An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud Environment

The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain mor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of grid computing Ročník 14; číslo 1; s. 55 - 74
Hlavní autoři: Tang, Zhuo, Qi, Ling, Cheng, Zhenzhen, Li, Kenli, Khan, Samee U., Li, Keqin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2016
Témata:
ISSN:1570-7873, 1572-9184
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain more energy reduction as well as maintain the quality of service by meeting the deadlines, this paper proposes a DVFS-enabled Energy-efficient Workflow Task Scheduling algorithm: DEWTS. Through merging the relatively inefficient processors by reclaiming the slack time, DEWTS can leverage the useful slack time recurrently after severs are merged. DEWTS firstly calculates the initial scheduling order of all tasks, and obtains the whole makespan and deadline based on Heterogeneous-Earliest-Finish-Time (HEFT) algorithm. Through resorting the processors with their running task number and energy utilization, the underutilized processors can be merged by closing the last node and redistributing the assigned tasks on it. Finally, in the task slacking phase, the tasks can be distributed in the idle slots under a lower voltage and frequency using DVFS technique, without violating the dependency constraints and increasing the slacked makespan. Based on the amount of randomly generated DAGs workflows, the experimental results show that DEWTS can reduce the total power consumption by up to 46.5 % for various parallel applications as well as balance the scheduling performance.
AbstractList The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain more energy reduction as well as maintain the quality of service by meeting the deadlines, this paper proposes a DVFS-enabled Energy-efficient Workflow Task Scheduling algorithm: DEWTS. Through merging the relatively inefficient processors by reclaiming the slack time, DEWTS can leverage the useful slack time recurrently after severs are merged. DEWTS firstly calculates the initial scheduling order of all tasks, and obtains the whole makespan and deadline based on Heterogeneous-Earliest-Finish-Time (HEFT) algorithm. Through resorting the processors with their running task number and energy utilization, the underutilized processors can be merged by closing the last node and redistributing the assigned tasks on it. Finally, in the task slacking phase, the tasks can be distributed in the idle slots under a lower voltage and frequency using DVFS technique, without violating the dependency constraints and increasing the slacked makespan. Based on the amount of randomly generated DAGs workflows, the experimental results show that DEWTS can reduce the total power consumption by up to 46.5 % for various parallel applications as well as balance the scheduling performance.
Author Li, Keqin
Cheng, Zhenzhen
Li, Kenli
Khan, Samee U.
Qi, Ling
Tang, Zhuo
Author_xml – sequence: 1
  givenname: Zhuo
  surname: Tang
  fullname: Tang, Zhuo
  email: ztang@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University
– sequence: 2
  givenname: Ling
  surname: Qi
  fullname: Qi, Ling
  organization: College of Information Science and Engineering, Hunan University
– sequence: 3
  givenname: Zhenzhen
  surname: Cheng
  fullname: Cheng, Zhenzhen
  organization: College of Information Science and Engineering, Hunan University
– sequence: 4
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  organization: College of Information Science and Engineering, Hunan University
– sequence: 5
  givenname: Samee U.
  surname: Khan
  fullname: Khan, Samee U.
  organization: Department of Electrical and Computer Engineering, North Dakota State University
– sequence: 6
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
  organization: College of Information Science and Engineering, Hunan University, Department of Computer Science, State University of New York
BookMark eNp9kL1OwzAURi1UJNrCA7BlZDH4J4njsSotIFXq0MJqOY6duiR2sROkvj0pZWLodO9wzjecCRg57zQA9xg9YoTYU8SIEQoRziCnNIXHKzDGGSOQ4yId_f4IsoLRGzCJcY8QyQpExmA9c8nC6VAf4cIYq6x2XbKV8TPZqJ2u-sa6Opk1tQ-227WJdcnzx3IDtZNlo6tk3vi-Gga-bfCuHdxbcG1kE_Xd352C9-ViO3-Fq_XL23y2gooy3sFcpoaTnJU6p0oaaWjJtVKkUKYoSFURXJY5xzrDuSlxKVPJs6pSBCmckSov6RQ8nHcPwX_1OnaitVHpppFO-z4KXHDKMSNpMaDsjKrgYwzaCGU72VnvuiBtIzASp4TinFAMCcUpoTgOJv5nHoJtZThedMjZiQPrah3E3vfBDS0uSD_BMYbp
CitedBy_id crossref_primary_10_1002_cpe_5043
crossref_primary_10_1007_s11277_021_08744_1
crossref_primary_10_1016_j_comnet_2020_107340
crossref_primary_10_1002_cpe_7227
crossref_primary_10_1007_s00500_025_10614_y
crossref_primary_10_1007_s10586_021_03368_3
crossref_primary_10_1007_s11227_023_05330_z
crossref_primary_10_1109_ACCESS_2019_2919769
crossref_primary_10_1016_j_suscom_2022_100834
crossref_primary_10_1109_TSUSC_2023_3295939
crossref_primary_10_3390_s23010119
crossref_primary_10_1007_s11227_025_07432_2
crossref_primary_10_1109_ACCESS_2020_3020843
crossref_primary_10_1108_CW_09_2019_0117
crossref_primary_10_1007_s00500_019_04061_9
crossref_primary_10_1109_ACCESS_2018_2876361
crossref_primary_10_1007_s12652_021_03666_z
crossref_primary_10_1109_TCC_2022_3188672
crossref_primary_10_1002_cpe_5327
crossref_primary_10_1007_s00607_023_01175_9
crossref_primary_10_1007_s10586_018_2375_9
crossref_primary_10_1002_cpe_6520
crossref_primary_10_1016_j_sysarc_2022_102739
crossref_primary_10_1002_cpe_5396
crossref_primary_10_1109_TSUSC_2017_2705183
crossref_primary_10_1007_s10766_016_0466_x
crossref_primary_10_1016_j_future_2024_107678
crossref_primary_10_1016_j_suscom_2019_02_001
crossref_primary_10_1007_s00607_021_00930_0
crossref_primary_10_1080_09720529_2021_2016191
crossref_primary_10_1109_TSUSC_2017_2711362
crossref_primary_10_1155_2019_6543957
crossref_primary_10_1016_j_asoc_2022_109440
crossref_primary_10_1016_j_jss_2022_111227
crossref_primary_10_1109_TCAD_2021_3049688
crossref_primary_10_1007_s10586_021_03407_z
crossref_primary_10_1016_j_sysarc_2023_103051
crossref_primary_10_1109_TII_2017_2676183
crossref_primary_10_1016_j_jnca_2018_11_007
crossref_primary_10_1109_ACCESS_2020_2970166
crossref_primary_10_1016_j_sysarc_2019_07_001
crossref_primary_10_1016_j_neucom_2021_08_145
crossref_primary_10_1002_dac_4302
crossref_primary_10_1109_TITS_2020_3040557
crossref_primary_10_3390_electronics13050826
crossref_primary_10_1109_TPDS_2019_2959533
crossref_primary_10_1002_spe_3292
crossref_primary_10_1016_j_jpdc_2024_104915
crossref_primary_10_1016_j_seta_2021_101210
crossref_primary_10_1007_s11277_019_06874_1
crossref_primary_10_1111_exsy_13276
crossref_primary_10_1109_TGCN_2020_2987063
crossref_primary_10_1007_s10723_024_09751_9
crossref_primary_10_1007_s00521_019_04022_1
crossref_primary_10_1007_s10723_021_09556_0
crossref_primary_10_1109_TPDS_2023_3288702
crossref_primary_10_1186_s13677_023_00553_0
crossref_primary_10_1007_s11227_021_03764_x
crossref_primary_10_1007_s10586_021_03453_7
crossref_primary_10_1007_s10723_020_09533_z
crossref_primary_10_1007_s10723_022_09620_3
crossref_primary_10_1007_s11227_021_03805_5
crossref_primary_10_1016_j_jpdc_2020_04_008
crossref_primary_10_3233_JIFS_222048
crossref_primary_10_3390_electronics9122077
crossref_primary_10_1007_s10723_019_09490_2
crossref_primary_10_1016_j_micpro_2022_104612
crossref_primary_10_1155_2022_1637614
crossref_primary_10_1007_s11227_021_03740_5
crossref_primary_10_1007_s42979_023_01909_8
crossref_primary_10_1016_j_micpro_2020_102996
crossref_primary_10_1007_s10586_021_03351_y
crossref_primary_10_1007_s10586_020_03145_8
crossref_primary_10_1007_s10586_020_03149_4
crossref_primary_10_1007_s11227_021_04016_8
crossref_primary_10_1109_TII_2018_2854762
crossref_primary_10_1007_s10723_015_9349_4
crossref_primary_10_1007_s12652_020_01747_z
crossref_primary_10_1016_j_apenergy_2024_122995
crossref_primary_10_1016_j_sysarc_2024_103173
crossref_primary_10_1007_s10586_017_1047_5
crossref_primary_10_1007_s10723_021_09548_0
crossref_primary_10_1016_j_comcom_2022_10_019
crossref_primary_10_1016_j_jestch_2019_03_009
crossref_primary_10_1007_s11227_022_04539_8
crossref_primary_10_1007_s10723_017_9392_4
crossref_primary_10_1016_j_asoc_2021_107744
crossref_primary_10_1080_0952813X_2023_2188490
crossref_primary_10_1002_cpe_6579
crossref_primary_10_1007_s10723_018_9433_7
crossref_primary_10_1007_s11277_020_07759_4
crossref_primary_10_1007_s00521_019_04415_2
crossref_primary_10_1016_j_jpdc_2019_01_006
crossref_primary_10_1109_ACCESS_2017_2721548
crossref_primary_10_1016_j_future_2017_05_033
crossref_primary_10_1109_TPDS_2017_2730876
crossref_primary_10_1007_s10723_015_9358_3
crossref_primary_10_1016_j_sysarc_2018_03_001
crossref_primary_10_1155_2022_3411959
crossref_primary_10_1109_JIOT_2025_3569100
crossref_primary_10_1145_3368036
crossref_primary_10_1016_j_iot_2020_100211
crossref_primary_10_1109_JSAC_2020_2986614
crossref_primary_10_3233_JIFS_201696
crossref_primary_10_1109_TSC_2017_2665552
crossref_primary_10_4018_IJCAC_2017100102
crossref_primary_10_1109_TASE_2022_3195958
crossref_primary_10_1109_TII_2017_2768075
crossref_primary_10_1007_s10586_017_0901_9
crossref_primary_10_1007_s10723_018_9426_6
crossref_primary_10_1007_s00607_017_0559_4
crossref_primary_10_1002_cpe_4024
crossref_primary_10_1007_s11227_018_2498_z
crossref_primary_10_1016_j_future_2020_05_040
crossref_primary_10_1007_s11227_020_03403_x
crossref_primary_10_1016_j_sysarc_2021_102311
crossref_primary_10_1109_ACCESS_2018_2825648
crossref_primary_10_1109_JSYST_2021_3112098
crossref_primary_10_1145_3563946
crossref_primary_10_3390_math8071144
crossref_primary_10_1016_j_jpdc_2023_02_004
crossref_primary_10_1109_ACCESS_2023_3318553
crossref_primary_10_1109_TASE_2023_3267714
crossref_primary_10_3390_pr10091762
crossref_primary_10_1109_ACCESS_2020_2994953
crossref_primary_10_1007_s12083_021_01267_3
crossref_primary_10_1109_TPDS_2021_3135876
crossref_primary_10_1007_s10723_018_9464_0
crossref_primary_10_1007_s00607_021_01030_9
crossref_primary_10_1007_s10723_017_9391_5
crossref_primary_10_1002_cpe_4731
crossref_primary_10_1016_j_cosrev_2023_100583
crossref_primary_10_1016_j_future_2019_01_007
crossref_primary_10_3390_en13153944
crossref_primary_10_1016_j_future_2024_107561
crossref_primary_10_1007_s11277_022_09526_z
crossref_primary_10_1016_j_jpdc_2022_10_003
crossref_primary_10_1007_s10619_019_07273_y
crossref_primary_10_1007_s10922_024_09863_3
crossref_primary_10_1016_j_jocs_2017_03_017
crossref_primary_10_1007_s11227_022_04684_0
crossref_primary_10_3233_JIFS_169451
crossref_primary_10_1007_s13369_020_04879_8
crossref_primary_10_1016_j_comcom_2020_01_004
crossref_primary_10_1109_TC_2021_3052389
crossref_primary_10_1142_S0218126625503244
crossref_primary_10_1109_TGCN_2021_3131323
crossref_primary_10_3390_fi10090086
crossref_primary_10_1007_s10723_019_09492_0
crossref_primary_10_1109_TCAD_2022_3228504
crossref_primary_10_1109_TIE_2019_2905815
crossref_primary_10_1007_s10586_021_03512_z
crossref_primary_10_1109_TC_2022_3191970
crossref_primary_10_1002_cpe_6183
crossref_primary_10_1007_s11277_023_10841_2
crossref_primary_10_1109_TSC_2020_2965106
crossref_primary_10_1016_j_future_2024_05_014
crossref_primary_10_1109_TPDS_2022_3181096
crossref_primary_10_1007_s11276_018_01902_7
crossref_primary_10_1007_s10723_017_9424_0
crossref_primary_10_1007_s10723_019_09489_9
crossref_primary_10_1007_s10115_025_02416_3
Cites_doi 10.1109/TPDS.2007.70815
10.1109/CCGRID.2010.19
10.1109/TPDS.2003.1214320
10.1145/513918.513966
10.1109/CCGRID.2003.1199369
10.1109/71.790598
10.1109/71.993206
10.1016/j.jpdc.2007.05.015
10.1016/j.jpdc.2004.11.006
10.1109/CCGRID.2007.85
10.1145/1148109.1148140
10.1109/SBAC-PAD.2004.1
10.1016/j.jpdc.2011.01.004
10.1109/CCGrid.2012.49
10.1145/1108956.1108957
10.1002/spe.995
10.1109/TC.2007.48
10.1016/S0022-0000(75)80008-0
10.1109/TPDS.2010.208
10.1109/TASE.2008.916747
10.1006/jpdc.2000.1714
10.1145/1496091.1496103
10.3724/SP.J.1001.2012.04144
10.1145/945445.945462
10.1109/71.308533
10.1109/MC.2007.443
10.1145/1362622.1362688
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10723-015-9334-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1572-9184
EndPage 74
ExternalDocumentID 10_1007_s10723_015_9334_y
GroupedDBID -59
-5G
-BR
-D3
-D4
-D8
-DT
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KZ1
LAK
LLZTM
LMP
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c379t-6a4f9267be63cafaf3b9ecc28cf882dd21bb691e516fb1ba4a95ddc20c152d6b3
IEDL.DBID RSV
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374259200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-7873
IngestDate Thu Sep 04 16:56:35 EDT 2025
Sat Nov 29 07:52:34 EST 2025
Tue Nov 18 21:58:10 EST 2025
Fri Feb 21 02:36:48 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Cloud computing
Heterogeneous
Heuristic algorithm
Energy saving scheduling
DVFS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-6a4f9267be63cafaf3b9ecc28cf882dd21bb691e516fb1ba4a95ddc20c152d6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1893917248
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1893917248
crossref_citationtrail_10_1007_s10723_015_9334_y
crossref_primary_10_1007_s10723_015_9334_y
springer_journals_10_1007_s10723_015_9334_y
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle From Grids to Cloud Federations
PublicationTitle Journal of grid computing
PublicationTitleAbbrev J Grid Computing
PublicationYear 2016
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References BraunTSiegelHBeckNBoloniLMaheswaranMReutherATheysMRobertsonJHensgenDYaoBA comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200161681083710.1006/jpdc.2000.17140990.68013
SongJEnergy-efficiency model and measuring approach for cloud computingJ. Softw.201223220021410.3724/SP.J.1001.2012.04144
GreenbergAHamiltonJMaltzDAThe cost of a cloud: Research problems in data center networksACM SIGCOMM Comput. Commun. Rev.2008391687310.1145/1496091.1496103
ZomayaAYWardCMaceyBSGenetic scheduling for parallel processor systems: Comparative studies and performance issuesIEEE Trans. Parallel Distrib. Syst.199910879581210.1109/71.790598
Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010)
VBoeres, C., Rebello, V.E.F.: A cluster-based strategy for scheduling task on heterogeneous processors. In: Proceedings of 16th Symposium on Computer Architecture and High Performance Computing, pp. 214–221. Foz do Iguacu (2004)
ZhongXCheng-ZhongXEnergy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guaranteeIEEE Transactions on Computers200756358372241010110.1109/TC.2007.48
Koomey, J.G.: Growth in data center electricity use 2005 to 2010., http://www.analyticspress.com/datacenters.html. August 1, 2011
LeeYCZomayaAYA novel state transition method for metaheuristic-based scheduling in heterogeneous computing systemsIEEE Trans. Parallel and Distrib. Syst.20081991215122310.1109/TPDS.2007.70815
BarrosoLAHolzleUThe case for energy-proportional computingIEEE Comput. Soc.20074012333710.1109/MC.2007.443
ZhuDMelhemRChildersBRScheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systemsIEEE Trans. Parallel Distrib. Syst.20031468670010.1109/TPDS.2003.1214320
BansalSKumarPSinghKDealing with heterogeneity through limited duplication for scheduling precedence constrained task graphsJ. Parallel Distrib. Comput.200565447949110.1016/j.jpdc.2004.11.0061101.68405
TopcuougluHHaririSWuMYPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans. Parallel Distrib. Syst.200213326027410.1109/71.993206
RizvandiNBTaheriJZomayaAYSome observations on optimal frequency selection in DVFS-based energy consumption minimizationJ. Parallel Distrib. Comput.20117181154116410.1016/j.jpdc.2011.01.0041219.68074
TanWFanYZhouMCA petri net-based method for compatibility analysis and composition of web services in business process execution languageIEEE Trans. Autom. Sci. Eng.2009619410610.1109/TASE.2008.916747
VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comput. Surv.200537319523710.1145/1108956.1108957
Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of 18th Annual ACM Symposium Parallelism in Algorithms and Architectures (2006)
CalheirosRRanjanRBeloglazovADe RoseCBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw. Pract. Experience2011411235010.1002/spe.995
Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541-548. IEEE Computer Society Washington, DC, USA (2007)
LeeYCZomayaAYEnergy conscious scheduling for distributed computing systems under different operating conditionsIEEE Trans. Parallel Distrib. Syst.2011221374138110.1109/TPDS.2010.208
Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness, pp. 238-239. W.H. Freeman and Co. (1979)
Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz, M.: Bounding energy consumption in large-scale MPI programs. Proc. ACM/IEEE Conf. Supercomputing (2007)
UllmanJDNp-complete scheduling problemsJ.Comput. Syst. Sci.19751038439339158510.1016/S0022-0000(75)80008-00313.68054
Kyong Hoon, K., Buyya, R., Jong, K.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: 7th IEEE International Symposium on Cluster Computing and the Grid, 2007, pp. 541-548. CCGRID 2007 (2007)
Barham, P., Dragovic, B.: Xen and the Art of Virtualization, Proc. of 19thACM symposium on Operating Systems Principles, Bolton Landing, NY, USA, pp. 164-177 (2003)
Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimization. In: Proceedings of 39th Design Automation Conference, pp. 183-188 (2002)
Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow management for grid computing. In: Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 198–205 (2003)
Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010)
DaoudMIKharmaNA high performance algorithm for static task scheduling in heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200868439940910.1016/j.jpdc.2007.05.0151243.68103
YangTGerasoulisADSC: Scheduling parallel tasks on an unbounded number of processorsIEEE Trans. Parallel Distrib. Syst.19945995196710.1109/71.308533
Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy of parallel programs using slack reclamation by DVFS in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, 2006, pp. 1–10. IEEE, NJ (2006)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., et al.: Above the clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California, Berkerley, CA (2009)
Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: 12th IEEE/ACM International Symposium Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 781–786 (2012)
YC Lee (9334_CR15) 2011; 22
J Song (9334_CR7) 2012; 23
9334_CR1
D Zhu (9334_CR10) 2003; 14
X Zhong (9334_CR26) 2007; 56
V Venkatachalam (9334_CR11) 2005; 37
9334_CR16
9334_CR17
9334_CR19
9334_CR12
9334_CR14
9334_CR30
9334_CR31
9334_CR33
R Calheiros (9334_CR32) 2011; 41
S Bansal (9334_CR25) 2005; 65
H Topcuouglu (9334_CR21) 2002; 13
MI Daoud (9334_CR20) 2008; 68
JD Ullman (9334_CR18) 1975; 10
T Yang (9334_CR24) 1994; 5
A Greenberg (9334_CR6) 2008; 39
9334_CR3
T Braun (9334_CR9) 2001; 61
9334_CR4
9334_CR5
NB Rizvandi (9334_CR13) 2011; 71
9334_CR27
9334_CR28
9334_CR29
LA Barroso (9334_CR8) 2007; 40
AY Zomaya (9334_CR23) 1999; 10
W Tan (9334_CR2) 2009; 6
YC Lee (9334_CR22) 2008; 19
References_xml – reference: Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541-548. IEEE Computer Society Washington, DC, USA (2007)
– reference: LeeYCZomayaAYA novel state transition method for metaheuristic-based scheduling in heterogeneous computing systemsIEEE Trans. Parallel and Distrib. Syst.20081991215122310.1109/TPDS.2007.70815
– reference: ZomayaAYWardCMaceyBSGenetic scheduling for parallel processor systems: Comparative studies and performance issuesIEEE Trans. Parallel Distrib. Syst.199910879581210.1109/71.790598
– reference: VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comput. Surv.200537319523710.1145/1108956.1108957
– reference: DaoudMIKharmaNA high performance algorithm for static task scheduling in heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200868439940910.1016/j.jpdc.2007.05.0151243.68103
– reference: TanWFanYZhouMCA petri net-based method for compatibility analysis and composition of web services in business process execution languageIEEE Trans. Autom. Sci. Eng.2009619410610.1109/TASE.2008.916747
– reference: ZhuDMelhemRChildersBRScheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systemsIEEE Trans. Parallel Distrib. Syst.20031468670010.1109/TPDS.2003.1214320
– reference: Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: 12th IEEE/ACM International Symposium Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 781–786 (2012)
– reference: Barham, P., Dragovic, B.: Xen and the Art of Virtualization, Proc. of 19thACM symposium on Operating Systems Principles, Bolton Landing, NY, USA, pp. 164-177 (2003)
– reference: Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010)
– reference: Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow management for grid computing. In: Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 198–205 (2003)
– reference: Kyong Hoon, K., Buyya, R., Jong, K.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: 7th IEEE International Symposium on Cluster Computing and the Grid, 2007, pp. 541-548. CCGRID 2007 (2007)
– reference: CalheirosRRanjanRBeloglazovADe RoseCBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw. Pract. Experience2011411235010.1002/spe.995
– reference: TopcuougluHHaririSWuMYPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans. Parallel Distrib. Syst.200213326027410.1109/71.993206
– reference: Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010)
– reference: Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness, pp. 238-239. W.H. Freeman and Co. (1979)
– reference: Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of 18th Annual ACM Symposium Parallelism in Algorithms and Architectures (2006)
– reference: Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimization. In: Proceedings of 39th Design Automation Conference, pp. 183-188 (2002)
– reference: BansalSKumarPSinghKDealing with heterogeneity through limited duplication for scheduling precedence constrained task graphsJ. Parallel Distrib. Comput.200565447949110.1016/j.jpdc.2004.11.0061101.68405
– reference: SongJEnergy-efficiency model and measuring approach for cloud computingJ. Softw.201223220021410.3724/SP.J.1001.2012.04144
– reference: Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz, M.: Bounding energy consumption in large-scale MPI programs. Proc. ACM/IEEE Conf. Supercomputing (2007)
– reference: BarrosoLAHolzleUThe case for energy-proportional computingIEEE Comput. Soc.20074012333710.1109/MC.2007.443
– reference: RizvandiNBTaheriJZomayaAYSome observations on optimal frequency selection in DVFS-based energy consumption minimizationJ. Parallel Distrib. Comput.20117181154116410.1016/j.jpdc.2011.01.0041219.68074
– reference: GreenbergAHamiltonJMaltzDAThe cost of a cloud: Research problems in data center networksACM SIGCOMM Comput. Commun. Rev.2008391687310.1145/1496091.1496103
– reference: YangTGerasoulisADSC: Scheduling parallel tasks on an unbounded number of processorsIEEE Trans. Parallel Distrib. Syst.19945995196710.1109/71.308533
– reference: Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., et al.: Above the clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California, Berkerley, CA (2009)
– reference: LeeYCZomayaAYEnergy conscious scheduling for distributed computing systems under different operating conditionsIEEE Trans. Parallel Distrib. Syst.2011221374138110.1109/TPDS.2010.208
– reference: Koomey, J.G.: Growth in data center electricity use 2005 to 2010., http://www.analyticspress.com/datacenters.html. August 1, 2011
– reference: VBoeres, C., Rebello, V.E.F.: A cluster-based strategy for scheduling task on heterogeneous processors. In: Proceedings of 16th Symposium on Computer Architecture and High Performance Computing, pp. 214–221. Foz do Iguacu (2004)
– reference: BraunTSiegelHBeckNBoloniLMaheswaranMReutherATheysMRobertsonJHensgenDYaoBA comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200161681083710.1006/jpdc.2000.17140990.68013
– reference: ZhongXCheng-ZhongXEnergy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guaranteeIEEE Transactions on Computers200756358372241010110.1109/TC.2007.48
– reference: UllmanJDNp-complete scheduling problemsJ.Comput. Syst. Sci.19751038439339158510.1016/S0022-0000(75)80008-00313.68054
– reference: Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy of parallel programs using slack reclamation by DVFS in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, 2006, pp. 1–10. IEEE, NJ (2006)
– volume: 19
  start-page: 1215
  issue: 9
  year: 2008
  ident: 9334_CR22
  publication-title: IEEE Trans. Parallel and Distrib. Syst.
  doi: 10.1109/TPDS.2007.70815
– ident: 9334_CR27
  doi: 10.1109/CCGRID.2010.19
– volume: 14
  start-page: 686
  year: 2003
  ident: 9334_CR10
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2003.1214320
– ident: 9334_CR12
  doi: 10.1145/513918.513966
– ident: 9334_CR1
  doi: 10.1109/CCGRID.2003.1199369
– volume: 10
  start-page: 795
  issue: 8
  year: 1999
  ident: 9334_CR23
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.790598
– ident: 9334_CR31
– ident: 9334_CR19
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 9334_CR21
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 68
  start-page: 399
  issue: 4
  year: 2008
  ident: 9334_CR20
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2007.05.015
– volume: 65
  start-page: 479
  issue: 4
  year: 2005
  ident: 9334_CR25
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2004.11.006
– ident: 9334_CR14
  doi: 10.1109/CCGRID.2007.85
– ident: 9334_CR30
  doi: 10.1145/1148109.1148140
– ident: 9334_CR33
  doi: 10.1109/SBAC-PAD.2004.1
– ident: 9334_CR3
– ident: 9334_CR16
  doi: 10.1109/CCGRID.2010.19
– ident: 9334_CR5
– volume: 71
  start-page: 1154
  issue: 8
  year: 2011
  ident: 9334_CR13
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2011.01.004
– ident: 9334_CR17
  doi: 10.1109/CCGrid.2012.49
– volume: 37
  start-page: 195
  issue: 3
  year: 2005
  ident: 9334_CR11
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1108956.1108957
– ident: 9334_CR28
– volume: 41
  start-page: 23
  issue: 1
  year: 2011
  ident: 9334_CR32
  publication-title: Softw. Pract. Experience
  doi: 10.1002/spe.995
– volume: 56
  start-page: 358
  year: 2007
  ident: 9334_CR26
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.2007.48
– volume: 10
  start-page: 384
  year: 1975
  ident: 9334_CR18
  publication-title: J.Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(75)80008-0
– volume: 22
  start-page: 1374
  year: 2011
  ident: 9334_CR15
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2010.208
– volume: 6
  start-page: 94
  issue: 1
  year: 2009
  ident: 9334_CR2
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2008.916747
– volume: 61
  start-page: 810
  issue: 6
  year: 2001
  ident: 9334_CR9
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.2000.1714
– volume: 39
  start-page: 68
  issue: 1
  year: 2008
  ident: 9334_CR6
  publication-title: ACM SIGCOMM Comput. Commun. Rev.
  doi: 10.1145/1496091.1496103
– volume: 23
  start-page: 200
  issue: 2
  year: 2012
  ident: 9334_CR7
  publication-title: J. Softw.
  doi: 10.3724/SP.J.1001.2012.04144
– ident: 9334_CR4
  doi: 10.1145/945445.945462
– volume: 5
  start-page: 951
  issue: 9
  year: 1994
  ident: 9334_CR24
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.308533
– volume: 40
  start-page: 33
  issue: 12
  year: 2007
  ident: 9334_CR8
  publication-title: IEEE Comput. Soc.
  doi: 10.1109/MC.2007.443
– ident: 9334_CR29
  doi: 10.1145/1362622.1362688
SSID ssj0025802
Score 2.513907
Snippet The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms Algorithms
Cloud computing
Computer Science
Data centers
Energy management
Management of Computing and Information Systems
Processor Architectures
Processors
Task scheduling
Tasks
User Interfaces and Human Computer Interaction
Workflow
Title An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud Environment
URI https://link.springer.com/article/10.1007/s10723-015-9334-y
https://www.proquest.com/docview/1893917248
Volume 14
WOSCitedRecordID wos000374259200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: P5Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: BENPR
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9184
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025802
  issn: 1570-7873
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6Vx4FLoTzUUIi2Uk9FK8Xrx3qPIXXEKY2ARhEXa58kInWqOEHKv-_YsZOCAInexytrZme_bzQvgG-KI-a0nKWhEIoGsZNUIm7QUEntVMRt4Fy5bIL3evFwKPpVH3deV7vXKcnypf6n2Y2zovYnpBiEB3S5BTuIdnGxr-H6ZrCOssJ4VWgY8qJUjvt1KvOlI56C0YZhPkuKlljT3f-vvzyAjxW1JO3VXfgEH2x2CPv12gZSefER_GxnJClb_mhSDpBA3CG3Mn9AkREiT9GgTtqT--lsPB_9JuOM_Bh0b6gtu6wM6UymC0OSTYPcMfzqJredK1rtVaDa52JOIxk4wSKubORr6aTzlUBLslg75NvGME-pSHg29CKnPCUDKUJjNGtpBHsTKf8EtrNpZj8DYdp5zCmplJSBZZ5ENuY8wwR3sUFu1oBWreBUV0PHi90Xk3QzLrlQWIoKSwuFpcsGfF9_8mc1ceMt4a-11VL0iyLZITM7XeSph0QMQ1EWxA24qE2VVg6av37i6bukv8AeMqhoVZR2Btvz2cKew65-nI_zWRN2LpNe_7oJW_3wrlle07_W8-Ip
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxtBFD54A_virUpTWx3BJ8tAdvYyO4_BJljUKBrFt2GuJjTdlGwi-O89u9k1tdiCvp8dlnPmzPcdzg3gUHPEnKZ3NBZC0yj1iirEDRprZbxOuIu8L5dN8G43vbsTl1Ufd15Xu9cpyfKl_qPZjbOi9iemGIRH9HERliMErGJg_tX17XOUFaezQsOYF6VyPKxTma8d8RKM5gzzr6RoiTWd9Xf95QasVdSStGZ3YRMWXLYF6_XaBlJ58Ue4aGWkXbb80XY5QAJxh_RU_hNF-og8RYM6aQ3vR-PBpP-LDDLy_bZzTV3ZZWXJ8XA0taQ9b5DbhptOu3d8Qqu9CtSEXExooiIvWMK1S0KjvPKhFmhJlhqPfNtaFmidiMDFQeJ1oFWkRGytYU2DYG8THe7AUjbK3CcgzPiAea20VipyLFDIxnxgmeA-tcjNGtCsFSxNNXS82H0xlPNxyYXCJCpMFgqTjw04ev7k92zixv-ED2qrSfSLItmhMjea5jJAIoahKIvSBnyrTSUrB83_feLnN0nvw-pJ7_xMnv3onu7CB2RTyaxA7QssTcZT9xVWzMNkkI_3ykv6BA6d4nM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB-qLeKLtlUxWusWfGpZzO197O1jiAktllTwA9-W_TTBeJHcRch_7-59GCsqiO9zwzGzw_yG-c0MwIGkLue0rcExYxJHqRVYuLyBYymUlQk1kbXlsQk6GKSXl-ykvnOaN2z3piVZzTT4LU1ZcXir7eGjwTdKPA8oxq4gj_B8CT5Gnkfvy_XTi4eKK04r0mFMPW2Ohk1b8zkV_yemBdp80iAt805__d1__BnWasiJOtUb-QIfTPYV1ptzDqiO7g3418lQrxwFxL1ysYTTjs5Efu1Ehi4j-cF11BlfTaajYniDRhk6uuifYlNOX2nUHU9mGvUWg3ObcN7vnXV_4_reAlYhZQVORGQZSag0SaiEFTaUzHmYpMo6HK41CaRMWGDiILEykCISLNZakbZyIEAnMtyC5WySmW1ARNmAWCmkFCIyJBAOpdlAE0Ztqh1ma0G7MTZX9TJyfxNjzBdrlL3BuDMY9wbj8xb8fPjkttrE8Zrwj8aD3MWLb4KIzExmOQ8cQHMlKonSFvxq3MbrwM1f1rjzJul9WDk56vO_fwbHu7DqQFZS8da-wXIxnZk9-KTuilE-_V6-13tzrutX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Energy-Efficient+Task+Scheduling+Algorithm+in+DVFS-enabled+Cloud+Environment&rft.jtitle=Journal+of+grid+computing&rft.au=Tang%2C+Zhuo&rft.au=Qi%2C+Ling&rft.au=Cheng%2C+Zhenzhen&rft.au=Li%2C+Kenli&rft.date=2016-03-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=14&rft.issue=1&rft.spage=55&rft.epage=74&rft_id=info:doi/10.1007%2Fs10723-015-9334-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon