An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud Environment
The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain mor...
Saved in:
| Published in: | Journal of grid computing Vol. 14; no. 1; pp. 55 - 74 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.03.2016
|
| Subjects: | |
| ISSN: | 1570-7873, 1572-9184 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain more energy reduction as well as maintain the quality of service by meeting the deadlines, this paper proposes a DVFS-enabled Energy-efficient Workflow Task Scheduling algorithm: DEWTS. Through merging the relatively inefficient processors by reclaiming the slack time, DEWTS can leverage the useful slack time recurrently after severs are merged. DEWTS firstly calculates the initial scheduling order of all tasks, and obtains the whole makespan and deadline based on Heterogeneous-Earliest-Finish-Time (HEFT) algorithm. Through resorting the processors with their running task number and energy utilization, the underutilized processors can be merged by closing the last node and redistributing the assigned tasks on it. Finally, in the task slacking phase, the tasks can be distributed in the idle slots under a lower voltage and frequency using DVFS technique, without violating the dependency constraints and increasing the slacked makespan. Based on the amount of randomly generated DAGs workflows, the experimental results show that DEWTS can reduce the total power consumption by up to 46.5 % for various parallel applications as well as balance the scheduling performance. |
|---|---|
| AbstractList | The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater advocacy of green computing, and many efforts and works focus on the task scheduling in order to reduce energy dissipation. In order to obtain more energy reduction as well as maintain the quality of service by meeting the deadlines, this paper proposes a DVFS-enabled Energy-efficient Workflow Task Scheduling algorithm: DEWTS. Through merging the relatively inefficient processors by reclaiming the slack time, DEWTS can leverage the useful slack time recurrently after severs are merged. DEWTS firstly calculates the initial scheduling order of all tasks, and obtains the whole makespan and deadline based on Heterogeneous-Earliest-Finish-Time (HEFT) algorithm. Through resorting the processors with their running task number and energy utilization, the underutilized processors can be merged by closing the last node and redistributing the assigned tasks on it. Finally, in the task slacking phase, the tasks can be distributed in the idle slots under a lower voltage and frequency using DVFS technique, without violating the dependency constraints and increasing the slacked makespan. Based on the amount of randomly generated DAGs workflows, the experimental results show that DEWTS can reduce the total power consumption by up to 46.5 % for various parallel applications as well as balance the scheduling performance. |
| Author | Li, Keqin Cheng, Zhenzhen Li, Kenli Khan, Samee U. Qi, Ling Tang, Zhuo |
| Author_xml | – sequence: 1 givenname: Zhuo surname: Tang fullname: Tang, Zhuo email: ztang@hnu.edu.cn organization: College of Information Science and Engineering, Hunan University – sequence: 2 givenname: Ling surname: Qi fullname: Qi, Ling organization: College of Information Science and Engineering, Hunan University – sequence: 3 givenname: Zhenzhen surname: Cheng fullname: Cheng, Zhenzhen organization: College of Information Science and Engineering, Hunan University – sequence: 4 givenname: Kenli surname: Li fullname: Li, Kenli organization: College of Information Science and Engineering, Hunan University – sequence: 5 givenname: Samee U. surname: Khan fullname: Khan, Samee U. organization: Department of Electrical and Computer Engineering, North Dakota State University – sequence: 6 givenname: Keqin surname: Li fullname: Li, Keqin organization: College of Information Science and Engineering, Hunan University, Department of Computer Science, State University of New York |
| BookMark | eNp9kL1OwzAURi1UJNrCA7BlZDH4J4njsSotIFXq0MJqOY6duiR2sROkvj0pZWLodO9wzjecCRg57zQA9xg9YoTYU8SIEQoRziCnNIXHKzDGGSOQ4yId_f4IsoLRGzCJcY8QyQpExmA9c8nC6VAf4cIYq6x2XbKV8TPZqJ2u-sa6Opk1tQ-227WJdcnzx3IDtZNlo6tk3vi-Gga-bfCuHdxbcG1kE_Xd352C9-ViO3-Fq_XL23y2gooy3sFcpoaTnJU6p0oaaWjJtVKkUKYoSFURXJY5xzrDuSlxKVPJs6pSBCmckSov6RQ8nHcPwX_1OnaitVHpppFO-z4KXHDKMSNpMaDsjKrgYwzaCGU72VnvuiBtIzASp4TinFAMCcUpoTgOJv5nHoJtZThedMjZiQPrah3E3vfBDS0uSD_BMYbp |
| CitedBy_id | crossref_primary_10_1002_cpe_5043 crossref_primary_10_1007_s11277_021_08744_1 crossref_primary_10_1016_j_comnet_2020_107340 crossref_primary_10_1002_cpe_7227 crossref_primary_10_1007_s00500_025_10614_y crossref_primary_10_1007_s10586_021_03368_3 crossref_primary_10_1007_s11227_023_05330_z crossref_primary_10_1109_ACCESS_2019_2919769 crossref_primary_10_1016_j_suscom_2022_100834 crossref_primary_10_1109_TSUSC_2023_3295939 crossref_primary_10_3390_s23010119 crossref_primary_10_1007_s11227_025_07432_2 crossref_primary_10_1109_ACCESS_2020_3020843 crossref_primary_10_1108_CW_09_2019_0117 crossref_primary_10_1007_s00500_019_04061_9 crossref_primary_10_1109_ACCESS_2018_2876361 crossref_primary_10_1007_s12652_021_03666_z crossref_primary_10_1109_TCC_2022_3188672 crossref_primary_10_1002_cpe_5327 crossref_primary_10_1007_s00607_023_01175_9 crossref_primary_10_1007_s10586_018_2375_9 crossref_primary_10_1002_cpe_6520 crossref_primary_10_1016_j_sysarc_2022_102739 crossref_primary_10_1002_cpe_5396 crossref_primary_10_1109_TSUSC_2017_2705183 crossref_primary_10_1007_s10766_016_0466_x crossref_primary_10_1016_j_future_2024_107678 crossref_primary_10_1016_j_suscom_2019_02_001 crossref_primary_10_1007_s00607_021_00930_0 crossref_primary_10_1080_09720529_2021_2016191 crossref_primary_10_1109_TSUSC_2017_2711362 crossref_primary_10_1155_2019_6543957 crossref_primary_10_1016_j_asoc_2022_109440 crossref_primary_10_1016_j_jss_2022_111227 crossref_primary_10_1109_TCAD_2021_3049688 crossref_primary_10_1007_s10586_021_03407_z crossref_primary_10_1016_j_sysarc_2023_103051 crossref_primary_10_1109_TII_2017_2676183 crossref_primary_10_1016_j_jnca_2018_11_007 crossref_primary_10_1109_ACCESS_2020_2970166 crossref_primary_10_1016_j_sysarc_2019_07_001 crossref_primary_10_1016_j_neucom_2021_08_145 crossref_primary_10_1002_dac_4302 crossref_primary_10_1109_TITS_2020_3040557 crossref_primary_10_3390_electronics13050826 crossref_primary_10_1109_TPDS_2019_2959533 crossref_primary_10_1002_spe_3292 crossref_primary_10_1016_j_jpdc_2024_104915 crossref_primary_10_1016_j_seta_2021_101210 crossref_primary_10_1007_s11277_019_06874_1 crossref_primary_10_1111_exsy_13276 crossref_primary_10_1109_TGCN_2020_2987063 crossref_primary_10_1007_s10723_024_09751_9 crossref_primary_10_1007_s00521_019_04022_1 crossref_primary_10_1007_s10723_021_09556_0 crossref_primary_10_1109_TPDS_2023_3288702 crossref_primary_10_1186_s13677_023_00553_0 crossref_primary_10_1007_s11227_021_03764_x crossref_primary_10_1007_s10586_021_03453_7 crossref_primary_10_1007_s10723_020_09533_z crossref_primary_10_1007_s10723_022_09620_3 crossref_primary_10_1007_s11227_021_03805_5 crossref_primary_10_1016_j_jpdc_2020_04_008 crossref_primary_10_3233_JIFS_222048 crossref_primary_10_3390_electronics9122077 crossref_primary_10_1007_s10723_019_09490_2 crossref_primary_10_1016_j_micpro_2022_104612 crossref_primary_10_1155_2022_1637614 crossref_primary_10_1007_s11227_021_03740_5 crossref_primary_10_1007_s42979_023_01909_8 crossref_primary_10_1016_j_micpro_2020_102996 crossref_primary_10_1007_s10586_021_03351_y crossref_primary_10_1007_s10586_020_03145_8 crossref_primary_10_1007_s10586_020_03149_4 crossref_primary_10_1007_s11227_021_04016_8 crossref_primary_10_1109_TII_2018_2854762 crossref_primary_10_1007_s10723_015_9349_4 crossref_primary_10_1007_s12652_020_01747_z crossref_primary_10_1016_j_apenergy_2024_122995 crossref_primary_10_1016_j_sysarc_2024_103173 crossref_primary_10_1007_s10586_017_1047_5 crossref_primary_10_1007_s10723_021_09548_0 crossref_primary_10_1016_j_comcom_2022_10_019 crossref_primary_10_1016_j_jestch_2019_03_009 crossref_primary_10_1007_s11227_022_04539_8 crossref_primary_10_1007_s10723_017_9392_4 crossref_primary_10_1016_j_asoc_2021_107744 crossref_primary_10_1080_0952813X_2023_2188490 crossref_primary_10_1002_cpe_6579 crossref_primary_10_1007_s10723_018_9433_7 crossref_primary_10_1007_s11277_020_07759_4 crossref_primary_10_1007_s00521_019_04415_2 crossref_primary_10_1016_j_jpdc_2019_01_006 crossref_primary_10_1109_ACCESS_2017_2721548 crossref_primary_10_1016_j_future_2017_05_033 crossref_primary_10_1109_TPDS_2017_2730876 crossref_primary_10_1007_s10723_015_9358_3 crossref_primary_10_1016_j_sysarc_2018_03_001 crossref_primary_10_1155_2022_3411959 crossref_primary_10_1109_JIOT_2025_3569100 crossref_primary_10_1145_3368036 crossref_primary_10_1016_j_iot_2020_100211 crossref_primary_10_1109_JSAC_2020_2986614 crossref_primary_10_3233_JIFS_201696 crossref_primary_10_1109_TSC_2017_2665552 crossref_primary_10_4018_IJCAC_2017100102 crossref_primary_10_1109_TASE_2022_3195958 crossref_primary_10_1109_TII_2017_2768075 crossref_primary_10_1007_s10586_017_0901_9 crossref_primary_10_1007_s10723_018_9426_6 crossref_primary_10_1007_s00607_017_0559_4 crossref_primary_10_1002_cpe_4024 crossref_primary_10_1007_s11227_018_2498_z crossref_primary_10_1016_j_future_2020_05_040 crossref_primary_10_1007_s11227_020_03403_x crossref_primary_10_1016_j_sysarc_2021_102311 crossref_primary_10_1109_ACCESS_2018_2825648 crossref_primary_10_1109_JSYST_2021_3112098 crossref_primary_10_1145_3563946 crossref_primary_10_3390_math8071144 crossref_primary_10_1016_j_jpdc_2023_02_004 crossref_primary_10_1109_ACCESS_2023_3318553 crossref_primary_10_1109_TASE_2023_3267714 crossref_primary_10_3390_pr10091762 crossref_primary_10_1109_ACCESS_2020_2994953 crossref_primary_10_1007_s12083_021_01267_3 crossref_primary_10_1109_TPDS_2021_3135876 crossref_primary_10_1007_s10723_018_9464_0 crossref_primary_10_1007_s00607_021_01030_9 crossref_primary_10_1007_s10723_017_9391_5 crossref_primary_10_1002_cpe_4731 crossref_primary_10_1016_j_cosrev_2023_100583 crossref_primary_10_1016_j_future_2019_01_007 crossref_primary_10_3390_en13153944 crossref_primary_10_1016_j_future_2024_107561 crossref_primary_10_1007_s11277_022_09526_z crossref_primary_10_1016_j_jpdc_2022_10_003 crossref_primary_10_1007_s10619_019_07273_y crossref_primary_10_1007_s10922_024_09863_3 crossref_primary_10_1016_j_jocs_2017_03_017 crossref_primary_10_1007_s11227_022_04684_0 crossref_primary_10_3233_JIFS_169451 crossref_primary_10_1007_s13369_020_04879_8 crossref_primary_10_1016_j_comcom_2020_01_004 crossref_primary_10_1109_TC_2021_3052389 crossref_primary_10_1142_S0218126625503244 crossref_primary_10_1109_TGCN_2021_3131323 crossref_primary_10_3390_fi10090086 crossref_primary_10_1007_s10723_019_09492_0 crossref_primary_10_1109_TCAD_2022_3228504 crossref_primary_10_1109_TIE_2019_2905815 crossref_primary_10_1007_s10586_021_03512_z crossref_primary_10_1109_TC_2022_3191970 crossref_primary_10_1002_cpe_6183 crossref_primary_10_1007_s11277_023_10841_2 crossref_primary_10_1109_TSC_2020_2965106 crossref_primary_10_1016_j_future_2024_05_014 crossref_primary_10_1109_TPDS_2022_3181096 crossref_primary_10_1007_s11276_018_01902_7 crossref_primary_10_1007_s10723_017_9424_0 crossref_primary_10_1007_s10723_019_09489_9 crossref_primary_10_1007_s10115_025_02416_3 |
| Cites_doi | 10.1109/TPDS.2007.70815 10.1109/CCGRID.2010.19 10.1109/TPDS.2003.1214320 10.1145/513918.513966 10.1109/CCGRID.2003.1199369 10.1109/71.790598 10.1109/71.993206 10.1016/j.jpdc.2007.05.015 10.1016/j.jpdc.2004.11.006 10.1109/CCGRID.2007.85 10.1145/1148109.1148140 10.1109/SBAC-PAD.2004.1 10.1016/j.jpdc.2011.01.004 10.1109/CCGrid.2012.49 10.1145/1108956.1108957 10.1002/spe.995 10.1109/TC.2007.48 10.1016/S0022-0000(75)80008-0 10.1109/TPDS.2010.208 10.1109/TASE.2008.916747 10.1006/jpdc.2000.1714 10.1145/1496091.1496103 10.3724/SP.J.1001.2012.04144 10.1145/945445.945462 10.1109/71.308533 10.1109/MC.2007.443 10.1145/1362622.1362688 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2015 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2015 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10723-015-9334-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1572-9184 |
| EndPage | 74 |
| ExternalDocumentID | 10_1007_s10723_015_9334_y |
| GroupedDBID | -59 -5G -BR -D3 -D4 -D8 -DT -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D PUEGO |
| ID | FETCH-LOGICAL-c379t-6a4f9267be63cafaf3b9ecc28cf882dd21bb691e516fb1ba4a95ddc20c152d6b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374259200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-7873 |
| IngestDate | Thu Sep 04 16:56:35 EDT 2025 Sat Nov 29 07:52:34 EST 2025 Tue Nov 18 21:58:10 EST 2025 Fri Feb 21 02:36:48 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cloud computing Heterogeneous Heuristic algorithm Energy saving scheduling DVFS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-6a4f9267be63cafaf3b9ecc28cf882dd21bb691e516fb1ba4a95ddc20c152d6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1893917248 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1893917248 crossref_citationtrail_10_1007_s10723_015_9334_y crossref_primary_10_1007_s10723_015_9334_y springer_journals_10_1007_s10723_015_9334_y |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | From Grids to Cloud Federations |
| PublicationTitle | Journal of grid computing |
| PublicationTitleAbbrev | J Grid Computing |
| PublicationYear | 2016 |
| Publisher | Springer Netherlands |
| Publisher_xml | – name: Springer Netherlands |
| References | BraunTSiegelHBeckNBoloniLMaheswaranMReutherATheysMRobertsonJHensgenDYaoBA comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200161681083710.1006/jpdc.2000.17140990.68013 SongJEnergy-efficiency model and measuring approach for cloud computingJ. Softw.201223220021410.3724/SP.J.1001.2012.04144 GreenbergAHamiltonJMaltzDAThe cost of a cloud: Research problems in data center networksACM SIGCOMM Comput. Commun. Rev.2008391687310.1145/1496091.1496103 ZomayaAYWardCMaceyBSGenetic scheduling for parallel processor systems: Comparative studies and performance issuesIEEE Trans. Parallel Distrib. Syst.199910879581210.1109/71.790598 Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010) VBoeres, C., Rebello, V.E.F.: A cluster-based strategy for scheduling task on heterogeneous processors. In: Proceedings of 16th Symposium on Computer Architecture and High Performance Computing, pp. 214–221. Foz do Iguacu (2004) ZhongXCheng-ZhongXEnergy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guaranteeIEEE Transactions on Computers200756358372241010110.1109/TC.2007.48 Koomey, J.G.: Growth in data center electricity use 2005 to 2010., http://www.analyticspress.com/datacenters.html. August 1, 2011 LeeYCZomayaAYA novel state transition method for metaheuristic-based scheduling in heterogeneous computing systemsIEEE Trans. Parallel and Distrib. Syst.20081991215122310.1109/TPDS.2007.70815 BarrosoLAHolzleUThe case for energy-proportional computingIEEE Comput. Soc.20074012333710.1109/MC.2007.443 ZhuDMelhemRChildersBRScheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systemsIEEE Trans. Parallel Distrib. Syst.20031468670010.1109/TPDS.2003.1214320 BansalSKumarPSinghKDealing with heterogeneity through limited duplication for scheduling precedence constrained task graphsJ. Parallel Distrib. Comput.200565447949110.1016/j.jpdc.2004.11.0061101.68405 TopcuougluHHaririSWuMYPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans. Parallel Distrib. Syst.200213326027410.1109/71.993206 RizvandiNBTaheriJZomayaAYSome observations on optimal frequency selection in DVFS-based energy consumption minimizationJ. Parallel Distrib. Comput.20117181154116410.1016/j.jpdc.2011.01.0041219.68074 TanWFanYZhouMCA petri net-based method for compatibility analysis and composition of web services in business process execution languageIEEE Trans. Autom. Sci. Eng.2009619410610.1109/TASE.2008.916747 VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comput. Surv.200537319523710.1145/1108956.1108957 Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of 18th Annual ACM Symposium Parallelism in Algorithms and Architectures (2006) CalheirosRRanjanRBeloglazovADe RoseCBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw. Pract. Experience2011411235010.1002/spe.995 Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541-548. IEEE Computer Society Washington, DC, USA (2007) LeeYCZomayaAYEnergy conscious scheduling for distributed computing systems under different operating conditionsIEEE Trans. Parallel Distrib. Syst.2011221374138110.1109/TPDS.2010.208 Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness, pp. 238-239. W.H. Freeman and Co. (1979) Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz, M.: Bounding energy consumption in large-scale MPI programs. Proc. ACM/IEEE Conf. Supercomputing (2007) UllmanJDNp-complete scheduling problemsJ.Comput. Syst. Sci.19751038439339158510.1016/S0022-0000(75)80008-00313.68054 Kyong Hoon, K., Buyya, R., Jong, K.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: 7th IEEE International Symposium on Cluster Computing and the Grid, 2007, pp. 541-548. CCGRID 2007 (2007) Barham, P., Dragovic, B.: Xen and the Art of Virtualization, Proc. of 19thACM symposium on Operating Systems Principles, Bolton Landing, NY, USA, pp. 164-177 (2003) Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimization. In: Proceedings of 39th Design Automation Conference, pp. 183-188 (2002) Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow management for grid computing. In: Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 198–205 (2003) Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010) DaoudMIKharmaNA high performance algorithm for static task scheduling in heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200868439940910.1016/j.jpdc.2007.05.0151243.68103 YangTGerasoulisADSC: Scheduling parallel tasks on an unbounded number of processorsIEEE Trans. Parallel Distrib. Syst.19945995196710.1109/71.308533 Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy of parallel programs using slack reclamation by DVFS in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, 2006, pp. 1–10. IEEE, NJ (2006) Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., et al.: Above the clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California, Berkerley, CA (2009) Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: 12th IEEE/ACM International Symposium Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 781–786 (2012) YC Lee (9334_CR15) 2011; 22 J Song (9334_CR7) 2012; 23 9334_CR1 D Zhu (9334_CR10) 2003; 14 X Zhong (9334_CR26) 2007; 56 V Venkatachalam (9334_CR11) 2005; 37 9334_CR16 9334_CR17 9334_CR19 9334_CR12 9334_CR14 9334_CR30 9334_CR31 9334_CR33 R Calheiros (9334_CR32) 2011; 41 S Bansal (9334_CR25) 2005; 65 H Topcuouglu (9334_CR21) 2002; 13 MI Daoud (9334_CR20) 2008; 68 JD Ullman (9334_CR18) 1975; 10 T Yang (9334_CR24) 1994; 5 A Greenberg (9334_CR6) 2008; 39 9334_CR3 T Braun (9334_CR9) 2001; 61 9334_CR4 9334_CR5 NB Rizvandi (9334_CR13) 2011; 71 9334_CR27 9334_CR28 9334_CR29 LA Barroso (9334_CR8) 2007; 40 AY Zomaya (9334_CR23) 1999; 10 W Tan (9334_CR2) 2009; 6 YC Lee (9334_CR22) 2008; 19 |
| References_xml | – reference: Kim, K., Buyya, R., Kim, J.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid, pp. 541-548. IEEE Computer Society Washington, DC, USA (2007) – reference: LeeYCZomayaAYA novel state transition method for metaheuristic-based scheduling in heterogeneous computing systemsIEEE Trans. Parallel and Distrib. Syst.20081991215122310.1109/TPDS.2007.70815 – reference: ZomayaAYWardCMaceyBSGenetic scheduling for parallel processor systems: Comparative studies and performance issuesIEEE Trans. Parallel Distrib. Syst.199910879581210.1109/71.790598 – reference: VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comput. Surv.200537319523710.1145/1108956.1108957 – reference: DaoudMIKharmaNA high performance algorithm for static task scheduling in heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200868439940910.1016/j.jpdc.2007.05.0151243.68103 – reference: TanWFanYZhouMCA petri net-based method for compatibility analysis and composition of web services in business process execution languageIEEE Trans. Autom. Sci. Eng.2009619410610.1109/TASE.2008.916747 – reference: ZhuDMelhemRChildersBRScheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systemsIEEE Trans. Parallel Distrib. Syst.20031468670010.1109/TPDS.2003.1214320 – reference: Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: 12th IEEE/ACM International Symposium Cluster, Cloud and Grid Computing (CCGrid), 2012, pp. 781–786 (2012) – reference: Barham, P., Dragovic, B.: Xen and the Art of Virtualization, Proc. of 19thACM symposium on Operating Systems Principles, Bolton Landing, NY, USA, pp. 164-177 (2003) – reference: Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010) – reference: Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow management for grid computing. In: Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, Tokyo, Japan, 198–205 (2003) – reference: Kyong Hoon, K., Buyya, R., Jong, K.: Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: 7th IEEE International Symposium on Cluster Computing and the Grid, 2007, pp. 541-548. CCGRID 2007 (2007) – reference: CalheirosRRanjanRBeloglazovADe RoseCBuyyaRCloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithmsSoftw. Pract. Experience2011411235010.1002/spe.995 – reference: TopcuougluHHaririSWuMYPerformance-effective and low-complexity task scheduling for heterogeneous computingIEEE Trans. Parallel Distrib. Syst.200213326027410.1109/71.993206 – reference: Wang, L., Von Laszewski, G., Dayal, J., Wang, F.: Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 368-377. IEEE (2010) – reference: Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness, pp. 238-239. W.H. Freeman and Co. (1979) – reference: Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proceedings of 18th Annual ACM Symposium Parallelism in Algorithms and Architectures (2006) – reference: Zhang, Y., Hu, X., Chen, D.: Task scheduling and voltage selection for energy minimization. In: Proceedings of 39th Design Automation Conference, pp. 183-188 (2002) – reference: BansalSKumarPSinghKDealing with heterogeneity through limited duplication for scheduling precedence constrained task graphsJ. Parallel Distrib. Comput.200565447949110.1016/j.jpdc.2004.11.0061101.68405 – reference: SongJEnergy-efficiency model and measuring approach for cloud computingJ. Softw.201223220021410.3724/SP.J.1001.2012.04144 – reference: Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz, M.: Bounding energy consumption in large-scale MPI programs. Proc. ACM/IEEE Conf. Supercomputing (2007) – reference: BarrosoLAHolzleUThe case for energy-proportional computingIEEE Comput. Soc.20074012333710.1109/MC.2007.443 – reference: RizvandiNBTaheriJZomayaAYSome observations on optimal frequency selection in DVFS-based energy consumption minimizationJ. Parallel Distrib. Comput.20117181154116410.1016/j.jpdc.2011.01.0041219.68074 – reference: GreenbergAHamiltonJMaltzDAThe cost of a cloud: Research problems in data center networksACM SIGCOMM Comput. Commun. Rev.2008391687310.1145/1496091.1496103 – reference: YangTGerasoulisADSC: Scheduling parallel tasks on an unbounded number of processorsIEEE Trans. Parallel Distrib. Syst.19945995196710.1109/71.308533 – reference: Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., et al.: Above the clouds: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28, University of California, Berkerley, CA (2009) – reference: LeeYCZomayaAYEnergy conscious scheduling for distributed computing systems under different operating conditionsIEEE Trans. Parallel Distrib. Syst.2011221374138110.1109/TPDS.2010.208 – reference: Koomey, J.G.: Growth in data center electricity use 2005 to 2010., http://www.analyticspress.com/datacenters.html. August 1, 2011 – reference: VBoeres, C., Rebello, V.E.F.: A cluster-based strategy for scheduling task on heterogeneous processors. In: Proceedings of 16th Symposium on Computer Architecture and High Performance Computing, pp. 214–221. Foz do Iguacu (2004) – reference: BraunTSiegelHBeckNBoloniLMaheswaranMReutherATheysMRobertsonJHensgenDYaoBA comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systemsJ. Parallel Distrib. Comput.200161681083710.1006/jpdc.2000.17140990.68013 – reference: ZhongXCheng-ZhongXEnergy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guaranteeIEEE Transactions on Computers200756358372241010110.1109/TC.2007.48 – reference: UllmanJDNp-complete scheduling problemsJ.Comput. Syst. Sci.19751038439339158510.1016/S0022-0000(75)80008-00313.68054 – reference: Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy of parallel programs using slack reclamation by DVFS in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, 2006, pp. 1–10. IEEE, NJ (2006) – volume: 19 start-page: 1215 issue: 9 year: 2008 ident: 9334_CR22 publication-title: IEEE Trans. Parallel and Distrib. Syst. doi: 10.1109/TPDS.2007.70815 – ident: 9334_CR27 doi: 10.1109/CCGRID.2010.19 – volume: 14 start-page: 686 year: 2003 ident: 9334_CR10 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2003.1214320 – ident: 9334_CR12 doi: 10.1145/513918.513966 – ident: 9334_CR1 doi: 10.1109/CCGRID.2003.1199369 – volume: 10 start-page: 795 issue: 8 year: 1999 ident: 9334_CR23 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.790598 – ident: 9334_CR31 – ident: 9334_CR19 – volume: 13 start-page: 260 issue: 3 year: 2002 ident: 9334_CR21 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.993206 – volume: 68 start-page: 399 issue: 4 year: 2008 ident: 9334_CR20 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2007.05.015 – volume: 65 start-page: 479 issue: 4 year: 2005 ident: 9334_CR25 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2004.11.006 – ident: 9334_CR14 doi: 10.1109/CCGRID.2007.85 – ident: 9334_CR30 doi: 10.1145/1148109.1148140 – ident: 9334_CR33 doi: 10.1109/SBAC-PAD.2004.1 – ident: 9334_CR3 – ident: 9334_CR16 doi: 10.1109/CCGRID.2010.19 – ident: 9334_CR5 – volume: 71 start-page: 1154 issue: 8 year: 2011 ident: 9334_CR13 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2011.01.004 – ident: 9334_CR17 doi: 10.1109/CCGrid.2012.49 – volume: 37 start-page: 195 issue: 3 year: 2005 ident: 9334_CR11 publication-title: ACM Comput. Surv. doi: 10.1145/1108956.1108957 – ident: 9334_CR28 – volume: 41 start-page: 23 issue: 1 year: 2011 ident: 9334_CR32 publication-title: Softw. Pract. Experience doi: 10.1002/spe.995 – volume: 56 start-page: 358 year: 2007 ident: 9334_CR26 publication-title: IEEE Transactions on Computers doi: 10.1109/TC.2007.48 – volume: 10 start-page: 384 year: 1975 ident: 9334_CR18 publication-title: J.Comput. Syst. Sci. doi: 10.1016/S0022-0000(75)80008-0 – volume: 22 start-page: 1374 year: 2011 ident: 9334_CR15 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2010.208 – volume: 6 start-page: 94 issue: 1 year: 2009 ident: 9334_CR2 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2008.916747 – volume: 61 start-page: 810 issue: 6 year: 2001 ident: 9334_CR9 publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.2000.1714 – volume: 39 start-page: 68 issue: 1 year: 2008 ident: 9334_CR6 publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/1496091.1496103 – volume: 23 start-page: 200 issue: 2 year: 2012 ident: 9334_CR7 publication-title: J. Softw. doi: 10.3724/SP.J.1001.2012.04144 – ident: 9334_CR4 doi: 10.1145/945445.945462 – volume: 5 start-page: 951 issue: 9 year: 1994 ident: 9334_CR24 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.308533 – volume: 40 start-page: 33 issue: 12 year: 2007 ident: 9334_CR8 publication-title: IEEE Comput. Soc. doi: 10.1109/MC.2007.443 – ident: 9334_CR29 doi: 10.1145/1362622.1362688 |
| SSID | ssj0025802 |
| Score | 2.5138366 |
| Snippet | The growth of energy consumption has been explosive in current data centers, super computers, and public cloud systems. This explosion has led to greater... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 55 |
| SubjectTerms | Algorithms Cloud computing Computer Science Data centers Energy management Management of Computing and Information Systems Processor Architectures Processors Task scheduling Tasks User Interfaces and Human Computer Interaction Workflow |
| Title | An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud Environment |
| URI | https://link.springer.com/article/10.1007/s10723-015-9334-y https://www.proquest.com/docview/1893917248 |
| Volume | 14 |
| WOSCitedRecordID | wos000374259200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: P5Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9184 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: BENPR dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1572-9184 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oePAiPiM-yJp40mxCX9v2iFjiCQmoIV6afVWIWAwFE_6909KCGjXR--xmM4_9ZjIvgHPEPK60kKi83KN2pE3KDeFQJi3pS0tbrieyZRNuu-31-34n7-NOimr3IiWZ_dQfmt1cM639cSgG4Tadr0MZ0c5L9zV0ew_LKMvxFoWGjpuWyrlWkcr87orPYLTyML8kRTOsaVX-9cpt2MpdS9JY6MIOrOl4FyrF2gaSW_Ee3DZiEmQtfzTIBkgg7pA7njwjyQCRJ21QJ43R03gynA5eyDAm1w-tHtVZl5UizdF4pkiwapDbh_tWcNe8ofleBSot159Sxu3IN5krNLMkj3hkCR8laXoyQn9bKdMQgvmGdgwWCUNwm_uOUtKsSwR7xYR1AKV4HOtDIB56W9zEWwylbYxpuWv4nEmM6QQT-DdUoV4wOJT50PF098UoXI1LThkWIsPClGHhvAoXyyOvi4kbvxGfFVIL0S7SZAeP9XiWhAY6YhiKmja-4bIQVZgbaPLzjUd_oj6GTfSg2KIo7QRK08lMn8KGfJsOk0kNyldBu9OtwXrHeaxlavoO4A3hSg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSwJBFB7KgnrJrmTXCXoqBtzb7O6jmGJkFmni2zC3TcnWcNfAf9_ZdVcrKqj3M8NwLvOdw7khdA6Yx5UWEpSXe8QOtEm4IRxCpSV9aWnL9US6bMJttbxez7_P-rijvNo9T0mmP_WHZjfXTGp_HAJBuE2my2jFBsBKBuY_tLvzKMvxZoWGjpuUyrlWnsr87orPYLTwML8kRVOsqRf_9cpNtJG5lrgy04UttKTDbVTM1zbgzIp30F0lxLW05Y_U0gESgDu4w6NnIOkD8iQN6rgyfBqNB3H_BQ9CfNWtt4lOu6wUrg5HE4Vriwa5XfRYr3WqDZLtVSDScv2YUG4HvkldoaklecADS_ggSdOTAfjbSpmGENQ3tGPQQBiC29x3lJJmWQLYKyqsPVQIR6HeR9gDb4ubcIuhtA0xLXcNn1MJMZ2gAv6GEirnDGYyGzqe7L4YssW45IRhDBjGEoaxaQldzI-8ziZu_EZ8lkuNgV0kyQ4e6tEkYgY4YhCKmja84TIXFcsMNPr5xoM_UZ-itUbntsma162bQ7QO3hSdFagdoUI8nuhjtCrf4kE0PkmV9B0ZdeGU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF60ivjiLdZzBZ-UxebaJI-ltihKFVrFt2WvaLEm0qRC_72zOayKCuL7ZFjmyHzDXAgdQczjSgsJxssD4kbaJtwSHqHSkaF0tOMHIj824Xe7wf19eFPeOU2rbveqJFnMNJgtTXF2-qKi0w-Db75t-oA8Agm5SyazaM41ffQmXe_dvWdcXlA0HXq-aZvznaqs-R2Lz4Fpija_FEjzuNNZ_veLV9BSCTlxs7CRVTSj4zW0XJ1zwKV3r6PrZozb-SggaeeLJYA77vP0CUgeISKZwXXcHD4ko0H2-IwHMT676_SIzqevFG4Nk7HC7eng3Aa67bT7rXNS3lsg0vHDjFDuRqFNfaGpI3nEI0eEoGE7kBHgcKVsSwgaWtqzaCQswV0eekpJuyEBBCgqnE1Ui5NYbyEcAArjNnCxlHYh1-W-FXIqIdcTVMA_o44albCZLJeRm5sYQzZdo2wExkBgzAiMTero-P2Tl2ITx2_Eh5UGGfiLKYLwWCfjlFkA0CBFtV14w0mlNlY6bvozx-0_UR-ghZuzDru66F7uoEUAWbToW9tFtWw01ntoXr5mg3S0n9vrG3996ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Energy-Efficient+Task+Scheduling+Algorithm+in+DVFS-enabled+Cloud+Environment&rft.jtitle=Journal+of+grid+computing&rft.au=Tang%2C+Zhuo&rft.au=Qi%2C+Ling&rft.au=Cheng%2C+Zhenzhen&rft.au=Li%2C+Kenli&rft.date=2016-03-01&rft.pub=Springer+Netherlands&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=14&rft.issue=1&rft.spage=55&rft.epage=74&rft_id=info:doi/10.1007%2Fs10723-015-9334-y&rft.externalDocID=10_1007_s10723_015_9334_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |