Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations

ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society Jg. 508; H. 2; S. 2979 - 3008
Hauptverfasser: Pandya, Viraj, Fielding, Drummond B, Anglés-Alcázar, Daniel, Somerville, Rachel S, Bryan, Greg L, Hayward, Christopher C, Stern, Jonathan, Kim, Chang-Goo, Quataert, Eliot, Forbes, John C, Faucher-Giguère, Claude-André, Feldmann, Robert, Hafen, Zachary, Hopkins, Philip F, Kereš, Dušan, Murray, Norman, Wetzel, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford University Press 01.12.2021
Schlagworte:
ISSN:0035-8711, 1365-2966
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback.
AbstractList ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback.
We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback.
Author Murray, Norman
Kim, Chang-Goo
Hopkins, Philip F
Stern, Jonathan
Feldmann, Robert
Hafen, Zachary
Forbes, John C
Quataert, Eliot
Kereš, Dušan
Hayward, Christopher C
Fielding, Drummond B
Anglés-Alcázar, Daniel
Bryan, Greg L
Wetzel, Andrew
Somerville, Rachel S
Faucher-Giguère, Claude-André
Pandya, Viraj
Author_xml – sequence: 1
  givenname: Viraj
  orcidid: 0000-0002-2499-9205
  surname: Pandya
  fullname: Pandya, Viraj
  email: viraj.pandya@gmail.com
– sequence: 2
  givenname: Drummond B
  orcidid: 0000-0003-3806-8548
  surname: Fielding
  fullname: Fielding, Drummond B
– sequence: 3
  givenname: Daniel
  surname: Anglés-Alcázar
  fullname: Anglés-Alcázar, Daniel
– sequence: 4
  givenname: Rachel S
  surname: Somerville
  fullname: Somerville, Rachel S
– sequence: 5
  givenname: Greg L
  orcidid: 0000-0003-2630-9228
  surname: Bryan
  fullname: Bryan, Greg L
– sequence: 6
  givenname: Christopher C
  orcidid: 0000-0003-4073-3236
  surname: Hayward
  fullname: Hayward, Christopher C
– sequence: 7
  givenname: Jonathan
  orcidid: 0000-0002-7541-9565
  surname: Stern
  fullname: Stern, Jonathan
– sequence: 8
  givenname: Chang-Goo
  orcidid: 0000-0003-2896-3725
  surname: Kim
  fullname: Kim, Chang-Goo
– sequence: 9
  givenname: Eliot
  surname: Quataert
  fullname: Quataert, Eliot
– sequence: 10
  givenname: John C
  surname: Forbes
  fullname: Forbes, John C
– sequence: 11
  givenname: Claude-André
  orcidid: 0000-0002-4900-6628
  surname: Faucher-Giguère
  fullname: Faucher-Giguère, Claude-André
– sequence: 12
  givenname: Robert
  orcidid: 0000-0002-1109-1919
  surname: Feldmann
  fullname: Feldmann, Robert
– sequence: 13
  givenname: Zachary
  orcidid: 0000-0001-7326-1736
  surname: Hafen
  fullname: Hafen, Zachary
– sequence: 14
  givenname: Philip F
  orcidid: 0000-0003-3729-1684
  surname: Hopkins
  fullname: Hopkins, Philip F
– sequence: 15
  givenname: Dušan
  surname: Kereš
  fullname: Kereš, Dušan
– sequence: 16
  givenname: Norman
  surname: Murray
  fullname: Murray, Norman
– sequence: 17
  givenname: Andrew
  orcidid: 0000-0003-0603-8942
  surname: Wetzel
  fullname: Wetzel, Andrew
BookMark eNqFkE1LAzEQhoNUsK1ePecqdNt8dHe7RymtFgqC6HmZzc62kU1SkpRSj_5y11YvgniZ9zLPy8wzID3rLBJyy9mYs0JOjPUQJiFCJXI-vSB9LrM0EUWW9UifMZkms5zzKzII4Y0xNpUi65OP-RY8qIhev2u7oQZCGFHjDNq4NyOKFv3mOKJga2owQkvdPjatO1APEQN1DTX7NurdFgLSDbRdl1b0oG0dqLY0bpEuV8-LRFDlgnGt22jVtQTdYRC1s-GaXDbQBrz5ziF5XS5e5o_J-ulhNb9fJ0rmRUxyXnM-xQKrBgQApgWvVDdrUWMxk6z7WqJKG0CmhGoUpEIWVV7liqeZFKkckum5V3kXgsemVDqeTogedFtyVn55LE8eyx-PHTb-he28NuCPfwN3Z8Dtd__tfgIFrYxm
CitedBy_id crossref_primary_10_1093_mnras_stac1822
crossref_primary_10_3847_1538_4357_ad2e8a
crossref_primary_10_3847_1538_4365_acb99a
crossref_primary_10_1146_annurev_nucl_102622_023052
crossref_primary_10_1051_0004_6361_202347230
crossref_primary_10_1093_mnras_stac1542
crossref_primary_10_1093_mnras_stac2236
crossref_primary_10_3847_1538_4357_ac9835
crossref_primary_10_3847_2041_8213_ada150
crossref_primary_10_3847_2041_8213_acc4b7
crossref_primary_10_1093_mnras_stac2630
crossref_primary_10_1093_mnras_stad1957
crossref_primary_10_3847_1538_4357_ad410f
crossref_primary_10_3847_1538_4357_add2f4
crossref_primary_10_3847_1538_4357_acf3ea
crossref_primary_10_3847_1538_4357_ad98ea
crossref_primary_10_3847_2041_8213_adf74b
crossref_primary_10_1093_mnras_staf786
crossref_primary_10_1093_mnras_stac3712
crossref_primary_10_3847_1538_4357_adc733
crossref_primary_10_1051_0004_6361_202346232
crossref_primary_10_1093_mnras_stad3069
crossref_primary_10_3847_1538_4357_add5e9
crossref_primary_10_3847_2041_8213_adb4ed
crossref_primary_10_3847_1538_4357_ad7b0c
crossref_primary_10_1093_mnras_stad3142
crossref_primary_10_3847_1538_4357_ac51de
crossref_primary_10_3847_1538_4357_ad702d
crossref_primary_10_1051_0004_6361_202451742
crossref_primary_10_3847_1538_4357_ad81d6
crossref_primary_10_1051_0004_6361_202451502
crossref_primary_10_1093_mnras_stad3104
crossref_primary_10_3847_1538_4357_aded10
crossref_primary_10_1093_mnras_stad1205
crossref_primary_10_1016_j_newast_2022_101992
crossref_primary_10_1093_mnras_stad171
crossref_primary_10_3847_1538_4357_ac6592
crossref_primary_10_1093_mnras_stad2617
crossref_primary_10_1093_mnras_stac1603
crossref_primary_10_3847_1538_4357_acc4c7
crossref_primary_10_3847_1538_4357_ad3042
crossref_primary_10_1051_0004_6361_202244930
crossref_primary_10_1093_mnras_stad596
crossref_primary_10_3847_1538_4357_adced3
crossref_primary_10_1051_0004_6361_202453101
crossref_primary_10_1093_mnras_stad2660
crossref_primary_10_1038_s41550_022_01657_4
crossref_primary_10_1051_0004_6361_202452256
crossref_primary_10_1093_mnras_staf1058
crossref_primary_10_3847_1538_4357_ad8137
crossref_primary_10_3847_1538_4357_acf217
crossref_primary_10_3847_1538_4357_ada38c
crossref_primary_10_1093_mnras_stad2268
crossref_primary_10_3847_1538_4357_aca1bd
crossref_primary_10_1093_mnras_staf341
crossref_primary_10_3847_2041_8213_ad1ffb
crossref_primary_10_1093_mnras_stac2452
crossref_primary_10_1093_mnras_stab3251
crossref_primary_10_3847_1538_4357_ac8d68
crossref_primary_10_3847_1538_4357_ad09e1
crossref_primary_10_3847_1538_4357_add689
crossref_primary_10_3847_1538_4357_ac7150
crossref_primary_10_3847_1538_4357_addab5
crossref_primary_10_3847_1538_4357_ac450c
crossref_primary_10_3847_1538_4357_ada95b
crossref_primary_10_1051_0004_6361_202451692
crossref_primary_10_1093_mnras_stad2079
crossref_primary_10_1093_mnras_stad3168
crossref_primary_10_3847_1538_4357_ac2f41
crossref_primary_10_3847_1538_4357_adb72f
crossref_primary_10_1093_mnras_stad2152
crossref_primary_10_1093_mnras_stad1104
crossref_primary_10_3847_1538_4357_adf4c2
crossref_primary_10_3847_1538_4357_ac4ca6
crossref_primary_10_1093_mnras_stad1902
crossref_primary_10_3847_1538_4357_acf462
crossref_primary_10_3847_1538_4357_ad4ecc
crossref_primary_10_1093_mnras_stab3339
crossref_primary_10_1093_mnras_stac3451
crossref_primary_10_3847_1538_4357_adea51
Cites_doi 10.1093/mnras/sty1153
10.1093/mnras/sty3449
10.1093/mnras/sty2970
10.1093/mnrasl/slw091
10.1088/0004-637X/762/2/109
10.1093/mnras/staa821
10.1093/mnras/staa2229
10.1093/mnras/staa3690
10.1111/j.1365-2966.2008.13805.x
10.1093/mnras/staa938
10.1093/mnras/stz1773
10.3847/1538-4357/abbc6d
10.1093/mnras/sty3252
10.1111/j.1365-2966.2006.10989.x
10.1051/0004-6361/201321591
10.3847/1538-4357/abd776
10.3847/1538-4357/aba962
10.1093/mnras/stz937
10.1051/0004-6361/201322464
10.1093/mnras/stx667
10.1093/mnras/sty674
10.3847/2041-8213/abc252
10.1093/mnras/stt415
10.1046/j.1365-8711.2000.03665.x
10.1093/mnras/staa135
10.1046/j.1365-8711.2001.03975.x
10.1093/mnrasl/slx161
10.1093/mnras/sty1690
10.1086/170483
10.1046/j.1365-8711.2003.06206.x
10.1146/annurev-astro-091916-055240
10.1111/j.1365-2966.2011.19457.x
10.1109/MCSE.2007.53
10.1093/mnras/sty994
10.3847/1538-4357/abc3c1
10.1111/j.1365-2966.2006.11097.x
10.1086/313233
10.3847/2041-8205/827/2/L23
10.1086/164050
10.1088/0004-637X/703/2/1416
10.1093/mnras/stv1975
10.1088/0004-637X/799/2/201
10.1093/mnrasl/slx072
10.1086/426067
10.1093/mnras/stw2888
10.3847/1538-4357/ab8ae8
10.1093/mnrasl/slw014
10.1093/mnras/sty2466
10.1111/j.1365-2966.2009.14541.x
10.1093/mnras/stz1473
10.3847/2041-8213/ab7304
10.1093/mnras/stz1736
10.1093/mnras/staa902
10.1093/mnras/stz545
10.3847/1538-4357/ab9f9f
10.1111/j.1365-2966.2011.20148.x
10.1093/mnras/stz2887
10.1086/305262
10.1093/mnras/stu1738
10.1093/mnras/stw1862
10.1093/mnras/stv552
10.1093/mnras/stx1517
10.1086/379160
10.1093/mnras/stu2058
10.1093/mnras/stx2595
10.1088/0004-637X/802/2/99
10.1088/0067-0049/192/1/9
10.1093/mnras/stw3326
10.3847/2041-8213/ab8d2c
10.1046/j.1365-8711.2001.04022.x
10.1093/mnras/stx1120
10.1093/mnras/stz2306
10.3847/1538-3881/aabc4f
10.1093/mnras/stx2858
10.1093/mnras/stu2215
10.1093/mnras/sts439
10.1111/j.1365-2966.2011.19132.x
10.1093/mnras/stv195
10.1109/MCSE.2007.55
10.1093/mnras/stab1101
10.1088/0004-637X/763/1/18
10.1051/0004-6361/201322068
10.5281/zenodo.400660
10.1086/306832
10.1111/j.1365-2966.2012.20593.x
10.1093/mnras/stv2126
10.1093/mnras/staa3765
10.3847/1538-4357/aa7263
10.1111/j.1365-2966.2010.16872.x
10.1093/mnras/staa2578
10.1093/mnras/stx1710
10.1093/mnras/stu1142
10.1093/mnras/stw745
10.1093/mnras/stx2656
10.1111/j.1365-2966.2011.18565.x
10.1093/mnras/stw2746
10.3847/1538-4357/aaa5ff
10.1051/0004-6361/201629478
10.1093/mnras/stv2659
10.1088/0004-637X/782/2/84
10.3847/0004-637X/824/1/57
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
DBID AAYXX
CITATION
DOI 10.1093/mnras/stab2714
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3008
ExternalDocumentID 10_1093_mnras_stab2714
10.1093/mnras/stab2714
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
ROX
ID FETCH-LOGICAL-c379t-71d114e9ebfa2aae591bce59d2de9830b273ec5fae0c2cfca5239b7b7c1563253
IEDL.DBID TOX
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713807500105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Sat Nov 29 02:38:27 EST 2025
Tue Nov 18 22:26:02 EST 2025
Wed Apr 02 06:59:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ISM: jets and outflows
ISM: supernova remnants
hydrodynamics
galaxies: evolution
galaxies: star formation
galaxies: haloes
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-71d114e9ebfa2aae591bce59d2de9830b273ec5fae0c2cfca5239b7b7c1563253
ORCID 0000-0003-3729-1684
0000-0002-2499-9205
0000-0002-7541-9565
0000-0001-7326-1736
0000-0003-3806-8548
0000-0003-2630-9228
0000-0003-4073-3236
0000-0003-0603-8942
0000-0003-2896-3725
0000-0002-4900-6628
0000-0002-1109-1919
OpenAccessLink https://academic.oup.com/mnras/article-pdf/508/2/2979/40673782/stab2714.pdf
PageCount 30
ParticipantIDs crossref_citationtrail_10_1093_mnras_stab2714
crossref_primary_10_1093_mnras_stab2714
oup_primary_10_1093_mnras_stab2714
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Murray (2022100200082072600_bib75) 2005; 618
Dekel (2022100200082072600_bib20) 1986; 303
Feldmann (2022100200082072600_bib28) 2016; 458
Forbes (2022100200082072600_bib37) 2014; 443
Stern (2022100200082072600_bib92) 2021
Kereš (2022100200082072600_bib57) 2009; 395
Benson (2022100200082072600_bib8) 2003; 599
Oppenheimer (2022100200082072600_bib78) 2006; 373
Astropy Collaboration (2022100200082072600_bib5) 2018; 156
Tollet (2022100200082072600_bib94) 2019; 485
Kroupa (2022100200082072600_bib62) 2001; 322
Springel (2022100200082072600_bib90) 2003; 339
Hopkins (2022100200082072600_bib48) 2015; 450
Muratov (2022100200082072600_bib73) 2017; 468
Somerville (2022100200082072600_bib88) 2001; 320
Garrison-Kimmel (2022100200082072600_bib39) 2017; 471
Wheeler (2022100200082072600_bib102) 2019; 490
Kim (2022100200082072600_bib58) 2020; 900
Davé (2022100200082072600_bib17) 2012; 421
Pillepich (2022100200082072600_bib83) 2018; 473
Martizzi (2022100200082072600_bib71) 2016; 459
Kim (2022100200082072600_bib59) 2020; 903
Hafen (2022100200082072600_bib43) 2020; 494
Bryan (2022100200082072600_bib9) 1998; 495
Behroozi (2022100200082072600_bib6) 2013; 762
Astropy Collaboration (2022100200082072600_bib4) 2013; 558
Gentry (2022100200082072600_bib40) 2017; 465
Huang (2022100200082072600_bib52) 2020; 493
Hunter (2022100200082072600_bib55) 2007; 9
van de Voort (2022100200082072600_bib97) 2011; 414
Faucher-Giguère (2022100200082072600_bib24) 2009; 703
Tumlinson (2022100200082072600_bib95) 2017; 55
Davé (2022100200082072600_bib18) 2016; 462
Escala (2022100200082072600_bib22) 2018; 474
Davé (2022100200082072600_bib16) 2011; 416
Fielding (2022100200082072600_bib33) 2020; 903
Mitchell (2022100200082072600_bib72) 2020; 494
Lu (2022100200082072600_bib68) 2015; 446
Anglés-Alcázar (2022100200082072600_bib2) 2017; 470
Gurvich (2022100200082072600_bib41) 2020; 498
Henriques (2022100200082072600_bib45) 2013; 431
Faucher-Giguère (2022100200082072600_bib26) 2016; 461
Kim (2022100200082072600_bib60) 2015; 802
White (2022100200082072600_bib103) 2015; 799
Wetzel (2022100200082072600_bib101) 2016; 827
Li (2022100200082072600_bib65) 2020; 898
Fielding (2022100200082072600_bib30) 2017; 466
Collette (2022100200082072600_bib14) 2017
Pandya (2022100200082072600_bib80) 2020; 905
Hopkins (2022100200082072600_bib46) 2018; 477
Oppenheimer (2022100200082072600_bib79) 2010; 406
Turk (2022100200082072600_bib96) 2011; 192
Stinson (2022100200082072600_bib93) 2006; 373
Anglés-Alcázar (2022100200082072600_bib3) 2017; 472
Creasey (2022100200082072600_bib15) 2013; 429
Hopkins (2022100200082072600_bib50) 2014; 445
Hopkins (2022100200082072600_bib49) 2012; 421
Hopkins (2022100200082072600_bib47) 2018; 480
Christensen (2022100200082072600_bib11) 2016; 824
Fielding (2022100200082072600_bib31) 2017; 470
Hu (2022100200082072600_bib53) 2019; 483
Chan (2022100200082072600_bib10) 2018; 478
Leitherer (2022100200082072600_bib63) 1999; 123
Hayward (2022100200082072600_bib44) 2017; 465
Li (2022100200082072600_bib64) 2020; 890
White (2022100200082072600_bib104) 1991; 379
Fiore (2022100200082072600_bib35) 2017; 601
Jones (2022100200082072600_bib56) 2001
Van Rossum (2022100200082072600_bib98) 1995
Smith (2022100200082072600_bib87) 2018; 478
Nelson (2022100200082072600_bib76) 2019; 490
Fluetsch (2022100200082072600_bib36) 2019; 483
Schneider (2022100200082072600_bib86) 2020; 895
Oliphant (2022100200082072600_bib77) 2006
Mac Low (2022100200082072600_bib70) 1999; 513
Muratov (2022100200082072600_bib74) 2015; 454
Fielding (2022100200082072600_bib34) 2020; 894
Ma (2022100200082072600_bib69) 2016; 456
Behroozi (2022100200082072600_bib7) 2013; 763
Li (2022100200082072600_bib66) 2017; 841
Anglés-Alcázar (2022100200082072600_bib1) 2014; 782
Forbes (2022100200082072600_bib38) 2019; 487
Fielding (2022100200082072600_bib32) 2018; 481
Faucher-Giguère (2022100200082072600_bib25) 2011; 417
Lochhaas (2022100200082072600_bib67) 2021; 504
Steinwandel (2022100200082072600_bib91) 2020; 495
Feldmann (2022100200082072600_bib27) 2015; 449
Somerville (2022100200082072600_bib89) 2008; 391
Walch (2022100200082072600_bib99) 2015; 454
Cochrane (2022100200082072600_bib13) 2019; 488
Pérez (2022100200082072600_bib82) 2007; 9
Wellons (2022100200082072600_bib100) 2020; 497
Hung (2022100200082072600_bib54) 2019; 482
Cicone (2022100200082072600_bib12) 2014; 562
Hafen (2022100200082072600_bib42) 2019; 488
Parsotan (2022100200082072600_bib81) 2021; 501
Davé (2022100200082072600_bib19) 2019; 486
Hopkins (2022100200082072600_bib51) 2021; 501
Schaye (2022100200082072600_bib85) 2015; 446
Kim (2022100200082072600_bib61) 2018; 853
Faucher-Giguère (2022100200082072600_bib23) 2018; 473
Efstathiou (2022100200082072600_bib21) 2000; 317
Feldmann (2022100200082072600_bib29) 2017; 470
Planck Collaboration (2022100200082072600_bib84) 2014; 571
References_xml – volume: 478
  start-page: 906
  year: 2018
  ident: 2022100200082072600_bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1153
– volume: 483
  start-page: 4586
  year: 2019
  ident: 2022100200082072600_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3449
– volume: 482
  start-page: 5125
  year: 2019
  ident: 2022100200082072600_bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2970
– volume: 461
  start-page: L32
  year: 2016
  ident: 2022100200082072600_bib26
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw091
– volume: 762
  start-page: 109
  year: 2013
  ident: 2022100200082072600_bib6
  publication-title: ApJ
  doi: 10.1088/0004-637X/762/2/109
– volume: 495
  start-page: 1035
  year: 2020
  ident: 2022100200082072600_bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/staa821
– volume: 497
  start-page: 4051
  year: 2020
  ident: 2022100200082072600_bib100
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2229
– volume: 501
  start-page: 3640
  year: 2021
  ident: 2022100200082072600_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3690
– volume: 391
  start-page: 481
  year: 2008
  ident: 2022100200082072600_bib89
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13805.x
– volume: 494
  start-page: 3971
  year: 2020
  ident: 2022100200082072600_bib72
  publication-title: MNRAS
  doi: 10.1093/mnras/staa938
– volume: 488
  start-page: 1248
  year: 2019
  ident: 2022100200082072600_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1773
– volume: 903
  start-page: 32
  year: 2020
  ident: 2022100200082072600_bib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbc6d
– volume: 483
  start-page: 3363
  year: 2019
  ident: 2022100200082072600_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3252
– volume: 373
  start-page: 1265
  year: 2006
  ident: 2022100200082072600_bib78
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10989.x
– volume: 571
  start-page: A16
  year: 2014
  ident: 2022100200082072600_bib84
  publication-title: A&A
  doi: 10.1051/0004-6361/201321591
– start-page: 88
  volume-title: ApJ
  year: 2021
  ident: 2022100200082072600_bib92
  doi: 10.3847/1538-4357/abd776
– volume: 900
  start-page: 61
  year: 2020
  ident: 2022100200082072600_bib58
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba962
– volume: 486
  start-page: 2827
  year: 2019
  ident: 2022100200082072600_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stz937
– volume: 562
  start-page: A21
  year: 2014
  ident: 2022100200082072600_bib12
  publication-title: A&A
  doi: 10.1051/0004-6361/201322464
– volume: 468
  start-page: 4170
  year: 2017
  ident: 2022100200082072600_bib73
  publication-title: MNRAS
  doi: 10.1093/mnras/stx667
– volume: 477
  start-page: 1578
  year: 2018
  ident: 2022100200082072600_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/sty674
– volume: 903
  start-page: L34
  year: 2020
  ident: 2022100200082072600_bib59
  publication-title: ApJ
  doi: 10.3847/2041-8213/abc252
– volume: 431
  start-page: 3373
  year: 2013
  ident: 2022100200082072600_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stt415
– volume: 317
  start-page: 697
  year: 2000
  ident: 2022100200082072600_bib21
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03665.x
– volume: 493
  start-page: 1
  year: 2020
  ident: 2022100200082072600_bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/staa135
– volume: 320
  start-page: 504
  year: 2001
  ident: 2022100200082072600_bib88
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.03975.x
– volume: 472
  start-page: L109
  year: 2017
  ident: 2022100200082072600_bib3
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx161
– volume: 480
  start-page: 800
  year: 2018
  ident: 2022100200082072600_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1690
– volume: 379
  start-page: 52
  year: 1991
  ident: 2022100200082072600_bib104
  publication-title: ApJ
  doi: 10.1086/170483
– volume: 339
  start-page: 289
  year: 2003
  ident: 2022100200082072600_bib90
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06206.x
– volume: 55
  start-page: 389
  year: 2017
  ident: 2022100200082072600_bib95
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-091916-055240
– volume: 417
  start-page: 2982
  year: 2011
  ident: 2022100200082072600_bib25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19457.x
– volume: 9
  start-page: 21
  year: 2007
  ident: 2022100200082072600_bib82
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.53
– volume: 478
  start-page: 302
  year: 2018
  ident: 2022100200082072600_bib87
  publication-title: MNRAS
  doi: 10.1093/mnras/sty994
– volume: 905
  start-page: 4
  year: 2020
  ident: 2022100200082072600_bib80
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc3c1
– volume: 373
  start-page: 1074
  year: 2006
  ident: 2022100200082072600_bib93
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11097.x
– volume: 123
  start-page: 3
  year: 1999
  ident: 2022100200082072600_bib63
  publication-title: ApJS
  doi: 10.1086/313233
– volume: 827
  start-page: L23
  year: 2016
  ident: 2022100200082072600_bib101
  publication-title: ApJ
  doi: 10.3847/2041-8205/827/2/L23
– volume: 303
  start-page: 39
  year: 1986
  ident: 2022100200082072600_bib20
  publication-title: ApJ
  doi: 10.1086/164050
– volume: 703
  start-page: 1416
  year: 2009
  ident: 2022100200082072600_bib24
  publication-title: ApJ
  doi: 10.1088/0004-637X/703/2/1416
– volume: 454
  start-page: 238
  year: 2015
  ident: 2022100200082072600_bib99
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1975
– volume: 799
  start-page: 201
  year: 2015
  ident: 2022100200082072600_bib103
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/201
– volume: 470
  start-page: L39
  year: 2017
  ident: 2022100200082072600_bib31
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx072
– volume: 618
  start-page: 569
  year: 2005
  ident: 2022100200082072600_bib75
  publication-title: ApJ
  doi: 10.1086/426067
– volume: 465
  start-page: 1682
  year: 2017
  ident: 2022100200082072600_bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2888
– volume: 895
  start-page: 43
  year: 2020
  ident: 2022100200082072600_bib86
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8ae8
– volume: 458
  start-page: L14
  year: 2016
  ident: 2022100200082072600_bib28
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw014
– volume: 481
  start-page: 3325
  year: 2018
  ident: 2022100200082072600_bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2466
– volume: 395
  start-page: 160
  year: 2009
  ident: 2022100200082072600_bib57
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14541.x
– volume: 487
  start-page: 3581
  year: 2019
  ident: 2022100200082072600_bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1473
– volume: 890
  start-page: L30
  year: 2020
  ident: 2022100200082072600_bib64
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab7304
– volume: 488
  start-page: 1779
  year: 2019
  ident: 2022100200082072600_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1736
– volume: 494
  start-page: 3581
  year: 2020
  ident: 2022100200082072600_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/staa902
– volume: 485
  start-page: 2511
  year: 2019
  ident: 2022100200082072600_bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stz545
– volume: 898
  start-page: 148
  year: 2020
  ident: 2022100200082072600_bib65
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9f9f
– volume: 421
  start-page: 98
  year: 2012
  ident: 2022100200082072600_bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20148.x
– volume: 490
  start-page: 4447
  year: 2019
  ident: 2022100200082072600_bib102
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2887
– year: 2001
  ident: 2022100200082072600_bib56
  publication-title: SciPy: Open Source Scientific Tools for Python
– volume: 495
  start-page: 80
  year: 1998
  ident: 2022100200082072600_bib9
  publication-title: ApJ
  doi: 10.1086/305262
– volume: 445
  start-page: 581
  year: 2014
  ident: 2022100200082072600_bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1738
– volume: 462
  start-page: 3265
  year: 2016
  ident: 2022100200082072600_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1862
– volume: 449
  start-page: 3274
  year: 2015
  ident: 2022100200082072600_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stv552
– volume: 470
  start-page: 4698
  year: 2017
  ident: 2022100200082072600_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1517
– volume: 599
  start-page: 38
  year: 2003
  ident: 2022100200082072600_bib8
  publication-title: ApJ
  doi: 10.1086/379160
– volume: 446
  start-page: 521
  year: 2015
  ident: 2022100200082072600_bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2058
– volume: 473
  start-page: 3717
  year: 2018
  ident: 2022100200082072600_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2595
– volume: 802
  start-page: 99
  year: 2015
  ident: 2022100200082072600_bib60
  publication-title: ApJ
  doi: 10.1088/0004-637X/802/2/99
– volume: 192
  start-page: 9
  year: 2011
  ident: 2022100200082072600_bib96
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/9
– volume: 466
  start-page: 3810
  year: 2017
  ident: 2022100200082072600_bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3326
– volume: 894
  start-page: L24
  year: 2020
  ident: 2022100200082072600_bib34
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab8d2c
– volume-title: A Guide to NumPy
  year: 2006
  ident: 2022100200082072600_bib77
– volume: 322
  start-page: 231
  year: 2001
  ident: 2022100200082072600_bib62
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04022.x
– volume: 470
  start-page: 1050
  year: 2017
  ident: 2022100200082072600_bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1120
– volume: 490
  start-page: 3234
  year: 2019
  ident: 2022100200082072600_bib76
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2306
– volume: 156
  start-page: 123
  year: 2018
  ident: 2022100200082072600_bib5
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 474
  start-page: 2194
  year: 2018
  ident: 2022100200082072600_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2858
– volume: 446
  start-page: 1907
  year: 2015
  ident: 2022100200082072600_bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2215
– volume: 429
  start-page: 1922
  year: 2013
  ident: 2022100200082072600_bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/sts439
– volume: 416
  start-page: 1354
  year: 2011
  ident: 2022100200082072600_bib16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19132.x
– volume: 450
  start-page: 53
  year: 2015
  ident: 2022100200082072600_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stv195
– volume: 9
  start-page: 90
  year: 2007
  ident: 2022100200082072600_bib55
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 504
  start-page: 3412
  year: 2021
  ident: 2022100200082072600_bib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1101
– volume: 763
  start-page: 18
  year: 2013
  ident: 2022100200082072600_bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/763/1/18
– volume: 558
  start-page: A33
  year: 2013
  ident: 2022100200082072600_bib4
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– year: 2017
  ident: 2022100200082072600_bib14
  doi: 10.5281/zenodo.400660
– volume: 513
  start-page: 142
  year: 1999
  ident: 2022100200082072600_bib70
  publication-title: ApJ
  doi: 10.1086/306832
– volume: 421
  start-page: 3522
  year: 2012
  ident: 2022100200082072600_bib49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20593.x
– volume: 454
  start-page: 2691
  year: 2015
  ident: 2022100200082072600_bib74
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2126
– volume: 501
  start-page: 1591
  year: 2021
  ident: 2022100200082072600_bib81
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3765
– volume: 841
  start-page: 101
  year: 2017
  ident: 2022100200082072600_bib66
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7263
– volume: 406
  start-page: 2325
  year: 2010
  ident: 2022100200082072600_bib79
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16872.x
– volume: 498
  start-page: 3664
  year: 2020
  ident: 2022100200082072600_bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2578
– volume: 471
  start-page: 1709
  year: 2017
  ident: 2022100200082072600_bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1710
– volume: 443
  start-page: 168
  year: 2014
  ident: 2022100200082072600_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1142
– volume: 459
  start-page: 2311
  year: 2016
  ident: 2022100200082072600_bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stw745
– volume: 473
  start-page: 4077
  year: 2018
  ident: 2022100200082072600_bib83
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2656
– volume-title: Python tutorial
  year: 1995
  ident: 2022100200082072600_bib98
– volume: 414
  start-page: 2458
  year: 2011
  ident: 2022100200082072600_bib97
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18565.x
– volume: 465
  start-page: 2471
  year: 2017
  ident: 2022100200082072600_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2746
– volume: 853
  start-page: 173
  year: 2018
  ident: 2022100200082072600_bib61
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa5ff
– volume: 601
  start-page: A143
  year: 2017
  ident: 2022100200082072600_bib35
  publication-title: A&A
  doi: 10.1051/0004-6361/201629478
– volume: 456
  start-page: 2140
  year: 2016
  ident: 2022100200082072600_bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2659
– volume: 782
  start-page: 84
  year: 2014
  ident: 2022100200082072600_bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/2/84
– volume: 824
  start-page: 57
  year: 2016
  ident: 2022100200082072600_bib11
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/1/57
SSID ssj0004326
Score 2.692472
Snippet ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations...
We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 2979
Title Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations
Volume 508
WOSCitedRecordID wos000713807500105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4iPvjiXZw3DiL6suDatEvzKMOhD14Qhb2NJE1xsLaydA599Jd7mnbzgqK-tfSklJ7S7ztJzvcRcsi0x5RMEio1j2nQbikqpAiokojebYmALANnNsGvrqJeT9zUYtH2myV8wU7SbCTtCXIl5XNnWe2FUelVcHfde--AZM5YzQkwYgngzeQZvw7_BD9lS9sHNOku_-M5VshSTRnhtMrxKpkz2RrZOrXlJHaePsMRuONqjsKukcYlEuF85ObL8WJnOEBW6s7WyWtnJtD8gqAFKXLnJqSlDEMxTptgXCtgE2QWQ2qQmEM-LpJhPoFSUsJCnkC1BfEB0Q8QXVyPFUywsrcwyADpJHQvbs-oDzq36fTPCnaQ1j5hdoPcd8_uOue0tmGgmnFRUO7FWDQZYVQifSlNKDxVNm_FfmxExFr4OpjRYSJNS_s60RJrW6G44hprQ-aHbJPMZ3lmtghEBmO0Ugb_MkHbRDg80FypVtIO8da8Qeg0O31da5SXVhnDfrVWzvouCf1pEhrkeBb_WKlz_Bh5gMn-JWj7L0E7ZNEv97W4LS27ZL4Yjc0eWdBPxcCO9t1n-QbHbuc5
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+mass%2C+momentum%2C+energy%2C+and+metal+outflow+rates+of+multiphase+galactic+winds+in+the+FIRE-2+cosmological+simulations&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pandya%2C+Viraj&rft.au=Fielding%2C+Drummond+B&rft.au=Angl%C3%A9s-Alc%C3%A1zar%2C+Daniel&rft.au=Somerville%2C+Rachel+S&rft.date=2021-12-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=508&rft.issue=2&rft.spage=2979&rft.epage=3008&rft_id=info:doi/10.1093%2Fmnras%2Fstab2714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon