Neural network design for data-driven prediction of target geometry for an aerodynamic inverse design algorithm

With the current advancements in artificial intelligence and machine learning, data has become a powerful tool for major improvements in various fields. In the field of aerodynamic design, most algorithms utilize an iterative method to reach their target function or geometry due to their robustness....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mechanical science and technology Ročník 38; číslo 8; s. 3899 - 3919
Hlavní autori: Shirvani, Ahmad, Nili-Ahmadabadi, Mahdi, Ha, Man Yeong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Seoul Korean Society of Mechanical Engineers 01.08.2024
Springer Nature B.V
대한기계학회
Predmet:
ISSN:1738-494X, 1976-3824
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the current advancements in artificial intelligence and machine learning, data has become a powerful tool for major improvements in various fields. In the field of aerodynamic design, most algorithms utilize an iterative method to reach their target function or geometry due to their robustness. Deep learning models enable us to exploit the data generated during those iterations to leverage the design algorithm. In this paper, design procedures and guidelines were presented for the use of multilayer feedforward neural network (MFNN) and long-short term memory (LSTM) network to predict the target geometry with early generated data of the design algorithm to reduce its computational cost. The impact of various parameters and hyperparameters on the quality of the target prediction was discussed and early results were presented for various representations of input data using the NACA-0011 airfoil aerodynamic design data. The results indicated that selecting the appropriate network and hyperparameters can yield a reliable estimate of the target geometry using only 20 % to 30 % of the available data.
AbstractList With the current advancements in artificial intelligence and machine learning, data has become a powerful tool for major improvements in various fields. In the field of aerodynamic design, most algorithms utilize an iterative method to reach their target function or geometry due to their robustness. Deep learning models enable us to exploit the data generated during those iterations to leverage the design algorithm. In this paper, design procedures and guidelines were presented for the use of multilayer feedforward neural network (MFNN) and long-short term memory (LSTM) network to predict the target geometry with early generated data of the design algorithm to reduce its computational cost. The impact of various parameters and hyperparameters on the quality of the target prediction was discussed and early results were presented for various representations of input data using the NACA-0011 airfoil aerodynamic design data. The results indicated that selecting the appropriate network and hyperparameters can yield a reliable estimate of the target geometry using only 20 % to 30 % of the available data.
With the current advancements in artificial intelligence and machine learning, data has become a powerful tool for major improvements in various fields. In the field of aerodynamic design, most algorithms utilize an iterative method to reach their target function or geometry due to their robustness. Deep learning models enable us to exploit the data generated during those iterations to leverage the design algorithm. In this paper, design procedures and guidelines were presented for the use of multilayer feedforward neural network (MFNN) and long-short term memory (LSTM) network to predict the target geometry with early generated data of the design algorithm to reduce its computational cost. The impact of various parameters and hyperparameters on the quality of the target prediction was discussed and early results were presented for various representations of input data using the NACA-0011 airfoil aerodynamic design data. The results indicated that selecting the appropriate network and hyperparameters can yield a reliable estimate of the target geometry using only 20 % to 30 % of the available data. KCI Citation Count: 0
Author Ha, Man Yeong
Shirvani, Ahmad
Nili-Ahmadabadi, Mahdi
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Shirvani
  fullname: Shirvani, Ahmad
  organization: Department of Mechanical Engineering, Isfahan University of Technology
– sequence: 2
  givenname: Mahdi
  surname: Nili-Ahmadabadi
  fullname: Nili-Ahmadabadi, Mahdi
  email: m.nili@iut.ac.ir
  organization: Department of Mechanical Engineering, Isfahan University of Technology
– sequence: 3
  givenname: Man Yeong
  surname: Ha
  fullname: Ha, Man Yeong
  email: myha@pusan.ac.kr
  organization: School of Mechanical Engineering, Pusan National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106550$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kd1rFDEUxYNUsK3-Ab4FfBOmzcdMPh5L8aNQFKSCbyE7uRnT3U3Wm2xl_3tnO4og2Kd7H37n3MM9Z-QklwyEvObsgjOmLysXgqmOib4TnPWdfkZOudWqk0b0J_Oupel62397Qc5qvWdMiZ7zU1I-wR79hmZoPwuuaYCapkxjQRp8813A9ACZ7hBCGlsqmZZIm8cJGp2gbKHh4ZH2mXrAEg7Zb9NIU34ArPDHz2-mgql9374kz6PfVHj1e56Tr-_f3V1_7G4_f7i5vrrtRqlt65SIjAfQgSu54sEYNqyCsoONITDLoB9VUEas7Gi8BTHwfmBSRG69UobzKM_J28U3Y3TrMbni0-Ociluju_pyd-M4G8wwKDbDbxZ4h-XHHmpz92WPec7npNCDlMIo_STFjDVKMKNmSi_UiKVWhOjG1Pzxcw192sxH3bEwtxTm5sLcsTB39Of_KHeYth4PT2rEoqkzmyfAv5n-L_oF3AKpSw
CitedBy_id crossref_primary_10_1063_5_0256126
Cites_doi 10.1109/TIM.2023.3317485
10.1016/j.compfluid.2005.01.003
10.1016/0020-0190(87)90114-1
10.1162/neco.1992.4.3.448
10.1177/09544100231201215
10.2514/1.C037405
10.1016/j.apenergy.2023.121941
10.1016/j.ast.2018.12.008
10.1007/978-3-642-77735-6_2
10.1016/j.ast.2023.108614
10.1115/1.2841318
10.1016/0017-9310(95)00332-0
10.1073/pnas.2101784118
10.2514/6.2015-2460
10.1016/j.ast.2020.105820
10.1016/j.ast.2023.108637
10.1007/978-3-642-77735-6
10.1016/j.nucengdes.2023.112582
10.1016/j.compfluid.2014.06.005
10.1016/j.ast.2021.106787
10.1016/0376-0421(95)00011-9
10.1016/S0893-6080(96)00127-X
10.1214/088342304000000099
10.1016/j.ast.2021.106845
10.1006/jcph.2002.7146
10.1080/19942060.2023.2237611
10.1016/j.cja.2023.09.002
10.1016/j.aej.2021.01.034
10.1007/978-1-4612-0745-0
10.1016/S1000-9361(11)60263-X
10.1109/TPAMI.2013.50
10.1016/0893-6080(89)90020-8
10.1162/neco.1989.1.1.151
10.1162/neco.1997.9.8.1735
10.1007/BF01931367
ContentType Journal Article
Copyright The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Copyright Springer Nature B.V. 2024
The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024
– notice: Copyright Springer Nature B.V. 2024
– notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
7TB
8FD
FR3
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
ACYCR
DOI 10.1007/s12206-024-2104-7
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Proquest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Korean Citation Index
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Technology Collection
Technology Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3824
EndPage 3919
ExternalDocumentID oai_kci_go_kr_ARTI_10585560
10_1007_s12206_024_2104_7
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
6NX
8FE
8FG
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LLZTM
M7S
MA-
MK~
ML~
MZR
NDZJH
NF0
NPVJJ
NQJWS
O9-
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PTHSS
Q2X
QOS
R89
R9I
RHV
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TDB
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZZE
~A9
AAYXX
AFFHD
ARAPS
CITATION
7TB
8FD
FR3
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ACYCR
ID FETCH-LOGICAL-c379t-62f01de7d163b1d8805bd6959fdd090e4c6d682b9c8a9e25145032f19a66811f3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251496000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1738-494X
IngestDate Thu Jul 10 08:45:38 EDT 2025
Thu Nov 27 04:13:10 EST 2025
Wed Sep 17 23:57:56 EDT 2025
Sat Nov 29 08:18:52 EST 2025
Tue Nov 18 21:44:12 EST 2025
Mon Jul 21 06:10:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Aerodynamic design
Deep learning
Neural network design
Data-driven computational cost reduction
Target prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-62f01de7d163b1d8805bd6959fdd090e4c6d682b9c8a9e25145032f19a66811f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3275332867
PQPubID 326249
PageCount 21
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10585560
proquest_journals_3275332867
proquest_journals_3089862086
crossref_citationtrail_10_1007_s12206_024_2104_7
crossref_primary_10_1007_s12206_024_2104_7
springer_journals_10_1007_s12206_024_2104_7
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of mechanical science and technology
PublicationTitleAbbrev J Mech Sci Technol
PublicationYear 2024
Publisher Korean Society of Mechanical Engineers
Springer Nature B.V
대한기계학회
Publisher_xml – name: Korean Society of Mechanical Engineers
– name: Springer Nature B.V
– name: 대한기계학회
References H Sobieczky (2104_CR4) 2000
A Blumer (2104_CR34) 1987; 24
K Jambunathan (2104_CR29) 1996; 39
P Kumar (2104_CR24) 2023; 237
R M Neal (2104_CR40) 1996
Y Li (2104_CR3) 2023; 413
Q Yang (2104_CR7) 2006; 19
A Shirvani (2104_CR17) 2023; 17
Y Zhu (2104_CR8) 2019; 233
Z Song (2104_CR13) 2023; 142
S Zhou (2104_CR15) 2023; 352
M Milano (2104_CR26) 2002; 182
A J Torregrosa (2104_CR25) 2021; 115
2104_CR5
P Werbos (2104_CR19) 1974
Y Ju (2104_CR14) 2021; 115
E Branlard (2104_CR2) 2022; 2265
S Linnainmaa (2104_CR21) 1976; 16
Y Bengio (2104_CR33) 2013; 35
F Chen (2104_CR1) 2023; 142
K Hornik (2104_CR22) 1989; 2
D M Titterington (2104_CR41) 2004; 19
O Watanabe (2104_CR37) 1992
2104_CR38
X Du (2104_CR6) 2019; 85
M Ferlauto (2104_CR10) 2006; 35
E Allender (2104_CR35) 1992
H Zhao (2104_CR18) 2023; 72
2104_CR30
M Nili-Ahmadabadi (2104_CR11) 2021; 60
P Jackson (2104_CR20) 1999
2104_CR32
C Xue (2104_CR9) 2020; 102
2104_CR12
M Safari (2104_CR31) 2014; 102
E B Baum (2104_CR42) 1989; 1
D Kochkov (2104_CR16) 2021; 118
W E Faller (2104_CR28) 1996; 32
S Pierret (2104_CR27) 1999; 121
D J C MacKay (2104_CR39) 1992; 4
J Schmidhuber (2104_CR36) 1997; 10
S Hochreiter (2104_CR23) 1997; 9
References_xml – volume: 72
  start-page: 4507014
  year: 2023
  ident: 2104_CR18
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2023.3317485
– volume: 35
  start-page: 304
  issue: 3
  year: 2006
  ident: 2104_CR10
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2005.01.003
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  ident: 2104_CR34
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 2104_CR39
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.448
– volume: 237
  start-page: 3619
  issue: 16
  year: 2023
  ident: 2104_CR24
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
  doi: 10.1177/09544100231201215
– ident: 2104_CR12
  doi: 10.2514/1.C037405
– volume: 352
  start-page: 121941
  year: 2023
  ident: 2104_CR15
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2023.121941
– volume: 85
  start-page: 371
  year: 2019
  ident: 2104_CR6
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2018.12.008
– start-page: 4
  volume-title: Kolmogorov Complexity and Computational Complexity
  year: 1992
  ident: 2104_CR35
  doi: 10.1007/978-3-642-77735-6_2
– volume: 142
  start-page: 108614
  year: 2023
  ident: 2104_CR1
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2023.108614
– volume: 121
  start-page: 326
  issue: 2
  year: 1999
  ident: 2104_CR27
  publication-title: Journal of Turbomachinery
  doi: 10.1115/1.2841318
– volume: 39
  start-page: 2329
  issue: 11
  year: 1996
  ident: 2104_CR29
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(95)00332-0
– volume-title: Beyond regression: new tools for prediction and analysis in the behavioral sciences
  year: 1974
  ident: 2104_CR19
– volume: 118
  start-page: e210178 4118
  issue: 21
  year: 2021
  ident: 2104_CR16
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2101784118
– volume-title: Introduction to Expert Systems
  year: 1999
  ident: 2104_CR20
– ident: 2104_CR30
  doi: 10.2514/6.2015-2460
– volume: 102
  start-page: 105820
  year: 2020
  ident: 2104_CR9
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2020.105820
– volume: 233
  start-page: 431
  issue: 4
  year: 2019
  ident: 2104_CR8
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
– volume: 142
  start-page: 108637
  year: 2023
  ident: 2104_CR13
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2023.108637
– volume-title: Kolmogorov Complexity and Computational Complexity
  year: 1992
  ident: 2104_CR37
  doi: 10.1007/978-3-642-77735-6
– volume: 413
  start-page: 112582
  year: 2023
  ident: 2104_CR3
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2023.112582
– volume: 102
  start-page: 41
  year: 2014
  ident: 2104_CR31
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2014.06.005
– volume: 2265
  start-page: 032044
  issue: 3
  year: 2022
  ident: 2104_CR2
  publication-title: J. Phys.: Conf. Ser.
– volume: 115
  start-page: 106787
  year: 2021
  ident: 2104_CR14
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2021.106787
– volume: 32
  start-page: 433
  issue: 5
  year: 1996
  ident: 2104_CR28
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/0376-0421(95)00011-9
– ident: 2104_CR32
– volume-title: New Design Concepts for High Speed Air Transport
  year: 2000
  ident: 2104_CR4
– volume: 10
  start-page: 857
  issue: 5
  year: 1997
  ident: 2104_CR36
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00127-X
– volume: 19
  start-page: 128
  issue: 1
  year: 2004
  ident: 2104_CR41
  publication-title: Statist. Sci.
  doi: 10.1214/088342304000000099
– volume: 115
  start-page: 106845
  year: 2021
  ident: 2104_CR25
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2021.106845
– volume: 182
  start-page: 1
  issue: 1
  year: 2002
  ident: 2104_CR26
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2002.7146
– volume: 17
  start-page: 2237611
  issue: 1
  year: 2023
  ident: 2104_CR17
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2023.2237611
– ident: 2104_CR5
  doi: 10.1016/j.cja.2023.09.002
– volume: 60
  start-page: 3021
  issue: 3
  year: 2021
  ident: 2104_CR11
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.01.034
– volume-title: Bayesian Learning for Neural Networks
  year: 1996
  ident: 2104_CR40
  doi: 10.1007/978-1-4612-0745-0
– volume: 19
  start-page: 24
  issue: 1
  year: 2006
  ident: 2104_CR7
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/S1000-9361(11)60263-X
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 2104_CR33
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– ident: 2104_CR38
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 2104_CR22
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 1
  start-page: 151
  issue: 1
  year: 1989
  ident: 2104_CR42
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.1.151
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 2104_CR23
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 16
  start-page: 146
  issue: 2
  year: 1976
  ident: 2104_CR21
  publication-title: BIT
  doi: 10.1007/BF01931367
SSID ssj0062411
Score 2.3474138
Snippet With the current advancements in artificial intelligence and machine learning, data has become a powerful tool for major improvements in various fields. In the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3899
SubjectTerms Aerodynamics
Algorithms
Artificial intelligence
Artificial neural networks
Computational efficiency
Control
Deep learning
Design parameters
Dynamical Systems
Engineering
Geometry
Impact prediction
Industrial and Production Engineering
Inverse design
Iterative methods
Machine learning
Mechanical Engineering
Multilayers
Network design
Neural networks
Original Article
Vibration
기계공학
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc48EYsFGQJTiCLxHHs-IQAtQIJrSoE0t6sxI_tqm2yZNNK_Htm8mgpgl445eCxZekbj7_JjGcAXsXURYe8gGe58hRmNNyUleRGmyovQ1kE3T8U_qIXi2K5NIfjD7ftmFY52cTeUPvG0T_yt5lAYp2JQul3mx-cukZRdHVsobEDu1SpTM5g98P-4vDrZIsV3k-9y6XxWEsjl1Ncs388JwR500JydHsk11dupp26jVdI5x9x0v76Obj7vxu_B3dG4sneD5pyH26E-gHc_q0c4UNoqFIHytRDajjzfXYHQ1rLKJGU-5ZMI9u0FNwhQFkT2ZBKzlahOQ1d-7OXLmtWBrTMQ7d7tq4p9yNM65UnK9xfd3T6CL4f7H_7-ImPDRm4y7TpuBIxSX3QHklclXo8-nnllclN9D4xSZBOeVWIyriiNAGZk8yTTMTUlEoVaRqzxzCrmzo8AVbFSuoYfeFQysm0cuiIeZGGJKjSJPkckgkM68Zq5dQ048Re1lkm_CziZwk_q-fw-mLKZijVcZ3wS0TYHru1pQLb9F019ri16EZ8xjnoRSEXnMPehKkdz_bWZklh0A9EX_Dvwxd4z-HNpDSXw__c0dPrF3sGtwTpap97uAezrj0Lz-GmO-_W2_bFqPe_AClaCMU
  priority: 102
  providerName: ProQuest
Title Neural network design for data-driven prediction of target geometry for an aerodynamic inverse design algorithm
URI https://link.springer.com/article/10.1007/s12206-024-2104-7
https://www.proquest.com/docview/3089862086
https://www.proquest.com/docview/3275332867
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003106550
Volume 38
WOSCitedRecordID wos001251496000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mechanical Science and Technology, 2024, 38(8), , pp.3899-3919
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1976-3824
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062411
  issn: 1738-494X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9wwFBZN0kN7SNONTpZB0JxaBLYsazkmIaGBMAxJU4ZehKxlOiSxg8cJ9N_3yUunKWmhvdgHP8lC0ls-3qcnhPZDaoOFuIBkOXcxzaiIMgUjSqgiN95IL9qDwmdiMpGzmZr257iXA9t9SEm2lnp12I3SiH4pIwBTGBFraAO8nYzaeH7xZTC_HFxSi7IEaDJTbDakMh_r4oEzWivr8CDO_C012nqckxf_NdYttNkHmPig2xEv0RNfvkLPfyk7-BpVsSIHyJQdBRy7lsWBIXzFkTBKXB1NIL6tYxInLhyuAu4o43juqxvf1N9baVNi48ECd7fa40UZOR5-6M9cz6t60Xy7eYMuT44_H30i_cULxGZCNYTTkKTOCwfBWpE6UPG8cFzlKjiXqMQzyx2XtFBWGuUhQmJ5ktGQKsO5TNOQvUXrZVX6dwgXoWAiBCctSFmWFhYAl6OpTzw3KslHKBlWQNu-Knm8HONar-opx7nUMJc6zqUWI_ThZ5PbriTH34Tfw7LqK7vQsZB2fM8rfVVrgAun0AbQEsR8I7Q7LLvudXips0QqwHuA-R7_TAHpZVRy-MfHYResPv9xRNv_JL2DntG4jVrK4S5ab-o7v4ee2vtmsazHaOPweDI9H0fG6gU8p_nXcasNPwAaOgA9
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbagkQ58EZdKGAJuIAsEsex4wNCCKi66rJCokh7M44fy6rdZMkG0P4pfiNjZ9NSBL31wCkHP5TYn2fmy4xnEHriU-MN2AUky7kNbkZJpC4ZkUKWuXa6cCJeFB6J8biYTOSHDfSzvwsTwip7mRgFta1N-Ef-IqNgWGe04OLV4isJVaOCd7UvodHB4sCtfgBlW74cvoX9fUrp3rvDN_tkXVWAmEzIlnDqk9Q6YcESKVML-M1Ly2UuvbWJTBwz3PKCltIUWjpQ_yxPMupTqTkv0tRnMO8musSC9I-hgh97yc9BG0aCJ0CIMMkmvRc1XtWjNHB3ygiQLEbEGT24WTX-jIn7h1c2Kru96__bMt1A19ZmNX7dnYObaMNVt9DV35It3kZ1yEMCfaou8B3bGLuCwWjHIUyW2CYIfrxogusqwBXXHneB8njq6rlrm1XsrSusHeidVaXnM4NnVYhscf18-ngK69F-md9Bny7ki--iraqu3A7CpS-Z8N4WBnoZlpYGaKalqUsc1zLJByjpN1-ZdS72UBLkWJ1mkQ54UYAXFfCixAA9Oxmy6BKRnNf5MSBKHZmZCunDw3Naq6NGAUkawhjgiGDpDtBujyG1llxLlSWFBJYLTPfvzSf4GqDnPUhPm__5RvfOn-wRurJ_-H6kRsPxwX20TcM5iVGWu2irbb65B-iy-d7Ols3DeOIw-nzR2P0FK_1ing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSE48EYsFLAEXEBWEyex4wNCiLJi1Wq1B5BWXIzjx7JqN1myAbR_jV_HONm0FEFvPXDKwY6VON88vsx4BuCZj4036BfQJOM2hBkllbpIqRSyyLTTuRPtQeFDMR7n06mcbMHP_ixMSKvsdWKrqG1lwj_yvYShY52wnIs9v0mLmOwPXy-_0tBBKkRa-3YaHUQO3PoH0rfVq9E-fuvnjA3ffXj7nm46DFCTCNlQznwUWycseiVFbBHLWWG5zKS3NpKRSw23PGeFNLmWDl2BNIsS5mOpOc_j2Ce47jZcEsgxg3RNsk-9FeBoGVuyJ1ChpDKd9hHV9tgeY4HHs5Qi4UqpOGMTt8van3F3_4jQtoZveON_3rKbcH3jbpM3nXzcgi1X3oZrvxVhvANVqE-Cc8ouIZ7YNqeFoDNPQvostXUwCGRZh5BWgDGpPOkS6MnMVQvX1Ot2ti6JdmiP1qVezA2ZlyHjxfXr6eMZ7kfzZXEXPl7IG9-DnbIq3X0ghS9S4b3NDc4yaVwYpJ-WxS5yXMsoG0DUA0GZTY320CrkWJ1Wlw7YUYgdFbCjxABenNyy7AqUnDf5KaJLHZm5CmXFw3VWqaNaIXka4T3IHdEDHsBujye10WgrlUS5RPaLDPjvwydYG8DLHrCnw_98ogfnL_YEriBk1eFofPAQrrIgMm3y5S7sNPU39wgum-_NfFU_boWPwOeLhu4vt3drgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+design+for+data-driven+prediction+of+target+geometry+for+an+aerodynamic+inverse+design+algorithm&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.au=Shirvani%2C+Ahmad&rft.au=Nili-Ahmadabadi%2C+Mahdi&rft.au=Ha%2C+Man+Yeong&rft.date=2024-08-01&rft.pub=Korean+Society+of+Mechanical+Engineers&rft.issn=1738-494X&rft.eissn=1976-3824&rft.volume=38&rft.issue=8&rft.spage=3899&rft.epage=3919&rft_id=info:doi/10.1007%2Fs12206-024-2104-7&rft.externalDocID=10_1007_s12206_024_2104_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon