Finding best algorithmic components for clustering microarray data

The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge and information systems Ročník 35; číslo 1; s. 111 - 130
Hlavní autoři: Vukićević, Milan, Kirchner, Kathrin, Delibašić, Boris, Jovanović, Miloš, Ruhland, Johannes, Suknović, Milija
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer-Verlag 01.04.2013
Springer
Springer Nature B.V
Témata:
ISSN:0219-1377, 0219-3116
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms.
AbstractList The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms.
The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and disease diagnostic, researchers have found the construction of good algorithms a surprisingly difficult task. In this paper, we address this problem by using a component-based approach for clustering algorithm design, for class retrieval from microarray data. The idea is to break up existing algorithms into independent building blocks for typical sub-problems, which are in turn reassembled in new ways to generate yet unexplored methods. As a test, 432 algorithms were generated and evaluated on published microarray data sets. We found their top performers to be better than the original, component-providing ancestors and also competitive with a set of new algorithms recently proposed. Finally, we identified components that showed consistently good performance for clustering microarray data and that should be considered in further development of clustering algorithms.[PUBLICATION ABSTRACT]
Author Vukićević, Milan
Kirchner, Kathrin
Ruhland, Johannes
Jovanović, Miloš
Suknović, Milija
Delibašić, Boris
Author_xml – sequence: 1
  givenname: Milan
  surname: Vukićević
  fullname: Vukićević, Milan
  email: vukicevicm@fon.bg.ac.rs
  organization: Faculty of Organizational Sciences, University of Belgrade
– sequence: 2
  givenname: Kathrin
  surname: Kirchner
  fullname: Kirchner, Kathrin
  organization: Faculty of Economics and Business Administration, Friedrich Schiller University of Jena
– sequence: 3
  givenname: Boris
  surname: Delibašić
  fullname: Delibašić, Boris
  organization: Faculty of Organizational Sciences, University of Belgrade
– sequence: 4
  givenname: Miloš
  surname: Jovanović
  fullname: Jovanović, Miloš
  organization: Faculty of Organizational Sciences, University of Belgrade
– sequence: 5
  givenname: Johannes
  surname: Ruhland
  fullname: Ruhland, Johannes
  organization: Faculty of Economics and Business Administration, Friedrich Schiller University of Jena
– sequence: 6
  givenname: Milija
  surname: Suknović
  fullname: Suknović, Milija
  organization: Faculty of Organizational Sciences, University of Belgrade
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27167155$$DView record in Pascal Francis
BookMark eNp9kUtLBDEQhIMo-PwB3gZE8DLanWwms0cVXyB40XPoyWQ0MpusSfbgvzfDriCCntKQr6orqX227YO3jB0jnCOAukgIiLIG5DXIGa_lFtsDjvNaIDbbmxmFUrtsP6V3AFQN4h67unW-d_616mzKFY2vIbr8tnCmMmGxLDt8TtUQYmXGVco2Tmi5jYFipM-qp0yHbGegMdmjzXnAXm5vnq_v68enu4fry8faCDXPddNK0fdm6EVDyhDZpjPQIbRyRjMrWsvng1JczhVXArreCsKBA2-Htms7VOKAna19lzF8rEpcvXDJ2HEkb8MqaWwUChAzLgp68gt9D6voSzqNAtsWpIKmUKcbipKhcYjkjUt6Gd2C4qfmanKUsnBqzZVnpxTtoI3LlF3wOZIbNYKeOtDrDnTpQE8d6EmJv5Tf5v9p-FqTltNv2_gj-5-iLwQ4mY4
CODEN KISNCR
CitedBy_id crossref_primary_10_1007_s40745_015_0038_8
crossref_primary_10_1155_2014_859279
crossref_primary_10_1007_s11390_014_1440_y
crossref_primary_10_1088_1757_899X_325_1_012001
Cites_doi 10.1007/s10115-011-0446-9
10.1007/s10115-011-0448-7
10.1145/980972.980974
10.2307/2346830
10.1038/35076576
10.1109/BIBM.2011.97
10.1007/s10115-011-0453-x
10.1109/ICBBE.2009.5162877
10.1186/1748-7188-6-1
10.1109/TIT.1982.1056489
10.1016/j.cor.2009.02.014
10.1007/s10462-009-9133-6
10.1007/s10115-011-0383-7
10.1089/cmb.2008.0201
10.1214/aos/1176344136
10.1007/s10115-011-0420-6
10.1023/A:1023949509487
10.1109/IJCNN.2008.4634333
10.1093/bioinformatics/btm463
10.1137/1.9781611972740.54
10.1109/RBME.2010.2083647
10.1007/978-3-642-04277-5_3
10.1007/s10115-011-0454-9
10.1007/978-1-4757-0450-1
10.1016/j.datak.2009.10.004
10.1080/08839510802170546
10.1109/TAC.1974.1100705
10.1023/A:1009745219419
10.1177/014662168701100401
10.1186/1471-2105-12-1
10.1145/304181.304187
10.1016/S0167-8655(03)00146-6
10.1007/978-3-642-13800-3_10
10.1093/bioinformatics/btl406
10.1093/bioinformatics/btg119
10.1016/0377-0427(87)90125-7
10.1109/34.85677
10.1145/2020408.2020515
10.1038/ng906
10.1016/j.datak.2010.12.002
10.1089/omi.2006.10.507
10.1145/2020408.2020497
10.1080/0144929X.2011.642894
10.1109/ICDM.2011.114
10.2478/v10177-010-0037-9
10.1007/s10115-010-0374-0
10.1016/j.datak.2007.03.016
10.1093/bib/bbn058
10.1093/bioinformatics/btq226
10.1007/s10115-009-0226-y
10.1007/s10115-007-0114-2
10.1109/TSMCC.2010.2053532
10.1002/9780470316801
10.1109/ICDM.2011.50
ContentType Journal Article
Copyright Springer-Verlag London Limited 2012
2014 INIST-CNRS
Springer-Verlag London 2013
Copyright_xml – notice: Springer-Verlag London Limited 2012
– notice: 2014 INIST-CNRS
– notice: Springer-Verlag London 2013
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10115-012-0542-5
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 0219-3116
EndPage 130
ExternalDocumentID 2924039121
27167155
10_1007_s10115_012_0542_5
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c379t-6853ddcfd36a7caae6bc0b10854a4e38e29f7725972730bde3a1f2028f8b8b173
IEDL.DBID M0C
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316570800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0219-1377
IngestDate Fri Sep 05 14:48:26 EDT 2025
Sat Nov 08 14:32:10 EST 2025
Wed Apr 02 07:14:57 EDT 2025
Sat Nov 29 02:29:19 EST 2025
Tue Nov 18 22:43:18 EST 2025
Fri Feb 21 02:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Component-based algorithms
Clustering
Bioinformatics
Microarray data
Microbiology
Competitiveness
DNA chip
Algorithmics
Cluster
Information retrieval
Software component
Data mining
Computer aided design
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-6853ddcfd36a7caae6bc0b10854a4e38e29f7725972730bde3a1f2028f8b8b173
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1318805706
PQPubID 43394
PageCount 20
ParticipantIDs proquest_miscellaneous_1671303423
proquest_journals_1318805706
pascalfrancis_primary_27167155
crossref_citationtrail_10_1007_s10115_012_0542_5
crossref_primary_10_1007_s10115_012_0542_5
springer_journals_10_1007_s10115_012_0542_5
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2013
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References DembéléDKastnerPFuzzy C-means method for clustering microarray dataBioinformatics20031997398010.1093/bioinformatics/btg119
SavoiuGJaškoOČudanovMDiversity of specific quantitative, statistical and social methods, techniques and management models in management systemManagement20101452513
De Bie T (2011) An information theoretic framework for data mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 564–572
Ene A, Im S, Moseley B (2011) Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 681–689
AndreopoulosBAnAWangXA roadmap of clustering algorithms: finding a match for a biomedical applicationBr Bioinform200910329731410.1093/bib/bbn058
Bonchi F, Gionis A, Ukkonen, A (2011) Overlapping correlation clustering. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 51–60. doi:10.1109/ICDM.2011.114
XuRWunschDCClustering algorithms in biomedical research: a reviewIEEE Rev Biomed Eng2010312015410.1109/RBME.2010.2083647
Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng. doi:10.1016/j.datak.2007.03.016
GeraciFLeonciniMMontangeroMK-boost: a scalable algorithm for high-quality clustering of microarray gene expression dataJ Comput Biol J Comput Mol Cell Biol2009166859873251180410.1089/cmb.2008.0201
Milovanović M, Minović M, Štavljanin V et al (2012) Wiki as a corporate learning tool: case study for software development company. Behav Inf Technol. doi:10.1080/0144929X.2011.642894
SedlakOKocic-VugdelijaVKudumovicMManagement of family farms—Implementation of fuzzy method in short-term planningTech Technol Educ Manag TTEM201054710718
BaralisEBrunoGFloriAMeasuring gene similarity by means of the classification distanceKnowl Inf Syst2011298110110.1007/s10115-010-0374-0
Nascimento A, Prudencio R, de Souto M, et al (2009) Mining rules for the automatic selection process of clustering methods applied to cancer gene expression data. In: Proceedings of the 19th international conference on artificial neural networks: Part II, Springer, Berlin
DelibašićBKirchnerKRuhlandJReusable components for partitioning clustering algorithmsArtif Intell Rev200932597510.1007/s10462-009-9133-6
Shao J, Plant C, Yang Q, Böhm C (2011) Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 607–616, doi:10.1109/ICDM.2011.50
Da Silva A, Chiky R, Hébrail G (2011) A clustering approach for sampling data streams in sensor networks. Knowl Inf Syst. doi:10.1007/s10115-011-0448-7
ChenC-LTsengFSCAn integration of WordNet and fuzzy association rule mining for multi-label document clusteringData Knowl Eng2010691112081226
XieXLBeniGA validity measure for fuzzy clusteringIEEE Trans Patt Anal Mach Intell199113884184710.1109/34.85677
HartiganJAClustering algorithms. Probability and mathematical statistics1975New YorkWiley
KalogeratosALikasADocument clustering using synthetic cluster prototypesData Knowl Eng201170328430610.1016/j.datak.2010.12.002
MontiSTamayoPMesirovJConsensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray dataMach Learn200352911181039.6810310.1023/A:1023949509487
VinhNXInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ Mach Learn Res2010112837285427387841242.62062
SchwarzGEstimating the dimension of a modelAnn Stat1978624614640379.6200510.1214/aos/1176344136
Piatetsky-ShapiroGTamayoPMicroarray data mining: facing the challengesACM SIGKDD Explor Newsl2003521510.1145/980972.980974
PirimHGautamDBhowmikTPerformance of an ensemble clustering on biological datasetsMath Comput Appl20111618796
SanderJEsterMKriegelHDensity-based clustering in spatial databases: the algorithm GDBSCAN and its applicationsData Min Knowl Disc19982216919410.1023/A:1009745219419
BottouLBengioYTesauroGTouretzkyDConvergence properties of the k-means algorithmsAdvances in neural information processing systems 71995CambridgeMIT Press585592
CheungYk*-means: a new generalized k-means clustering algorithmPattern Recognit Lett20032415288328931073.6873410.1016/S0167-8655(03)00146-6
WuLFHughesTRDavierwalaAPLarge-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clustersNat genet20023125526510.1038/ng906
Ding C, He X (2004) Principal component analysis and effective k-means clustering. In: Proceedings of the SIAM international conference on data mining, pp 497–502
MinovićMMilovanovićMKovačevićIMinovićJStarčevićDGame design as a learning tool for the course of computer NetworksIntern J Eng Educ2011273498508
BelacelNWangQCuperlovic-CulfMClustering methods for microarray gene expression dataOMICS J Integr Biol200610450753110.1089/omi.2006.10.507
RaczynskiLWozniakKRubelTZarembaKApplication of density based clustering to microarray data analysisInt J Electron Telecommun2010563281286
MoiseGZimekAKrögerPSubspace and projected clustering: experimental evaluation and analysisKnowl Inf Syst200921329932610.1007/s10115-009-0226-y
Balachandran V, Khemani D (2011) Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl Inf Syst. doi:10.1007/s10115-011-0446-9
NascimentoMCVToledoFMBCarvalhoAInvestigation of a new GRASP-based clustering algorithm applied to biological dataComput Oper Res2010378138113881183.6849410.1016/j.cor.2009.02.014
Yan Y, Chen L, Tjhi W-C (2011) Semi-supervised fuzzy co-clustering algorithm for document classification. Knowl Inf Syst. doi:10.1007/s10115-011-0454-9
Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning, vol 17, Morgan Kaufmann, Los Altos, pp 727–734
ForestierGGançarskiPWemmertCCollaborative clustering with background knowledgeData Knowl Eng201069221122810.1016/j.datak.2009.10.004
Dhiraj K, Rath SK (2009) Gene expression analysis using clustering. In: Proceedings of 3rd international conference on bioinformatics and, biomedical engineering, pp 154–163
GrujicMAndrejiováMMarasováDUsing principal components analysis and clustering analysis to assess the similarity between conveyor beltsTech Technol Educ Manag TTEM201271410
AyadiWElloumiMHaoJKBicFinder: a biclustering algorithm for microarray data analysisKnowl Inf Syst20123034135810.1007/s10115-011-0383-7
Jovanović M, Delibašić B, Vukićević M, et al (2011) Optimizing performance of decision tree component-based algorithms using evolutionary algorithms in Rapid Miner. In: proceedings of the 2nd RapidMiner community meeting and conference, Dublin
Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231
MilliganGWCooperMCMethodology review: clustering methodsAppl Psychol Meas198711432935410.1177/014662168701100401
Ankerst M, Breunig M, Kriegel H, et al (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD’99 international conference on management of data. Philadelphia, pp 49–60
Dang H-X, Bailey J (2010) A hierarchical information theoretic technique for the discovery of non linear alternative clusterings. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2010, pp 573–582
Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York
Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. doi:10.1109/TAC.1974.1100705
Iam-onNBoongoenTGarrettSLCE: a link-based cluster ensemble method for improved gene expression data analysisBioinformatics2010261513151910.1093/bioinformatics/btq226
ThalamuthuAMukhopadhyayIZhengXEvaluation and comparison of gene clustering methods in microarray analysisBioinformatics2006222405241210.1093/bioinformatics/btl406
Vukicevic M, Delibasic B, Jovanovic M, Suknovic M, Obradovic Z (2011) Internal evaluation measures as proxies for external indices in clustering gene expression data. In: Proceedings of the 2011 IEEE international conference on bioinformatics and biomedicine (BIBM11). Atlanta, 12–15 Nov
Smith-Miles K (2008) Towards insightful algorithm selection for optimization using meta-learning concepts. In: Proceedings of the IEEE international joint conference on neural networks, pp 4118–4124
YuZWongH-SWangHGraph-based consensus clustering for class discovery from gene expression dataBioinformatics2007232888289610.1093/bioinformatics/btm463
QuackenbushJComputational analysis of microarray dataNat Rev Genet2001241842710.1038/35076576
KumarPWasanSKComparative analysis of k-mean based algorithmsIntl J Comput Sci Netw Secur2010104314318
LloydSLeast squares quantization in PCMIEEE Trans Inf Theory19822821291376518070504.9401510.1109/TIT.1982.1056489
PuneraKGhoshJConsensus-based ensembles of soft clusteringsAppl Artif Intell20082278081010.1080/08839510802170546
Wijaya A, Kalousis M, Hilario M (2010) Predicting classifier performance using data set descriptors and data mining ontology. In: Proceedings of the 3rd planning to learn workshop
Wan M, Jönsson A, Wang C, Li L, Yang Y (2011) Web user clustering and web prefetching using random indexing with weight functions. Knowl Inf Syst. doi:10.1007/s10115-011-0453-x
Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (SODA ’07), society for industrial and applied mathematics, Philadelphia, pp 1027–1035
de Souto MCP, Prudencio RBC, Soares RGF et al (2008) Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the IEEE inter
N Belacel (542_CR11) 2006; 10
542_CR2
542_CR1
H Pirim (542_CR50) 2011; 16
542_CR5
542_CR4
L Bottou (542_CR13) 1995
R Xu (542_CR71) 2010; 3
S Monti (542_CR44) 2003; 52
542_CR7
542_CR59
542_CR14
542_CR58
542_CR12
O Sedlak (542_CR60) 2010; 5
D Dembélé (542_CR21) 2003; 19
J Sander (542_CR56) 1998; 2
P Kumar (542_CR37) 2010; 10
A Thalamuthu (542_CR63) 2006; 22
JC Bezdek (542_CR10) 1981
LF Wu (542_CR68) 2002; 31
542_CR19
Y Cheung (542_CR15) 2003; 24
542_CR18
542_CR17
542_CR16
542_CR25
542_CR24
542_CR23
C Romero (542_CR53) 2011; 40
542_CR67
542_CR22
542_CR66
542_CR65
542_CR62
542_CR61
A Kalogeratos (542_CR38) 2011; 70
G Savoiu (542_CR55) 2010; 14
J Quackenbush (542_CR51) 2001; 2
B Delibašić (542_CR20) 2009; 32
F Geraci (542_CR27) 2009; 16
JA Hartigan (542_CR33) 1979; 28
K Punera (542_CR49) 2008; 22
E Baralis (542_CR8) 2011; 29
MCV Nascimento (542_CR46) 2010; 37
542_CR29
542_CR28
542_CR36
M Minović (542_CR42) 2011; 27
542_CR35
G Schwarz (542_CR57) 1978; 6
542_CR31
G Moise (542_CR43) 2009; 21
542_CR72
NX Vinh (542_CR64) 2010; 11
B Andreopoulos (542_CR3) 2009; 10
PJ Rousseeuw (542_CR54) 1987; 20
Z Yu (542_CR73) 2007; 23
GW Milligan (542_CR40) 1987; 11
XL Xie (542_CR70) 1991; 13
X Wu (542_CR69) 2007; 14
AE Baya (542_CR9) 2011; 12
L Raczynski (542_CR52) 2010; 56
542_CR47
N Iam-on (542_CR34) 2010; 26
542_CR45
W Ayadi (542_CR6) 2012; 30
G Forestier (542_CR26) 2010; 69
G Piatetsky-Shapiro (542_CR48) 2003; 5
M Grujic (542_CR30) 2012; 7
S Lloyd (542_CR39) 1982; 28
542_CR41
JA Hartigan (542_CR32) 1975
References_xml – reference: DembéléDKastnerPFuzzy C-means method for clustering microarray dataBioinformatics20031997398010.1093/bioinformatics/btg119
– reference: Dhiraj K, Rath SK (2009) Gene expression analysis using clustering. In: Proceedings of 3rd international conference on bioinformatics and, biomedical engineering, pp 154–163
– reference: Iam-onNBoongoenTGarrettSLCE: a link-based cluster ensemble method for improved gene expression data analysisBioinformatics2010261513151910.1093/bioinformatics/btq226
– reference: RousseeuwPJSilhouettes: a graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math19872053650636.6205910.1016/0377-0427(87)90125-7
– reference: Shaham E, Sarne D, Ben-Moshe B (2011) Sleeved co-clustering of lagged data. Knowl Inf Syst. doi:10.1007/s10115-011-0420-6
– reference: HartiganJAClustering algorithms. Probability and mathematical statistics1975New YorkWiley
– reference: Shao J, Plant C, Yang Q, Böhm C (2011) Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 607–616, doi:10.1109/ICDM.2011.50
– reference: Nascimento A, Prudencio R, de Souto M, et al (2009) Mining rules for the automatic selection process of clustering methods applied to cancer gene expression data. In: Proceedings of the 19th international conference on artificial neural networks: Part II, Springer, Berlin
– reference: PirimHGautamDBhowmikTPerformance of an ensemble clustering on biological datasetsMath Comput Appl20111618796
– reference: LloydSLeast squares quantization in PCMIEEE Trans Inf Theory19822821291376518070504.9401510.1109/TIT.1982.1056489
– reference: BelacelNWangQCuperlovic-CulfMClustering methods for microarray gene expression dataOMICS J Integr Biol200610450753110.1089/omi.2006.10.507
– reference: Balachandran V, Khemani D (2011) Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl Inf Syst. doi:10.1007/s10115-011-0446-9
– reference: NascimentoMCVToledoFMBCarvalhoAInvestigation of a new GRASP-based clustering algorithm applied to biological dataComput Oper Res2010378138113881183.6849410.1016/j.cor.2009.02.014
– reference: GrujicMAndrejiováMMarasováDUsing principal components analysis and clustering analysis to assess the similarity between conveyor beltsTech Technol Educ Manag TTEM201271410
– reference: Da Silva A, Chiky R, Hébrail G (2011) A clustering approach for sampling data streams in sensor networks. Knowl Inf Syst. doi:10.1007/s10115-011-0448-7
– reference: WuXKumarVQuinlanJRTop 10 algorithms in data miningKnowl Inf Syst200714113710.1007/s10115-007-0114-2
– reference: BayaAEGranittoPMClustering gene expression data with a penalized graph-based metricBMC bioinf20111211810.1186/1471-2105-12-2
– reference: Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. doi:10.1109/TAC.1974.1100705
– reference: SonnenburgSBraunMOngCSThe need for open source software in machine learningJ Mach Learn Res2007824432466
– reference: de Souto MCP, Prudencio RBC, Soares RGF et al (2008) Ranking and selecting clustering algorithms using a meta-learning approach. In: Proceedings of the IEEE international joint conference on neural networks, pp 3729–3735. doi:10.1109/IJCNN.2008.4634333
– reference: RaczynskiLWozniakKRubelTZarembaKApplication of density based clustering to microarray data analysisInt J Electron Telecommun2010563281286
– reference: CheungYk*-means: a new generalized k-means clustering algorithmPattern Recognit Lett20032415288328931073.6873410.1016/S0167-8655(03)00146-6
– reference: DelibašićBKirchnerKRuhlandJReusable components for partitioning clustering algorithmsArtif Intell Rev200932597510.1007/s10462-009-9133-6
– reference: Ding C, He X (2004) Principal component analysis and effective k-means clustering. In: Proceedings of the SIAM international conference on data mining, pp 497–502
– reference: SavoiuGJaškoOČudanovMDiversity of specific quantitative, statistical and social methods, techniques and management models in management systemManagement20101452513
– reference: De Bie T (2011) An information theoretic framework for data mining. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 564–572
– reference: VinhNXInformation theoretic measures for clusterings comparison: variants, properties, normalization and correction for chanceJ Mach Learn Res2010112837285427387841242.62062
– reference: RomeroCVenturaSEducational data mining: a review of the state-of-the-artIEEE Trans Syst Man Cybern C Appl Rev201140660161810.1109/TSMCC.2010.2053532
– reference: MinovićMMilovanovićMKovačevićIMinovićJStarčevićDGame design as a learning tool for the course of computer NetworksIntern J Eng Educ2011273498508
– reference: MontiSTamayoPMesirovJConsensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray dataMach Learn200352911181039.6810310.1023/A:1023949509487
– reference: WuLFHughesTRDavierwalaAPLarge-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clustersNat genet20023125526510.1038/ng906
– reference: Wan M, Jönsson A, Wang C, Li L, Yang Y (2011) Web user clustering and web prefetching using random indexing with weight functions. Knowl Inf Syst. doi:10.1007/s10115-011-0453-x
– reference: XieXLBeniGA validity measure for fuzzy clusteringIEEE Trans Patt Anal Mach Intell199113884184710.1109/34.85677
– reference: Ankerst M, Breunig M, Kriegel H, et al (1999) OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD’99 international conference on management of data. Philadelphia, pp 49–60
– reference: BottouLBengioYTesauroGTouretzkyDConvergence properties of the k-means algorithmsAdvances in neural information processing systems 71995CambridgeMIT Press585592
– reference: AyadiWElloumiMHaoJKBicFinder: a biclustering algorithm for microarray data analysisKnowl Inf Syst20123034135810.1007/s10115-011-0383-7
– reference: QuackenbushJComputational analysis of microarray dataNat Rev Genet2001241842710.1038/35076576
– reference: Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning, vol 17, Morgan Kaufmann, Los Altos, pp 727–734
– reference: Vukicevic M, Delibasic B, Jovanovic M, Suknovic M, Obradovic Z (2011) Internal evaluation measures as proxies for external indices in clustering gene expression data. In: Proceedings of the 2011 IEEE international conference on bioinformatics and biomedicine (BIBM11). Atlanta, 12–15 Nov
– reference: PuneraKGhoshJConsensus-based ensembles of soft clusteringsAppl Artif Intell20082278081010.1080/08839510802170546
– reference: SedlakOKocic-VugdelijaVKudumovicMManagement of family farms—Implementation of fuzzy method in short-term planningTech Technol Educ Manag TTEM201054710718
– reference: Hamerly G, Elkan C (2003) Learning the k in k-means. In: Proceedings of the neural information processing systems, vol 17
– reference: KalogeratosALikasADocument clustering using synthetic cluster prototypesData Knowl Eng201170328430610.1016/j.datak.2010.12.002
– reference: SanderJEsterMKriegelHDensity-based clustering in spatial databases: the algorithm GDBSCAN and its applicationsData Min Knowl Disc19982216919410.1023/A:1009745219419
– reference: KumarPWasanSKComparative analysis of k-mean based algorithmsIntl J Comput Sci Netw Secur2010104314318
– reference: XuRWunschDCClustering algorithms in biomedical research: a reviewIEEE Rev Biomed Eng2010312015410.1109/RBME.2010.2083647
– reference: Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (SODA ’07), society for industrial and applied mathematics, Philadelphia, pp 1027–1035
– reference: ChenC-LTsengFSCAn integration of WordNet and fuzzy association rule mining for multi-label document clusteringData Knowl Eng2010691112081226
– reference: Jovanović M, Delibašić B, Vukićević M, et al (2011) Optimizing performance of decision tree component-based algorithms using evolutionary algorithms in Rapid Miner. In: proceedings of the 2nd RapidMiner community meeting and conference, Dublin
– reference: MilliganGWCooperMCMethodology review: clustering methodsAppl Psychol Meas198711432935410.1177/014662168701100401
– reference: GeraciFLeonciniMMontangeroMK-boost: a scalable algorithm for high-quality clustering of microarray gene expression dataJ Comput Biol J Comput Mol Cell Biol2009166859873251180410.1089/cmb.2008.0201
– reference: YuZWongH-SWangHGraph-based consensus clustering for class discovery from gene expression dataBioinformatics2007232888289610.1093/bioinformatics/btm463
– reference: MoiseGZimekAKrögerPSubspace and projected clustering: experimental evaluation and analysisKnowl Inf Syst200921329932610.1007/s10115-009-0226-y
– reference: Piatetsky-ShapiroGTamayoPMicroarray data mining: facing the challengesACM SIGKDD Explor Newsl2003521510.1145/980972.980974
– reference: Wijaya A, Kalousis M, Hilario M (2010) Predicting classifier performance using data set descriptors and data mining ontology. In: Proceedings of the 3rd planning to learn workshop
– reference: Giancarlo R, Lo Bosco G, Pinello L (2010) Distance functions, clustering algorithms and microarray data analysis. In: Blum C, Battiti R (eds) Learning and intelligent, optimization, vol 6073, pp 125–138
– reference: Milovanović M, Minović M, Štavljanin V et al (2012) Wiki as a corporate learning tool: case study for software development company. Behav Inf Technol. doi:10.1080/0144929X.2011.642894
– reference: Yan Y, Chen L, Tjhi W-C (2011) Semi-supervised fuzzy co-clustering algorithm for document classification. Knowl Inf Syst. doi:10.1007/s10115-011-0454-9
– reference: Ester M, Kriegel H, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231
– reference: ForestierGGançarskiPWemmertCCollaborative clustering with background knowledgeData Knowl Eng201069221122810.1016/j.datak.2009.10.004
– reference: Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng. doi:10.1016/j.datak.2007.03.016
– reference: BezdekJCPattern recognition With fuzzy objective function algorithms1981New YorkPlenum Press0503.6806910.1007/978-1-4757-0450-1
– reference: HartiganJAWongMAA K-means clustering algorithmAppl Stat1979281001080447.6206210.2307/2346830
– reference: AndreopoulosBAnAWangXA roadmap of clustering algorithms: finding a match for a biomedical applicationBr Bioinform200910329731410.1093/bib/bbn058
– reference: Dang H-X, Bailey J (2010) A hierarchical information theoretic technique for the discovery of non linear alternative clusterings. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2010, pp 573–582
– reference: SchwarzGEstimating the dimension of a modelAnn Stat1978624614640379.6200510.1214/aos/1176344136
– reference: Bonchi F, Gionis A, Ukkonen, A (2011) Overlapping correlation clustering. In: Proceedings of 11th IEEE international conference on data mining (ICDM), pp 51–60. doi:10.1109/ICDM.2011.114
– reference: Ene A, Im S, Moseley B (2011) Fast clustering using MapReduce. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (KDD) 2011, pp 681–689
– reference: Smith-Miles K (2008) Towards insightful algorithm selection for optimization using meta-learning concepts. In: Proceedings of the IEEE international joint conference on neural networks, pp 4118–4124
– reference: BaralisEBrunoGFloriAMeasuring gene similarity by means of the classification distanceKnowl Inf Syst2011298110110.1007/s10115-010-0374-0
– reference: ThalamuthuAMukhopadhyayIZhengXEvaluation and comparison of gene clustering methods in microarray analysisBioinformatics2006222405241210.1093/bioinformatics/btl406
– reference: Giancarlo R, Utro F (2011) Speeding up the consensus clustering methodology for microarray data analysis. Algorithms Mol Biol AMB 6(1). doi:10.1186/1748-7188-6-1
– reference: Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York
– ident: 542_CR7
  doi: 10.1007/s10115-011-0446-9
– ident: 542_CR16
  doi: 10.1007/s10115-011-0448-7
– volume: 5
  start-page: 1
  issue: 2
  year: 2003
  ident: 542_CR48
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/980972.980974
– volume: 28
  start-page: 100
  year: 1979
  ident: 542_CR33
  publication-title: Appl Stat
  doi: 10.2307/2346830
– volume: 2
  start-page: 418
  year: 2001
  ident: 542_CR51
  publication-title: Nat Rev Genet
  doi: 10.1038/35076576
– ident: 542_CR5
– ident: 542_CR65
  doi: 10.1109/BIBM.2011.97
– ident: 542_CR61
– ident: 542_CR66
  doi: 10.1007/s10115-011-0453-x
– ident: 542_CR22
  doi: 10.1109/ICBBE.2009.5162877
– ident: 542_CR28
  doi: 10.1186/1748-7188-6-1
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 542_CR39
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 37
  start-page: 1381
  issue: 8
  year: 2010
  ident: 542_CR46
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2009.02.014
– volume: 32
  start-page: 59
  year: 2009
  ident: 542_CR20
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-009-9133-6
– ident: 542_CR17
– volume: 30
  start-page: 341
  year: 2012
  ident: 542_CR6
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0383-7
– volume: 16
  start-page: 859
  issue: 6
  year: 2009
  ident: 542_CR27
  publication-title: J Comput Biol J Comput Mol Cell Biol
  doi: 10.1089/cmb.2008.0201
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 542_CR57
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– ident: 542_CR35
– ident: 542_CR59
  doi: 10.1007/s10115-011-0420-6
– volume: 11
  start-page: 2837
  year: 2010
  ident: 542_CR64
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 5
  issue: 52
  year: 2010
  ident: 542_CR55
  publication-title: Management
– ident: 542_CR31
– volume: 52
  start-page: 91
  year: 2003
  ident: 542_CR44
  publication-title: Mach Learn
  doi: 10.1023/A:1023949509487
– ident: 542_CR19
  doi: 10.1109/IJCNN.2008.4634333
– ident: 542_CR25
– ident: 542_CR62
– volume: 23
  start-page: 2888
  year: 2007
  ident: 542_CR73
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm463
– ident: 542_CR23
  doi: 10.1137/1.9781611972740.54
– volume-title: Clustering algorithms. Probability and mathematical statistics
  year: 1975
  ident: 542_CR32
– volume: 3
  start-page: 120
  year: 2010
  ident: 542_CR71
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2010.2083647
– ident: 542_CR45
  doi: 10.1007/978-3-642-04277-5_3
– ident: 542_CR72
  doi: 10.1007/s10115-011-0454-9
– ident: 542_CR14
– volume-title: Pattern recognition With fuzzy objective function algorithms
  year: 1981
  ident: 542_CR10
  doi: 10.1007/978-1-4757-0450-1
– volume: 7
  start-page: 4
  issue: 1
  year: 2012
  ident: 542_CR30
  publication-title: Tech Technol Educ Manag TTEM
– volume: 69
  start-page: 211
  issue: 2
  year: 2010
  ident: 542_CR26
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2009.10.004
– volume: 22
  start-page: 780
  year: 2008
  ident: 542_CR49
  publication-title: Appl Artif Intell
  doi: 10.1080/08839510802170546
– volume: 10
  start-page: 314
  issue: 4
  year: 2010
  ident: 542_CR37
  publication-title: Intl J Comput Sci Netw Secur
– ident: 542_CR2
  doi: 10.1109/TAC.1974.1100705
– volume: 2
  start-page: 169
  issue: 2
  year: 1998
  ident: 542_CR56
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009745219419
– ident: 542_CR67
– volume: 27
  start-page: 498
  issue: 3
  year: 2011
  ident: 542_CR42
  publication-title: Intern J Eng Educ
– ident: 542_CR47
– volume: 11
  start-page: 329
  issue: 4
  year: 1987
  ident: 542_CR40
  publication-title: Appl Psychol Meas
  doi: 10.1177/014662168701100401
– volume: 12
  start-page: 1
  year: 2011
  ident: 542_CR9
  publication-title: BMC bioinf
  doi: 10.1186/1471-2105-12-1
– ident: 542_CR4
  doi: 10.1145/304181.304187
– volume: 24
  start-page: 2883
  issue: 15
  year: 2003
  ident: 542_CR15
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(03)00146-6
– ident: 542_CR29
  doi: 10.1007/978-3-642-13800-3_10
– volume: 22
  start-page: 2405
  year: 2006
  ident: 542_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl406
– volume: 19
  start-page: 973
  year: 2003
  ident: 542_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– volume: 20
  start-page: 53
  year: 1987
  ident: 542_CR54
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 542_CR70
  publication-title: IEEE Trans Patt Anal Mach Intell
  doi: 10.1109/34.85677
– ident: 542_CR24
  doi: 10.1145/2020408.2020515
– volume: 31
  start-page: 255
  year: 2002
  ident: 542_CR68
  publication-title: Nat genet
  doi: 10.1038/ng906
– volume: 70
  start-page: 284
  issue: 3
  year: 2011
  ident: 542_CR38
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2010.12.002
– volume: 10
  start-page: 507
  issue: 4
  year: 2006
  ident: 542_CR11
  publication-title: OMICS J Integr Biol
  doi: 10.1089/omi.2006.10.507
– ident: 542_CR18
  doi: 10.1145/2020408.2020497
– start-page: 585
  volume-title: Advances in neural information processing systems 7
  year: 1995
  ident: 542_CR13
– ident: 542_CR41
  doi: 10.1080/0144929X.2011.642894
– volume: 5
  start-page: 710
  issue: 4
  year: 2010
  ident: 542_CR60
  publication-title: Tech Technol Educ Manag TTEM
– ident: 542_CR12
  doi: 10.1109/ICDM.2011.114
– volume: 56
  start-page: 281
  issue: 3
  year: 2010
  ident: 542_CR52
  publication-title: Int J Electron Telecommun
  doi: 10.2478/v10177-010-0037-9
– volume: 29
  start-page: 81
  year: 2011
  ident: 542_CR8
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-010-0374-0
– ident: 542_CR1
  doi: 10.1016/j.datak.2007.03.016
– volume: 10
  start-page: 297
  issue: 3
  year: 2009
  ident: 542_CR3
  publication-title: Br Bioinform
  doi: 10.1093/bib/bbn058
– volume: 26
  start-page: 1513
  year: 2010
  ident: 542_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq226
– volume: 21
  start-page: 299
  issue: 3
  year: 2009
  ident: 542_CR43
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0226-y
– volume: 16
  start-page: 87
  issue: 1
  year: 2011
  ident: 542_CR50
  publication-title: Math Comput Appl
– volume: 14
  start-page: 1
  issue: 1
  year: 2007
  ident: 542_CR69
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– volume: 40
  start-page: 601
  issue: 6
  year: 2011
  ident: 542_CR53
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2010.2053532
– ident: 542_CR36
  doi: 10.1002/9780470316801
– ident: 542_CR58
  doi: 10.1109/ICDM.2011.50
SSID ssj0017611
Score 1.9906415
Snippet The analysis of microarray data is fundamental to microbiology. Although clustering has long been realized as central to the discovery of gene functions and...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Arrays
Bioinformatics
Biological and medical sciences
Biotechnology
Cluster analysis
Clustering
Computer Science
Computer science; control theory; systems
Data analysis
Data mining
Data Mining and Knowledge Discovery
Data processing. List processing. Character string processing
Database Management
Datasets
Design engineering
Diagnostic systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gene expression
Genes
Genetic engineering
Genetic technics
Information Storage and Retrieval
Information systems
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Memory organisation. Data processing
Methods. Procedures. Technologies
Microbiology
Molecular and cellular biology
Molecular genetics
Regular Paper
Software
Studies
Tasks
Theoretical computing
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60ehDE-sRoLSt4UhaSbJqkRxWLpyK-6C3sbjYa6Iu0Ffz3zqRJbEUFPWd2d5jdyXzDvADOhHLCWLptbifG5p6KFZde4HLHU0aghijb1_mwiaDbDXu99l1Rxz0ps93LkGT-p14odkP0gq6vyxFmoAe1Cmto7UKa13D_8FyFDtAvz8fk4UGc2umVoczvtlgyRptjOUG5JPOBFkuI80uQNLc9nfq_uN6GrQJqssv529iBFTPchXo5xoEVWr0HV500L21hCrlgsv8yytLp6yDVjPLNR0NKtWCIbZnuz6itApEOKI9PZpl8Z5Rjug9PnZvH61tejFbgWgTtKffRSsexTmLhy0BLaXylbUWVCJ70jAiN204Qd6O3gfDGVrER0klcxCJJqELlBOIAakNk4BAYElKwE2GaVp4wgdKEGgxCm9ilRE8L7FLGkS76jtP4i3702TGZZBShjCKSUdSy4LxaMp433fiNuLl0cdUKPN0PEC5Z0ChvMioUdBI5ghrRtQLbt-C0-oyqRfESOTSjGdLgcpG3SLTgorzdhS1-4ujoT9THsOHmIzYoG6gBtWk2Myewrt-m6SRr5m_7Awkd8Xw
  priority: 102
  providerName: Springer Nature
Title Finding best algorithmic components for clustering microarray data
URI https://link.springer.com/article/10.1007/s10115-012-0542-5
https://www.proquest.com/docview/1318805706
https://www.proquest.com/docview/1671303423
Volume 35
WOSCitedRecordID wos000316570800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: 7WY
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: M0C
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: P5Z
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: K7-
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0219-3116
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017611
  issn: 0219-1377
  databaseCode: RSV
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68HgTxFuuxRPBJCbZNt-k-iYqLIC6Lt76UJE11YS_3EPz3znTb1RX0xZdCaa5mcnyTmcwHsC-0FyXKr3A3tS4PdKK5CqTPvUBbgTNEu6HJyCZkrRY9Plbq-YFbP3erLNbEbKFOOobOyI88QZHDytINj7tvnFijyLqaU2hMwywhG3Lpu3LPxlYEVNEzxjysk1NkvcKqObo6hzlQkfY5ghbUxyb2pYWu6mMXpSNuiwnw-cNemm1D1aX__sAyLOYAlJ2MRswKTNn2KiwV5A4sn-trcFptZBdemMYqmGq-YFmD11bDMPJC77TJAYMh4mWmOaRgC5S0Rd59qtdTH4w8T9fhrnp-e3bBc8IFboSsDHiIe3eSmDQRoZJGKRtq42q6nxCowIrI-pUU0TjqIAh6XJ1YobzUR4SSRjrSnhQbMNPGBmwCw4RkAkXwZnQgrNSGsIRFwJP45P7pgFt0d2zyaOREitGMv-Iok4RilFBMEorLDhyMs3RHoTj-SlyakOE4B9YeSgRRDuwUYorzaduPv2TkwN74M044sqKotu0MMQ1mF1ngRAcOi8HwrYjfWrT1d4XbMO9nTBvkFLQDM4Pe0O7CnHkfNPq9EkzLh6cSzJ6e1-rX-HYpeSkb6_isl5_xeX1z_wn-6wG0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkkBCBUoRaXkYqb0UWU3sECeHquK1Ai1d9UAlbqntOO1Ky-6yDyr-FL-RmTyWbiW4ceAcO3HizzOfM-P5AD5KE8SZFgn3c-fz0GSG61AJHoTGSVwhxo9sITahWq346ir5MQP39VkYSqusbWJhqLOepX_kXwJJlcMOlB99699wUo2i6GotoVHCounu_uKWbfj1_ATn95MQjdPL4zNeqQpwK1Uy4hE6qCyzeSYjrazWLjLWN5SEH-rQydiJJEfKiUQbPbtvMid1kAt0w3lsYhMoifedhflQxorWVVPxSdRCRYXeL7rNhFMlvzqKWh7VQ-6FG3fBkSTh_m_KDy739RCnJC-1NKbI7n_x2cLtNVZe2wdbhTcVwWaH5YpYgxnXfQsrtXgFq2zZOhw12sWBHmbwlZju_Maxj_5cty2jLPtelxJMGDJ6ZjtjKiZBTa8pe1EPBvqOUWbtO_j5Im-yAXNdHMAmMGxIIV4kp9aE0iljiSs5JHSZoPRWD_x6elNbVVsn0Y9O-lgnmhCRIiJSQkR64MHnSZd-WWrkucY7U5iZ9MCnRwpJogdbNSzSyiwN00dMeLA3uYwGhaJEuut6Y2yD3WVRGNKD_Rp8_9ziqRG9f_6Bu7B4dvn9Ir04bzU_wJIoVEUoAWoL5kaDsduGBXs7ag8HO8WaYvDrpTH5ACYWWU8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xEkJCBfoQaXkYCS6tLBI7GyeHCvHoqohqtQeQUC-p7TjtSsvuso8i_hq_rjN5LGylcuPQc-zEiT_PfM58ngHYlyaIMy0S7ufO56HJDNehEjwIjZO4Qowf2aLYhGq14uvrpD0HD_VZGJJV1jaxMNRZ39I_8sNAUuawhvKjw7ySRbTPmkeDW04VpCjSWpfTKCFy4e7vcPs2-nx-hnN9IETzy-XpV15VGOBWqmTMI3RWWWbzTEZaWa1dZKxvSJAf6tDJ2IkkR_qJpBu9vG8yJ3WQC3TJeWxiEyiJ952HRYV7TJITthvfpxEMFRW1f9GFJpyy-tUR1fLYHvIw3MQLjoQJ94IzPnF1oEc4PXlZV2OG-P4Vqy1cYHPtf_546_CqIt7suFwpGzDneq9hrS5qwSob9wZOmp3ioA8z-HpMd3_i2Me_bjqWkfq-3yPhCUOmz2x3QkkmqOkNqRr1cKjvGSlu38LVi7zJO1jo4QA2gWFDCv0iabUmlE4ZSxzKIdHLBMlePfDrqU5tlYWdioF008f80YSOFNGREjrShgcfp10GZQqS5xrvzOBn2gOfHikkjx5s1RBJK3M1Sh_x4cHe9DIaGooe6Z7rT7ANdpdFwkgPPtVAfHKLf43o_fMP3IVlhGL67bx18QFWRFFshHRRW7AwHk7cNizZ3-POaLhTLC8GP14akn8AG2Jicw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+best+algorithmic+components+for+clustering+microarray+data&rft.jtitle=Knowledge+and+information+systems&rft.au=VUKICEVIC%2C+Milan&rft.au=KIRCHNER%2C+Kathrin&rft.au=DELIBASIC%2C+Boris&rft.au=JOVANOVIC%2C+Milo%C5%A1&rft.date=2013-04-01&rft.pub=Springer&rft.issn=0219-1377&rft.volume=35&rft.issue=1&rft.spage=111&rft.epage=130&rft_id=info:doi/10.1007%2Fs10115-012-0542-5&rft.externalDBID=n%2Fa&rft.externalDocID=27167155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon