Finding best algorithmic components for clustering microarray data
The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this pr...
Uloženo v:
| Vydáno v: | Knowledge and information systems Ročník 35; číslo 1; s. 111 - 130 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer-Verlag
01.04.2013
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0219-1377, 0219-3116 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms. |
|---|---|
| AbstractList | The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms. The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms.[PUBLICATION ABSTRACT] |
| Author | Vukićević, Milan Kirchner, Kathrin Ruhland, Johannes Jovanović, Miloš Suknović, Milija Delibašić, Boris |
| Author_xml | – sequence: 1 givenname: Milan surname: Vukićević fullname: Vukićević, Milan email: vukicevicm@fon.bg.ac.rs organization: Faculty of Organizational Sciences, University of Belgrade – sequence: 2 givenname: Kathrin surname: Kirchner fullname: Kirchner, Kathrin organization: Faculty of Economics and Business Administration, Friedrich Schiller University of Jena – sequence: 3 givenname: Boris surname: Delibašić fullname: Delibašić, Boris organization: Faculty of Organizational Sciences, University of Belgrade – sequence: 4 givenname: Miloš surname: Jovanović fullname: Jovanović, Miloš organization: Faculty of Organizational Sciences, University of Belgrade – sequence: 5 givenname: Johannes surname: Ruhland fullname: Ruhland, Johannes organization: Faculty of Economics and Business Administration, Friedrich Schiller University of Jena – sequence: 6 givenname: Milija surname: Suknović fullname: Suknović, Milija organization: Faculty of Organizational Sciences, University of Belgrade |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27167155$$DView record in Pascal Francis |
| BookMark | eNp9kUtLBDEQhIMo-PwB3gZE8DLanWwms0cVXyB40XPoyWQ0MpusSfbgvzfDriCCntKQr6orqX227YO3jB0jnCOAukgIiLIG5DXIGa_lFtsDjvNaIDbbmxmFUrtsP6V3AFQN4h67unW-d_616mzKFY2vIbr8tnCmMmGxLDt8TtUQYmXGVco2Tmi5jYFipM-qp0yHbGegMdmjzXnAXm5vnq_v68enu4fry8faCDXPddNK0fdm6EVDyhDZpjPQIbRyRjMrWsvng1JczhVXArreCsKBA2-Htms7VOKAna19lzF8rEpcvXDJ2HEkb8MqaWwUChAzLgp68gt9D6voSzqNAtsWpIKmUKcbipKhcYjkjUt6Gd2C4qfmanKUsnBqzZVnpxTtoI3LlF3wOZIbNYKeOtDrDnTpQE8d6EmJv5Tf5v9p-FqTltNv2_gj-5-iLwQ4mY4 |
| CODEN | KISNCR |
| CitedBy_id | crossref_primary_10_1007_s40745_015_0038_8 crossref_primary_10_1155_2014_859279 crossref_primary_10_1007_s11390_014_1440_y crossref_primary_10_1088_1757_899X_325_1_012001 |
| Cites_doi | 10.1007/s10115-011-0446-9 10.1007/s10115-011-0448-7 10.1145/980972.980974 10.2307/2346830 10.1038/35076576 10.1109/BIBM.2011.97 10.1007/s10115-011-0453-x 10.1109/ICBBE.2009.5162877 10.1186/1748-7188-6-1 10.1109/TIT.1982.1056489 10.1016/j.cor.2009.02.014 10.1007/s10462-009-9133-6 10.1007/s10115-011-0383-7 10.1089/cmb.2008.0201 10.1214/aos/1176344136 10.1007/s10115-011-0420-6 10.1023/A:1023949509487 10.1109/IJCNN.2008.4634333 10.1093/bioinformatics/btm463 10.1137/1.9781611972740.54 10.1109/RBME.2010.2083647 10.1007/978-3-642-04277-5_3 10.1007/s10115-011-0454-9 10.1007/978-1-4757-0450-1 10.1016/j.datak.2009.10.004 10.1080/08839510802170546 10.1109/TAC.1974.1100705 10.1023/A:1009745219419 10.1177/014662168701100401 10.1186/1471-2105-12-1 10.1145/304181.304187 10.1016/S0167-8655(03)00146-6 10.1007/978-3-642-13800-3_10 10.1093/bioinformatics/btl406 10.1093/bioinformatics/btg119 10.1016/0377-0427(87)90125-7 10.1109/34.85677 10.1145/2020408.2020515 10.1038/ng906 10.1016/j.datak.2010.12.002 10.1089/omi.2006.10.507 10.1145/2020408.2020497 10.1080/0144929X.2011.642894 10.1109/ICDM.2011.114 10.2478/v10177-010-0037-9 10.1007/s10115-010-0374-0 10.1016/j.datak.2007.03.016 10.1093/bib/bbn058 10.1093/bioinformatics/btq226 10.1007/s10115-009-0226-y 10.1007/s10115-007-0114-2 10.1109/TSMCC.2010.2053532 10.1002/9780470316801 10.1109/ICDM.2011.50 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Limited 2012 2014 INIST-CNRS Springer-Verlag London 2013 |
| Copyright_xml | – notice: Springer-Verlag London Limited 2012 – notice: 2014 INIST-CNRS – notice: Springer-Verlag London 2013 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10115-012-0542-5 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 0219-3116 |
| EndPage | 130 |
| ExternalDocumentID | 2924039121 27167155 10_1007_s10115_012_0542_5 |
| Genre | Feature |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI Q9U PUEGO |
| ID | FETCH-LOGICAL-c379t-6853ddcfd36a7caae6bc0b10854a4e38e29f7725972730bde3a1f2028f8b8b173 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316570800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Fri Sep 05 14:48:26 EDT 2025 Sat Nov 08 14:32:10 EST 2025 Wed Apr 02 07:14:57 EDT 2025 Sat Nov 29 02:29:19 EST 2025 Tue Nov 18 22:43:18 EST 2025 Fri Feb 21 02:36:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Component-based algorithms Clustering Bioinformatics Microarray data Microbiology Competitiveness DNA chip Algorithmics Cluster Information retrieval Software component Data mining Computer aided design |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-6853ddcfd36a7caae6bc0b10854a4e38e29f7725972730bde3a1f2028f8b8b173 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1318805706 |
| PQPubID | 43394 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1671303423 proquest_journals_1318805706 pascalfrancis_primary_27167155 crossref_citationtrail_10_1007_s10115_012_0542_5 crossref_primary_10_1007_s10115_012_0542_5 springer_journals_10_1007_s10115_012_0542_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Knowledge and information systems |
| PublicationTitleAbbrev | Knowl Inf Syst |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | DembéléDKastnerPFuzzy C-means method for clustering microarray dataBioinformatics20031997398010.1093/bioinformatics/btg119 SavoiuGJaškoOČudanovMDiversity of specific quantitative, statistical and social methods, techniques and management models in management systemManagement20101452513 De Bie T (2011) An information theoretic framework for data mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 564–572 Ene A, Im S, Moseley B (2011) Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 681–689 AndreopoulosBAnAWangXA roadmap of clustering algorithms: finding a match for a biomedical applicationBr Bioinform200910329731410.1093/bib/bbn058 Bonchi F, Gionis A, Ukkonen, A (2011) Overlapping correlation clustering. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 51–60. doi:10.1109/ICDM.2011.114 XuRWunschDCClustering algorithms in biomedical research: a reviewIEEE Rev Biomed Eng2010312015410.1109/RBME.2010.2083647 Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng. doi:10.1016/j.datak.2007.03.016 GeraciFLeonciniMMontangeroMK-boost: a scalable algorithm for high-quality clustering of microarray gene expression dataJ Comput Biol J Comput Mol Cell Biol2009166859873251180410.1089/cmb.2008.0201 Milovanović M, Minović M, Štavljanin V et al (2012) Wiki as a corporate learning tool: case study for software development company. Behav Inf Technol. doi:10.1080/0144929X.2011.642894 SedlakOKocic-VugdelijaVKudumovicMManagement of family farms—Implementation of fuzzy method in short-term planningTech Technol Educ Manag TTEM201054710718 BaralisEBrunoGFloriAMeasuring gene similarity by means of the classification distanceKnowl Inf Syst2011298110110.1007/s10115-010-0374-0 Nascimento A, Prudencio R, de Souto M, et al (2009) Mining rules for the automatic selection process of clustering methods applied to cancer gene expression data. In: Proceedings of the 19th international conference on artificial neural networks: Part II, Springer, Berlin DelibašićBKirchnerKRuhlandJReusable components for partitioning clustering algorithmsArtif Intell Rev200932597510.1007/s10462-009-9133-6 Shao J, Plant C, Yang Q, Böhm C (2011) Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 607–616, doi:10.1109/ICDM.2011.50 Da Silva A, Chiky R, Hébrail G (2011) A clustering approach for sampling data streams in sensor networks. Knowl Inf Syst. doi:10.1007/s10115-011-0448-7 ChenC-LTsengFSCAn integration of WordNet and fuzzy association rule mining for multi-label document clusteringData Knowl Eng2010691112081226 XieXLBeniGA validity measure for fuzzy clusteringIEEE Trans Patt Anal Mach Intell199113884184710.1109/34.85677 HartiganJAClustering algorithms. Probability and mathematical statistics1975New YorkWiley KalogeratosALikasADocument clustering using synthetic cluster prototypesData Knowl Eng201170328430610.1016/j.datak.2010.12.002 MontiSTamayoPMesirovJConsensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray dataMach Learn200352911181039.6810310.1023/A:1023949509487 VinhNXInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ Mach Learn Res2010112837285427387841242.62062 SchwarzGEstimating the dimension of a modelAnn Stat1978624614640379.6200510.1214/aos/1176344136 Piatetsky-ShapiroGTamayoPMicroarray data mining: facing the challengesACM SIGKDD Explor Newsl2003521510.1145/980972.980974 PirimHGautamDBhowmikTPerformance of an ensemble clustering on biological datasetsMath Comput Appl20111618796 SanderJEsterMKriegelHDensity-based clustering in spatial databases: the algorithm GDBSCAN and its applicationsData Min Knowl Disc19982216919410.1023/A:1009745219419 BottouLBengioYTesauroGTouretzkyDConvergence properties of the k-means algorithmsAdvances in neural information processing systems 71995CambridgeMIT Press585592 CheungYk*-means: a new generalized k-means clustering algorithmPattern Recognit Lett20032415288328931073.6873410.1016/S0167-8655(03)00146-6 WuLFHughesTRDavierwalaAPLarge-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clustersNat genet20023125526510.1038/ng906 Ding C, He X (2004) Principal component analysis and effective k-means clustering. In: Proceedings of the SIAM international conference on data mining, pp 497–502 MinovićMMilovanovićMKovačevićIMinovićJStarčevićDGame design as a learning tool for the course of computer NetworksIntern J Eng Educ2011273498508 BelacelNWangQCuperlovic-CulfMClustering methods for microarray gene expression dataOMICS J Integr Biol200610450753110.1089/omi.2006.10.507 RaczynskiLWozniakKRubelTZarembaKApplication of density based clustering to microarray data analysisInt J Electron Telecommun2010563281286 MoiseGZimekAKrögerPSubspace and projected clustering: experimental evaluation and analysisKnowl Inf Syst200921329932610.1007/s10115-009-0226-y Balachandran V, Khemani D (2011) Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl Inf Syst. doi:10.1007/s10115-011-0446-9 NascimentoMCVToledoFMBCarvalhoAInvestigation of a new GRASP-based clustering algorithm applied to biological dataComput Oper Res2010378138113881183.6849410.1016/j.cor.2009.02.014 Yan Y, Chen L, Tjhi W-C (2011) Semi-supervised fuzzy co-clustering algorithm for document classification. Knowl Inf Syst. doi:10.1007/s10115-011-0454-9 Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning, vol 17, Morgan Kaufmann, Los Altos, pp 727–734 ForestierGGançarskiPWemmertCCollaborative clustering with background knowledgeData Knowl Eng201069221122810.1016/j.datak.2009.10.004 Dhiraj K, Rath SK (2009) Gene expression analysis using clustering. In: Proceedings of 3rd international conference on bioinformatics and, biomedical engineering, pp 154–163 GrujicMAndrejiováMMarasováDUsing principal components analysis and clustering analysis to assess the similarity between conveyor beltsTech Technol Educ Manag TTEM201271410 AyadiWElloumiMHaoJKBicFinder: a biclustering algorithm for microarray data analysisKnowl Inf Syst20123034135810.1007/s10115-011-0383-7 Jovanović M, Delibašić B, Vukićević M, et al (2011) Optimizing performance of decision tree component-based algorithms using evolutionary algorithms in Rapid Miner. In: proceedings of the 2nd RapidMiner community meeting and conference, Dublin Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231 MilliganGWCooperMCMethodology review: clustering methodsAppl Psychol Meas198711432935410.1177/014662168701100401 Ankerst M, Breunig M, Kriegel H, et al (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD’99 international conference on management of data. Philadelphia, pp 49–60 Dang H-X, Bailey J (2010) A hierarchical information theoretic technique for the discovery of non linear alternative clusterings. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2010, pp 573–582 Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. doi:10.1109/TAC.1974.1100705 Iam-onNBoongoenTGarrettSLCE: a link-based cluster ensemble method for improved gene expression data analysisBioinformatics2010261513151910.1093/bioinformatics/btq226 ThalamuthuAMukhopadhyayIZhengXEvaluation and comparison of gene clustering methods in microarray analysisBioinformatics2006222405241210.1093/bioinformatics/btl406 Vukicevic M, Delibasic B, Jovanovic M, Suknovic M, Obradovic Z (2011) Internal evaluation measures as proxies for external indices in clustering gene expression data. In: Proceedings of the 2011 IEEE international conference on bioinformatics and biomedicine (BIBM11). Atlanta, 12–15 Nov Smith-Miles K (2008) Towards insightful algorithm selection for optimization using meta-learning concepts. In: Proceedings of the IEEE international joint conference on neural networks, pp 4118–4124 YuZWongH-SWangHGraph-based consensus clustering for class discovery from gene expression dataBioinformatics2007232888289610.1093/bioinformatics/btm463 QuackenbushJComputational analysis of microarray dataNat Rev Genet2001241842710.1038/35076576 KumarPWasanSKComparative analysis of k-mean based algorithmsIntl J Comput Sci Netw Secur2010104314318 LloydSLeast squares quantization in PCMIEEE Trans Inf Theory19822821291376518070504.9401510.1109/TIT.1982.1056489 PuneraKGhoshJConsensus-based ensembles of soft clusteringsAppl Artif Intell20082278081010.1080/08839510802170546 Wijaya A, Kalousis M, Hilario M (2010) Predicting classifier performance using data set descriptors and data mining ontology. In: Proceedings of the 3rd planning to learn workshop Wan M, Jönsson A, Wang C, Li L, Yang Y (2011) Web user clustering and web prefetching using random indexing with weight functions. Knowl Inf Syst. doi:10.1007/s10115-011-0453-x Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (SODA ’07), society for industrial and applied mathematics, Philadelphia, pp 1027–1035 de Souto MCP, Prudencio RBC, Soares RGF et al (2008) Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the IEEE inter N Belacel (542_CR11) 2006; 10 542_CR2 542_CR1 H Pirim (542_CR50) 2011; 16 542_CR5 542_CR4 L Bottou (542_CR13) 1995 R Xu (542_CR71) 2010; 3 S Monti (542_CR44) 2003; 52 542_CR7 542_CR59 542_CR14 542_CR58 542_CR12 O Sedlak (542_CR60) 2010; 5 D Dembélé (542_CR21) 2003; 19 J Sander (542_CR56) 1998; 2 P Kumar (542_CR37) 2010; 10 A Thalamuthu (542_CR63) 2006; 22 JC Bezdek (542_CR10) 1981 LF Wu (542_CR68) 2002; 31 542_CR19 Y Cheung (542_CR15) 2003; 24 542_CR18 542_CR17 542_CR16 542_CR25 542_CR24 542_CR23 C Romero (542_CR53) 2011; 40 542_CR67 542_CR22 542_CR66 542_CR65 542_CR62 542_CR61 A Kalogeratos (542_CR38) 2011; 70 G Savoiu (542_CR55) 2010; 14 J Quackenbush (542_CR51) 2001; 2 B Delibašić (542_CR20) 2009; 32 F Geraci (542_CR27) 2009; 16 JA Hartigan (542_CR33) 1979; 28 K Punera (542_CR49) 2008; 22 E Baralis (542_CR8) 2011; 29 MCV Nascimento (542_CR46) 2010; 37 542_CR29 542_CR28 542_CR36 M Minović (542_CR42) 2011; 27 542_CR35 G Schwarz (542_CR57) 1978; 6 542_CR31 G Moise (542_CR43) 2009; 21 542_CR72 NX Vinh (542_CR64) 2010; 11 B Andreopoulos (542_CR3) 2009; 10 PJ Rousseeuw (542_CR54) 1987; 20 Z Yu (542_CR73) 2007; 23 GW Milligan (542_CR40) 1987; 11 XL Xie (542_CR70) 1991; 13 X Wu (542_CR69) 2007; 14 AE Baya (542_CR9) 2011; 12 L Raczynski (542_CR52) 2010; 56 542_CR47 N Iam-on (542_CR34) 2010; 26 542_CR45 W Ayadi (542_CR6) 2012; 30 G Forestier (542_CR26) 2010; 69 G Piatetsky-Shapiro (542_CR48) 2003; 5 M Grujic (542_CR30) 2012; 7 S Lloyd (542_CR39) 1982; 28 542_CR41 JA Hartigan (542_CR32) 1975 |
| References_xml | – reference: DembéléDKastnerPFuzzy C-means method for clustering microarray dataBioinformatics20031997398010.1093/bioinformatics/btg119 – reference: Dhiraj K, Rath SK (2009) Gene expression analysis using clustering. In: Proceedings of 3rd international conference on bioinformatics and, biomedical engineering, pp 154–163 – reference: Iam-onNBoongoenTGarrettSLCE: a link-based cluster ensemble method for improved gene expression data analysisBioinformatics2010261513151910.1093/bioinformatics/btq226 – reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.6205910.1016/0377-0427(87)90125-7 – reference: Shaham E, Sarne D, Ben-Moshe B (2011) Sleeved co-clustering of lagged data. Knowl Inf Syst. doi:10.1007/s10115-011-0420-6 – reference: HartiganJAClustering algorithms. Probability and mathematical statistics1975New YorkWiley – reference: Shao J, Plant C, Yang Q, Böhm C (2011) Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 607–616, doi:10.1109/ICDM.2011.50 – reference: Nascimento A, Prudencio R, de Souto M, et al (2009) Mining rules for the automatic selection process of clustering methods applied to cancer gene expression data. In: Proceedings of the 19th international conference on artificial neural networks: Part II, Springer, Berlin – reference: PirimHGautamDBhowmikTPerformance of an ensemble clustering on biological datasetsMath Comput Appl20111618796 – reference: LloydSLeast squares quantization in PCMIEEE Trans Inf Theory19822821291376518070504.9401510.1109/TIT.1982.1056489 – reference: BelacelNWangQCuperlovic-CulfMClustering methods for microarray gene expression dataOMICS J Integr Biol200610450753110.1089/omi.2006.10.507 – reference: Balachandran V, Khemani D (2011) Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl Inf Syst. doi:10.1007/s10115-011-0446-9 – reference: NascimentoMCVToledoFMBCarvalhoAInvestigation of a new GRASP-based clustering algorithm applied to biological dataComput Oper Res2010378138113881183.6849410.1016/j.cor.2009.02.014 – reference: GrujicMAndrejiováMMarasováDUsing principal components analysis and clustering analysis to assess the similarity between conveyor beltsTech Technol Educ Manag TTEM201271410 – reference: Da Silva A, Chiky R, Hébrail G (2011) A clustering approach for sampling data streams in sensor networks. Knowl Inf Syst. doi:10.1007/s10115-011-0448-7 – reference: WuXKumarVQuinlanJRTop 10 algorithms in data miningKnowl Inf Syst200714113710.1007/s10115-007-0114-2 – reference: BayaAEGranittoPMClustering gene expression data with a penalized graph-based metricBMC bioinf20111211810.1186/1471-2105-12-2 – reference: Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. doi:10.1109/TAC.1974.1100705 – reference: SonnenburgSBraunMOngCSThe need for open source software in machine learningJ Mach Learn Res2007824432466 – reference: de Souto MCP, Prudencio RBC, Soares RGF et al (2008) Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the IEEE international joint conference on neural networks, pp 3729–3735. doi:10.1109/IJCNN.2008.4634333 – reference: RaczynskiLWozniakKRubelTZarembaKApplication of density based clustering to microarray data analysisInt J Electron Telecommun2010563281286 – reference: CheungYk*-means: a new generalized k-means clustering algorithmPattern Recognit Lett20032415288328931073.6873410.1016/S0167-8655(03)00146-6 – reference: DelibašićBKirchnerKRuhlandJReusable components for partitioning clustering algorithmsArtif Intell Rev200932597510.1007/s10462-009-9133-6 – reference: Ding C, He X (2004) Principal component analysis and effective k-means clustering. In: Proceedings of the SIAM international conference on data mining, pp 497–502 – reference: SavoiuGJaškoOČudanovMDiversity of specific quantitative, statistical and social methods, techniques and management models in management systemManagement20101452513 – reference: De Bie T (2011) An information theoretic framework for data mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 564–572 – reference: VinhNXInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ Mach Learn Res2010112837285427387841242.62062 – reference: RomeroCVenturaSEducational data mining: a review of the state-of-the-artIEEE Trans Syst Man Cybern C Appl Rev201140660161810.1109/TSMCC.2010.2053532 – reference: MinovićMMilovanovićMKovačevićIMinovićJStarčevićDGame design as a learning tool for the course of computer NetworksIntern J Eng Educ2011273498508 – reference: MontiSTamayoPMesirovJConsensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray dataMach Learn200352911181039.6810310.1023/A:1023949509487 – reference: WuLFHughesTRDavierwalaAPLarge-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clustersNat genet20023125526510.1038/ng906 – reference: Wan M, Jönsson A, Wang C, Li L, Yang Y (2011) Web user clustering and web prefetching using random indexing with weight functions. Knowl Inf Syst. doi:10.1007/s10115-011-0453-x – reference: XieXLBeniGA validity measure for fuzzy clusteringIEEE Trans Patt Anal Mach Intell199113884184710.1109/34.85677 – reference: Ankerst M, Breunig M, Kriegel H, et al (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD’99 international conference on management of data. Philadelphia, pp 49–60 – reference: BottouLBengioYTesauroGTouretzkyDConvergence properties of the k-means algorithmsAdvances in neural information processing systems 71995CambridgeMIT Press585592 – reference: AyadiWElloumiMHaoJKBicFinder: a biclustering algorithm for microarray data analysisKnowl Inf Syst20123034135810.1007/s10115-011-0383-7 – reference: QuackenbushJComputational analysis of microarray dataNat Rev Genet2001241842710.1038/35076576 – reference: Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning, vol 17, Morgan Kaufmann, Los Altos, pp 727–734 – reference: Vukicevic M, Delibasic B, Jovanovic M, Suknovic M, Obradovic Z (2011) Internal evaluation measures as proxies for external indices in clustering gene expression data. In: Proceedings of the 2011 IEEE international conference on bioinformatics and biomedicine (BIBM11). Atlanta, 12–15 Nov – reference: PuneraKGhoshJConsensus-based ensembles of soft clusteringsAppl Artif Intell20082278081010.1080/08839510802170546 – reference: SedlakOKocic-VugdelijaVKudumovicMManagement of family farms—Implementation of fuzzy method in short-term planningTech Technol Educ Manag TTEM201054710718 – reference: Hamerly G, Elkan C (2003) Learning the k in k-means. In: Proceedings of the neural information processing systems, vol 17 – reference: KalogeratosALikasADocument clustering using synthetic cluster prototypesData Knowl Eng201170328430610.1016/j.datak.2010.12.002 – reference: SanderJEsterMKriegelHDensity-based clustering in spatial databases: the algorithm GDBSCAN and its applicationsData Min Knowl Disc19982216919410.1023/A:1009745219419 – reference: KumarPWasanSKComparative analysis of k-mean based algorithmsIntl J Comput Sci Netw Secur2010104314318 – reference: XuRWunschDCClustering algorithms in biomedical research: a reviewIEEE Rev Biomed Eng2010312015410.1109/RBME.2010.2083647 – reference: Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (SODA ’07), society for industrial and applied mathematics, Philadelphia, pp 1027–1035 – reference: ChenC-LTsengFSCAn integration of WordNet and fuzzy association rule mining for multi-label document clusteringData Knowl Eng2010691112081226 – reference: Jovanović M, Delibašić B, Vukićević M, et al (2011) Optimizing performance of decision tree component-based algorithms using evolutionary algorithms in Rapid Miner. In: proceedings of the 2nd RapidMiner community meeting and conference, Dublin – reference: MilliganGWCooperMCMethodology review: clustering methodsAppl Psychol Meas198711432935410.1177/014662168701100401 – reference: GeraciFLeonciniMMontangeroMK-boost: a scalable algorithm for high-quality clustering of microarray gene expression dataJ Comput Biol J Comput Mol Cell Biol2009166859873251180410.1089/cmb.2008.0201 – reference: YuZWongH-SWangHGraph-based consensus clustering for class discovery from gene expression dataBioinformatics2007232888289610.1093/bioinformatics/btm463 – reference: MoiseGZimekAKrögerPSubspace and projected clustering: experimental evaluation and analysisKnowl Inf Syst200921329932610.1007/s10115-009-0226-y – reference: Piatetsky-ShapiroGTamayoPMicroarray data mining: facing the challengesACM SIGKDD Explor Newsl2003521510.1145/980972.980974 – reference: Wijaya A, Kalousis M, Hilario M (2010) Predicting classifier performance using data set descriptors and data mining ontology. In: Proceedings of the 3rd planning to learn workshop – reference: Giancarlo R, Lo Bosco G, Pinello L (2010) Distance functions, clustering algorithms and microarray data analysis. In: Blum C, Battiti R (eds) Learning and intelligent, optimization, vol 6073, pp 125–138 – reference: Milovanović M, Minović M, Štavljanin V et al (2012) Wiki as a corporate learning tool: case study for software development company. Behav Inf Technol. doi:10.1080/0144929X.2011.642894 – reference: Yan Y, Chen L, Tjhi W-C (2011) Semi-supervised fuzzy co-clustering algorithm for document classification. Knowl Inf Syst. doi:10.1007/s10115-011-0454-9 – reference: Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231 – reference: ForestierGGançarskiPWemmertCCollaborative clustering with background knowledgeData Knowl Eng201069221122810.1016/j.datak.2009.10.004 – reference: Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng. doi:10.1016/j.datak.2007.03.016 – reference: BezdekJCPattern recognition With fuzzy objective function algorithms1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1 – reference: HartiganJAWongMAA K-means clustering algorithmAppl Stat1979281001080447.6206210.2307/2346830 – reference: AndreopoulosBAnAWangXA roadmap of clustering algorithms: finding a match for a biomedical applicationBr Bioinform200910329731410.1093/bib/bbn058 – reference: Dang H-X, Bailey J (2010) A hierarchical information theoretic technique for the discovery of non linear alternative clusterings. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2010, pp 573–582 – reference: SchwarzGEstimating the dimension of a modelAnn Stat1978624614640379.6200510.1214/aos/1176344136 – reference: Bonchi F, Gionis A, Ukkonen, A (2011) Overlapping correlation clustering. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 51–60. doi:10.1109/ICDM.2011.114 – reference: Ene A, Im S, Moseley B (2011) Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 681–689 – reference: Smith-Miles K (2008) Towards insightful algorithm selection for optimization using meta-learning concepts. In: Proceedings of the IEEE international joint conference on neural networks, pp 4118–4124 – reference: BaralisEBrunoGFloriAMeasuring gene similarity by means of the classification distanceKnowl Inf Syst2011298110110.1007/s10115-010-0374-0 – reference: ThalamuthuAMukhopadhyayIZhengXEvaluation and comparison of gene clustering methods in microarray analysisBioinformatics2006222405241210.1093/bioinformatics/btl406 – reference: Giancarlo R, Utro F (2011) Speeding up the consensus clustering methodology for microarray data analysis. Algorithms Mol Biol AMB 6(1). doi:10.1186/1748-7188-6-1 – reference: Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York – ident: 542_CR7 doi: 10.1007/s10115-011-0446-9 – ident: 542_CR16 doi: 10.1007/s10115-011-0448-7 – volume: 5 start-page: 1 issue: 2 year: 2003 ident: 542_CR48 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/980972.980974 – volume: 28 start-page: 100 year: 1979 ident: 542_CR33 publication-title: Appl Stat doi: 10.2307/2346830 – volume: 2 start-page: 418 year: 2001 ident: 542_CR51 publication-title: Nat Rev Genet doi: 10.1038/35076576 – ident: 542_CR5 – ident: 542_CR65 doi: 10.1109/BIBM.2011.97 – ident: 542_CR61 – ident: 542_CR66 doi: 10.1007/s10115-011-0453-x – ident: 542_CR22 doi: 10.1109/ICBBE.2009.5162877 – ident: 542_CR28 doi: 10.1186/1748-7188-6-1 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 542_CR39 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 37 start-page: 1381 issue: 8 year: 2010 ident: 542_CR46 publication-title: Comput Oper Res doi: 10.1016/j.cor.2009.02.014 – volume: 32 start-page: 59 year: 2009 ident: 542_CR20 publication-title: Artif Intell Rev doi: 10.1007/s10462-009-9133-6 – ident: 542_CR17 – volume: 30 start-page: 341 year: 2012 ident: 542_CR6 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0383-7 – volume: 16 start-page: 859 issue: 6 year: 2009 ident: 542_CR27 publication-title: J Comput Biol J Comput Mol Cell Biol doi: 10.1089/cmb.2008.0201 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 542_CR57 publication-title: Ann Stat doi: 10.1214/aos/1176344136 – ident: 542_CR35 – ident: 542_CR59 doi: 10.1007/s10115-011-0420-6 – volume: 11 start-page: 2837 year: 2010 ident: 542_CR64 publication-title: J Mach Learn Res – volume: 14 start-page: 5 issue: 52 year: 2010 ident: 542_CR55 publication-title: Management – ident: 542_CR31 – volume: 52 start-page: 91 year: 2003 ident: 542_CR44 publication-title: Mach Learn doi: 10.1023/A:1023949509487 – ident: 542_CR19 doi: 10.1109/IJCNN.2008.4634333 – ident: 542_CR25 – ident: 542_CR62 – volume: 23 start-page: 2888 year: 2007 ident: 542_CR73 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm463 – ident: 542_CR23 doi: 10.1137/1.9781611972740.54 – volume-title: Clustering algorithms. Probability and mathematical statistics year: 1975 ident: 542_CR32 – volume: 3 start-page: 120 year: 2010 ident: 542_CR71 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2010.2083647 – ident: 542_CR45 doi: 10.1007/978-3-642-04277-5_3 – ident: 542_CR72 doi: 10.1007/s10115-011-0454-9 – ident: 542_CR14 – volume-title: Pattern recognition With fuzzy objective function algorithms year: 1981 ident: 542_CR10 doi: 10.1007/978-1-4757-0450-1 – volume: 7 start-page: 4 issue: 1 year: 2012 ident: 542_CR30 publication-title: Tech Technol Educ Manag TTEM – volume: 69 start-page: 211 issue: 2 year: 2010 ident: 542_CR26 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2009.10.004 – volume: 22 start-page: 780 year: 2008 ident: 542_CR49 publication-title: Appl Artif Intell doi: 10.1080/08839510802170546 – volume: 10 start-page: 314 issue: 4 year: 2010 ident: 542_CR37 publication-title: Intl J Comput Sci Netw Secur – ident: 542_CR2 doi: 10.1109/TAC.1974.1100705 – volume: 2 start-page: 169 issue: 2 year: 1998 ident: 542_CR56 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009745219419 – ident: 542_CR67 – volume: 27 start-page: 498 issue: 3 year: 2011 ident: 542_CR42 publication-title: Intern J Eng Educ – ident: 542_CR47 – volume: 11 start-page: 329 issue: 4 year: 1987 ident: 542_CR40 publication-title: Appl Psychol Meas doi: 10.1177/014662168701100401 – volume: 12 start-page: 1 year: 2011 ident: 542_CR9 publication-title: BMC bioinf doi: 10.1186/1471-2105-12-1 – ident: 542_CR4 doi: 10.1145/304181.304187 – volume: 24 start-page: 2883 issue: 15 year: 2003 ident: 542_CR15 publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(03)00146-6 – ident: 542_CR29 doi: 10.1007/978-3-642-13800-3_10 – volume: 22 start-page: 2405 year: 2006 ident: 542_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl406 – volume: 19 start-page: 973 year: 2003 ident: 542_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – volume: 20 start-page: 53 year: 1987 ident: 542_CR54 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 13 start-page: 841 issue: 8 year: 1991 ident: 542_CR70 publication-title: IEEE Trans Patt Anal Mach Intell doi: 10.1109/34.85677 – ident: 542_CR24 doi: 10.1145/2020408.2020515 – volume: 31 start-page: 255 year: 2002 ident: 542_CR68 publication-title: Nat genet doi: 10.1038/ng906 – volume: 70 start-page: 284 issue: 3 year: 2011 ident: 542_CR38 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2010.12.002 – volume: 10 start-page: 507 issue: 4 year: 2006 ident: 542_CR11 publication-title: OMICS J Integr Biol doi: 10.1089/omi.2006.10.507 – ident: 542_CR18 doi: 10.1145/2020408.2020497 – start-page: 585 volume-title: Advances in neural information processing systems 7 year: 1995 ident: 542_CR13 – ident: 542_CR41 doi: 10.1080/0144929X.2011.642894 – volume: 5 start-page: 710 issue: 4 year: 2010 ident: 542_CR60 publication-title: Tech Technol Educ Manag TTEM – ident: 542_CR12 doi: 10.1109/ICDM.2011.114 – volume: 56 start-page: 281 issue: 3 year: 2010 ident: 542_CR52 publication-title: Int J Electron Telecommun doi: 10.2478/v10177-010-0037-9 – volume: 29 start-page: 81 year: 2011 ident: 542_CR8 publication-title: Knowl Inf Syst doi: 10.1007/s10115-010-0374-0 – ident: 542_CR1 doi: 10.1016/j.datak.2007.03.016 – volume: 10 start-page: 297 issue: 3 year: 2009 ident: 542_CR3 publication-title: Br Bioinform doi: 10.1093/bib/bbn058 – volume: 26 start-page: 1513 year: 2010 ident: 542_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq226 – volume: 21 start-page: 299 issue: 3 year: 2009 ident: 542_CR43 publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0226-y – volume: 16 start-page: 87 issue: 1 year: 2011 ident: 542_CR50 publication-title: Math Comput Appl – volume: 14 start-page: 1 issue: 1 year: 2007 ident: 542_CR69 publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0114-2 – volume: 40 start-page: 601 issue: 6 year: 2011 ident: 542_CR53 publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2010.2053532 – ident: 542_CR36 doi: 10.1002/9780470316801 – ident: 542_CR58 doi: 10.1109/ICDM.2011.50 |
| SSID | ssj0017611 |
| Score | 1.9907478 |
| Snippet | The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 111 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Arrays Bioinformatics Biological and medical sciences Biotechnology Cluster analysis Clustering Computer Science Computer science; control theory; systems Data analysis Data mining Data Mining and Knowledge Discovery Data processing. List processing. Character string processing Database Management Datasets Design engineering Diagnostic systems Exact sciences and technology Fundamental and applied biological sciences. Psychology Gene expression Genes Genetic engineering Genetic technics Information Storage and Retrieval Information systems Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Memory organisation. Data processing Methods. Procedures. Technologies Microbiology Molecular and cellular biology Molecular genetics Regular Paper Software Studies Tasks Theoretical computing |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcEBCjKcojClInEARfaxLe0IwMXGAiQOg3aokTWHS1o11Q-LfY3ftxpDgwrlxksZx_Dl2bIAzX6HQCFtw_Co4aijNpa1Cjsre92RoYpln-3y5F51O0O2Gj8WFW1aEVZZnYn5Qx0NNd-SXjkeZw3xhN69G75yqRpF3tSihsQprhGwopO_Bbs29CGii5xXzUCo5ZdYrvZqzp3NIgYa0yxG0oD22pJc2RzLDJUpmtS2WwOcPf2muhtrV__7ANmwVAJRdz3bMDqyYdBeqZXEHVsj6Hty0e_mDF6ZwCCb7r9jX5G3Q04yi0IcpBWAwRLxM96eUbIGaDii6T47H8pNR5Ok-PLdvn1p3vCi4wLUnwglvou6OY53EXlMKLaVpKm0rep_QkA3jBcYNE0TjaIMg6LFVbDzpJC4ilCRQgXKEdwCVFCdwCCxRduJoxDthw5AJF_rK0QmCOeMLbVxjgV0ud6SLbORUFKMfLfIoE4ci5FBEHIp8C87nJKNZKo6_GteXeDincNFAFAiiLKiVbIoKsc2iBY8sOJ1_RoEjL4pMzXCKbZDcyxMnWnBRboZvXfw2o6O_BzyGDTevtEFBQTWoTMZTcwLr-mPSy8b1fF9_AcWz_QI priority: 102 providerName: ProQuest |
| Title | Finding best algorithmic components for clustering microarray data |
| URI | https://link.springer.com/article/10.1007/s10115-012-0542-5 https://www.proquest.com/docview/1318805706 https://www.proquest.com/docview/1671303423 |
| Volume | 35 |
| WOSCitedRecordID | wos000316570800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 0219-3116 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: 7WY dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 0219-3116 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: M0C dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 0219-3116 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: P5Z dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 0219-3116 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: K7- dateStart: 20020101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 0219-3116 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-c80EQv8XqHBF8UgL9WJf2UWVDUMeYOqcvJUlTHeyLrhP877107dxEBX0JlFxCuOR6v-O-AE5cgULDTEZxllHUUJJyU_gUlb3rcF-FPK322b5hjYbX6fjNLI97nEe75y7J9E89l-yG6AVNX5sizEALqgBF1Hae7tfQumvPXAdol6dt8lAUqS6nl7syv9tiQRmtjfgY-RJNG1osIM4vTtJU99Q3_nXqTVjPoCY5n76NLVhSg23YyNs4kEyqd-Ci3k1TW4jAUxDeexnG3eS135VEx5sPBzrUgiC2JbI30WUVNGlfx_HxOObvRMeY7sJDvXZ_eUWz1gpUOsxPaBW1dBjKKHSqnEnOVVVIU-hMhAqvKMdTth8h7kZrA-GNKULlcCuyEYtEnvCExZw9WB7gAfaBRMKMLInIxq8obaz5rrBkhLBNuUwqWxlg5jwOZFZ3XLe_6AWfFZM1jwLkUaB5FLgGnM6WjKZFN34jLi9c3GyFjaYgQ7hkQCm_ySAT0HFgOboQncvMqgHHs2kULe0v4QM1nCANLnfSEokGnOW3O7fFTyc6-BP1IazaaYsNHQ1UguUknqgjWJFvSXccl6HAHp_KULyoNZot_LpmFMdb8xLHpvtcTt_-B1cU97o |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4tUIlKqNBC1dAFjNReQBZJvImTA0JAuwLtdtUDRdyC7TjtSvvqPlrxp_obO5PH0kUqNw6c_YgTf575JjOeAfgQaDw00pUcWyVHDWW4cnXMUdkHQsU2VXm2z-u27HSim5v4aw3-VHdhKKyykom5oE6Hhv6RH3mCMocF0g1PRj85VY0i72pVQqOARcve_UaTbXJ8-Qn396PvNz9fnV_wsqoAN0LGUx6igkpTk6UiVNIoZUNtXE1B-A3VsCKyfpwh5USijZrd1akVyst8VMNZpCPtSYHzLsFKQ0SSzlVL8rnXQoZ5vV9UmzGnTH6VF7W4qofcCw13nyNJQvtvQQ-ujdQEtyQramkskN0H_tlc7TXXn9sH24BXJcFmp8WJeA01O3gD61XxClbKsk04a3bzCz1M4ysx1fuOa5_-6HcNoyj74YACTBgyemZ6M0omQV37FL2oxmN1xyiydgu-PcmbvIXlAS7gHbBMu5lnkM_FDUsmahxoz2RIVm0gjfWtA261vYkps61T0Y9ecp8nmhCRICISQkQSOHAwHzIqUo081nl3ATPzET4awBJJogP1ChZJKZYmyT0mHNifN6NAIS-RGtjhDPvgcJEnhnTgsALfP1P8b0Xbjz9wD1Yvrr60k_Zlp_UeXvp5VREKgKrD8nQ8szvwwvyadifj3fxMMbh9akz-BWdVWjo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZTxsxEB5RQBUS4miLWE4j0ZdWFntk19kHhLgiECjKA1SoL1vba0OkkIQcIP4av46ZPQJBKm888OxjvevPM9_sjGcAtkOFh0a4gmOr4KihNJeuijkq-zCQsUlllu3zz7mo16tXV3FjAp7KuzAUVlnKxExQpx1N_8h3vIAyh4XCjXZsERbROKrtde84VZAiT2tZTiOHyJl5fEDzrb97eoR7_dP3a8cXhye8qDDAdSDiAY9QWaWptmkQSaGlNJHSrqKA_IqsmKBq_Ngi_UTSjVreVakJpGd9VMm2qqrKEwHO-wWmBNqYFE7YCP-OPBgiymr_ogqNOWX1Kz2q-bU95GFoxPscCRPagmM6cbYr-7g9Nq-rMUZ83_hqMxVYm__MH28B5grizfbzk7IIE6b9DebLohaskHHf4aDWzC76MIWvx2TrGtc-uLltakbR9502BZ4wZPpMt4aUZIK63lJUo-z15COjiNsfcPkhb7IEk21cwDIwq1zraeR5ccWQ6RqHytMWSawJhTa-ccAttzrRRRZ2KgbSSl7yRxM6EkRHQuhIQgd-jYZ08xQk73XeGMPPaISPhrFA8ujAWgmRpBBX_eQFHw5sjZpR0JD3SLZNZ4h9cHiQJYx04HcJxFdT_G9FK-8_cBO-IhST89P62SrM-FmxEYqLWoPJQW9o1mFa3w-a_d5GdrwY_PtoSD4DYYZjXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+best+algorithmic+components+for+clustering+microarray+data&rft.jtitle=Knowledge+and+information+systems&rft.au=Vuki%C4%87evi%C4%87%2C+Milan&rft.au=Kirchner%2C+Kathrin&rft.au=Deliba%C5%A1i%C4%87%2C+Boris&rft.au=Jovanovi%C4%87%2C+Milo%C5%A1&rft.date=2013-04-01&rft.pub=Springer-Verlag&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=35&rft.issue=1&rft.spage=111&rft.epage=130&rft_id=info:doi/10.1007%2Fs10115-012-0542-5&rft.externalDocID=10_1007_s10115_012_0542_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |