTGDxY4_O0WTbfKu-wH_7yvOtz7ubW4n86oCicPhU6STQRdpVZXSUixWSG1Z2NxrK5HZSxc8d5lMvc4z74rClcJLobwMqCtF0KrMcd5FuIE0guvoKvi1lfwStWE08BQKEaFFvz1FjaF6nJPtzkUSG_ySHlysx-ESxf3jVDYqu627_9tnugd35rSabczWwX1Y8PUDWP4t2eJD-ELn20M7OGPErJkln06HPaysK9ag5BziBGjro-6lEH2GbJ4FShdqB54Ny_qYYkBiUCcjZ7bJ92b0CL5dy0utwFLd1H4VmLBkCZbcBU0RNlmJVM4rGdCCzKXLbAfS9v8aN0-3TlU_BuYiUTQhwSAkTGzwDrw-HzKa5Rq56uYXCBpz5A4NZQin60FjjsYG7aAujkEiyNV6B9ZamJi5cJoYFOuFRuaa8b93n0OoA29aHF50__OJHl892XO4tb33adfsdns7T-A2p6UQd7PWYGk6PvZP4aY7mR5Oxs_iomKwf93w_AU7fll8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSE48CxioYAl4AKKmjhOXB-qqqKsWBWtVgikFRcTO3apupssmy2of41f1xlv0lIEvfXAKZacWEn8eeYbex4AL4X3rkxUGUlh40hwoyKVOoc2j1SSUqBJb0KxCTkcbo3HarQCv7pYGHKr7GRiENRlbWmPfDPlSKxTRJPY9K1bxGivvzP7HlEFKTpp7cppLCGy705-ovnWbA_2cK5fcd5_9-nt-6itMBBZHGqB1NKrLC7LIjcUl-VjU2QmdcrkyPJz6x23SR47lSbOZpkthMuFdLlHvSm8kkWK467CNYk2JrkTjrIvnRbIUTMGY0-iQBFKjLsT1RC2xznZ8VxEocEv6MTVau4v0N0_TmiD4uvf-Z9_2V243dJttrtcH_dgxVX34dZvSRgfwEc6956ayQkjxs0M-Xpa7GFFVbIaJeoUB2gQ2yU57R8wZPnMUxpRM3FsWlTHFBsSgj0ZObk13-rZOny-ko96CGtVXblHwIQhC7Hg1iuKvEkKpHhO5h4tyzS3ielB3M21tm0adqoGMtHnCaQJFRrhoUOD9-D12SOzZQ6Sy25-gQDSR_ZQU-Zwuh7U-miu0T4a4DNIELnc6sFGBxndCq1Go7jPFDLahP-9-wxOPXjTYfK8-59v9PjywZ7DDUSl_jAY7j-Bm5xWRdjk2oC1xfzYPYXr9sfisJk_C-uLwderRucpo99iVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+line+balancing+and+optimal+scheduling+for+flexible+manufacturing+workshop&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Hou+Wen&rft.au=Zhang%2C+Song&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=38&rft.issue=6&rft.spage=2757&rft.epage=2772&rft_id=info:doi/10.1007%2Fs12206-024-2206-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon