A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell

Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durabi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 313; s. 118835
Hlavní autori: Benaggoune, Khaled, Yue, Meiling, Jemei, Samir, Zerhouni, Noureddine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2022
Elsevier
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics. •A dilated CNN is applied for the multi-step-ahead fuel cell degradation prediction.•An attention block is combined to improve the prediction performance.•The prediction performance is compared with three other RNN prediction tools.•A conditional CNN is proposed to improve the long-term prognostics performance.
AbstractList Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics.
Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics. •A dilated CNN is applied for the multi-step-ahead fuel cell degradation prediction.•An attention block is combined to improve the prediction performance.•The prediction performance is compared with three other RNN prediction tools.•A conditional CNN is proposed to improve the long-term prognostics performance.
ArticleNumber 118835
Author Benaggoune, Khaled
Zerhouni, Noureddine
Yue, Meiling
Jemei, Samir
Author_xml – sequence: 1
  givenname: Khaled
  surname: Benaggoune
  fullname: Benaggoune, Khaled
  organization: FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France
– sequence: 2
  givenname: Meiling
  orcidid: 0000-0002-4624-4743
  surname: Yue
  fullname: Yue, Meiling
  email: meiling.yue@femto-st.fr, yueml@bjtu.edu.cn
  organization: School of mechanical, electronic and control engineering, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Samir
  surname: Jemei
  fullname: Jemei, Samir
  organization: FEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, CNRS, Belfort, France
– sequence: 4
  givenname: Noureddine
  surname: Zerhouni
  fullname: Zerhouni, Noureddine
  organization: FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France
BackLink https://hal.science/hal-04154058$$DView record in HAL
BookMark eNqFUU1rGzEUFCWFOGn_QtCxOcjRx35CDjEhbQqGXnIXWunJltmVXEk2yb-vlm0uueT0eO_NDMPMFbrwwQNCN4yuGWXN3WGtjuAh7t7WnHK-ZqzrRP0FrVjXctKX9QKtqKAN4Q3rL9FVSgdKKWecrlDeYKOyIia6M3g8Qd4Hg22IeDqN2ZGU4UjUHpTBxwjG6eyCx8obPAa_IxniVB5h50PKTicc7LzmgoFXvVd-B0VzGqLygO0JRqxhHL-hr1aNCb7_n9fo5efTy-Mz2f759ftxsyVatH0mQlgDvBVsaJnteq4EFaazSoPprWkMrazhdLBVU9lBVz3TQ9t3mhnDq8GAuEa3i-xejfIY3aTimwzKyefNVs43WrG6onV3ZgX7Y8EW939PkLKcXJq9FuPhlCRv2rpuOKtm6P0C1TGkFMFK7bKac8lRuVEyKude5EG-9yLnXuTSS6E3H-jv1j4lPixEKJGdHUSZtANf0nARdJYmuM8k_gF8ZbA1
CitedBy_id crossref_primary_10_1016_j_energy_2025_134899
crossref_primary_10_1109_TTE_2023_3266803
crossref_primary_10_1016_j_ijhydene_2024_02_181
crossref_primary_10_1109_TEC_2024_3489436
crossref_primary_10_1016_j_energy_2024_132634
crossref_primary_10_1109_TTE_2024_3357202
crossref_primary_10_1016_j_enconman_2024_118978
crossref_primary_10_1016_j_renene_2024_121770
crossref_primary_10_1016_j_psep_2025_107674
crossref_primary_10_1109_TEC_2023_3311460
crossref_primary_10_1016_j_renene_2024_121328
crossref_primary_10_1109_TTE_2022_3229716
crossref_primary_10_1016_j_renene_2025_124439
crossref_primary_10_1016_j_isci_2024_110979
crossref_primary_10_1016_j_ijhydene_2024_12_512
crossref_primary_10_1016_j_energy_2024_133995
crossref_primary_10_1016_j_ijhydene_2024_05_048
crossref_primary_10_1016_j_jpowsour_2025_237781
crossref_primary_10_3390_electronics13122335
crossref_primary_10_1016_j_rser_2025_116235
crossref_primary_10_1016_j_ijhydene_2025_02_317
crossref_primary_10_1016_j_renene_2024_120648
crossref_primary_10_3390_en17235855
crossref_primary_10_1016_j_ijhydene_2024_12_067
crossref_primary_10_1016_j_engappai_2024_108186
crossref_primary_10_1016_j_ijhydene_2025_01_079
crossref_primary_10_1016_j_ijhydene_2023_04_143
crossref_primary_10_1016_j_renene_2025_122924
crossref_primary_10_3390_en16124772
crossref_primary_10_3390_e24071009
crossref_primary_10_1016_j_energy_2025_137582
crossref_primary_10_1016_j_jpowsour_2025_236726
crossref_primary_10_1016_j_ijhydene_2023_12_168
crossref_primary_10_1080_15435075_2023_2194373
crossref_primary_10_1016_j_ijhydene_2024_11_127
crossref_primary_10_1016_j_jpowsour_2025_236464
crossref_primary_10_1016_j_energy_2025_137225
crossref_primary_10_1016_j_ijhydene_2025_05_013
crossref_primary_10_1080_09544828_2024_2436968
crossref_primary_10_1016_j_renene_2025_123019
crossref_primary_10_1016_j_apenergy_2022_120333
crossref_primary_10_1016_j_compind_2022_103766
crossref_primary_10_1016_j_renene_2025_124142
crossref_primary_10_1002_acs_3860
crossref_primary_10_1016_j_apenergy_2023_121077
crossref_primary_10_1016_j_ijhydene_2023_08_191
crossref_primary_10_1016_j_ijhydene_2024_09_229
crossref_primary_10_1007_s40430_023_04645_5
crossref_primary_10_1016_j_jpowsour_2023_232771
crossref_primary_10_1109_TTE_2025_3550906
crossref_primary_10_3390_en15134844
crossref_primary_10_1002_ese3_1669
crossref_primary_10_1016_j_ijhydene_2025_01_405
crossref_primary_10_1016_j_heliyon_2024_e34783
crossref_primary_10_1016_j_rser_2023_114193
crossref_primary_10_1016_j_ijhydene_2025_150242
crossref_primary_10_1109_TTE_2023_3343519
crossref_primary_10_1016_j_apenergy_2023_120945
crossref_primary_10_1016_j_ijhydene_2025_150162
crossref_primary_10_1016_j_ijhydene_2023_03_316
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_1016_j_jpowsour_2025_238297
crossref_primary_10_1016_j_apenergy_2022_119839
crossref_primary_10_1016_j_est_2025_116152
crossref_primary_10_1016_j_mtcomm_2024_110232
crossref_primary_10_3390_su14169842
crossref_primary_10_1016_j_energy_2025_138127
crossref_primary_10_1016_j_seta_2024_103789
crossref_primary_10_3390_en17123050
crossref_primary_10_1016_j_apenergy_2025_125763
crossref_primary_10_1016_j_egyr_2022_08_075
crossref_primary_10_1016_j_apenergy_2022_120385
crossref_primary_10_1016_j_rser_2024_114613
crossref_primary_10_1016_j_apenergy_2025_125967
crossref_primary_10_1038_s44287_025_00178_2
crossref_primary_10_1080_15435075_2025_2495081
crossref_primary_10_1016_j_energy_2023_127721
crossref_primary_10_1016_j_jpowsour_2024_235634
crossref_primary_10_1016_j_apenergy_2025_125569
crossref_primary_10_1002_fuce_202300182
crossref_primary_10_1016_j_ijhydene_2022_12_005
crossref_primary_10_1016_j_ijhydene_2024_08_123
crossref_primary_10_1109_TPEL_2024_3502499
crossref_primary_10_1016_j_energy_2023_129469
crossref_primary_10_1140_epjs_s11734_024_01408_8
crossref_primary_10_1016_j_ijhydene_2024_06_090
crossref_primary_10_1016_j_ijhydene_2024_07_448
crossref_primary_10_1016_j_jpowsour_2024_234828
Cites_doi 10.3390/en14071885
10.1109/TIE.2019.2893827
10.1016/j.ijhydene.2013.09.051
10.1016/j.enconman.2021.114367
10.1016/j.ijhydene.2020.10.108
10.1016/j.eswa.2021.115167
10.1016/j.apenergy.2016.05.076
10.1016/j.ijhydene.2017.09.013
10.1109/TIA.2019.2911846
10.1016/j.apenergy.2019.02.040
10.1016/j.ijhydene.2019.01.190
10.1016/j.apenergy.2021.117918
10.1089/big.2020.0159
10.1016/j.conengprac.2020.104614
10.1016/j.apenergy.2020.115937
10.1016/j.rser.2021.111180
10.1016/j.apenergy.2020.116297
10.1016/j.ijhydene.2021.02.204
10.1016/j.apenergy.2018.09.111
10.1016/j.jpowsour.2020.228170
10.1016/j.ijhydene.2018.11.219
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.apenergy.2022.118835
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Physics
Computer Science
EISSN 1872-9118
ExternalDocumentID oai:HAL:hal-04154058v1
10_1016_j_apenergy_2022_118835
S0306261922002756
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
1XC
ID FETCH-LOGICAL-c379t-33fde2731b71f892a303d8faced9fd6d04fd20bf464fbc491cb798c1dd24bde3
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808002700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 14 20:34:49 EDT 2025
Sat Sep 27 20:47:55 EDT 2025
Tue Nov 18 22:28:38 EST 2025
Sat Nov 29 07:19:05 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Proton membrane exchange fuel cell
Time series prediction
Convolutional neural network
Prognostics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-33fde2731b71f892a303d8faced9fd6d04fd20bf464fbc491cb798c1dd24bde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4624-4743
0000-0003-0195-903X
PQID 2675562141
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_04154058v1
proquest_miscellaneous_2675562141
crossref_citationtrail_10_1016_j_apenergy_2022_118835
crossref_primary_10_1016_j_apenergy_2022_118835
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118835
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yue, Lambert, Pahon, Roche, Jemei, Hissel (b1) 2021; 146
Bressel, Hilairet, Hissel, Ould Bouamama (b3) 2020; 45
Yue, Jemei, Gouriveau, Zerhouni (b18) 2019; 44
Mezzi, Morando, Steiner, Péra, Hissel, Larger (b10) 2018
Linares, Ral, Berger, Hinaje, Lévêque (b17) 2018; 43
Huo, Li, Zhang, Sun, Zhou, Gong (b16) 2021; 243
Jouin, Gouriveau, Hissel, Péra, Zerhouni (b26) 2013; 38
Meraghni, Terrissa, Yue, Ma, Jemei, Zerhouni (b6) 2021; 46
Ma, Li, Breaz, Liu, Bai, Briois, Gao (b27) 2019; 55
Li, Zheng, Outbib (b9) 2020; 67
van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b20) 2016
YU, Li (b28) 2018
Yuan, Qi, Wang, Xia (b13) 2020; 104
Orhan (b23) 2017
Borovykh, Bohté, Oosterlee (b29) 2017
Borowski (b4) 2021; 14
Cannizzaro, Aliberti, Bottaccioli, Macii, Acquaviva, Patti (b12) 2021; 181
Wang, Mamo, Cheng (b8) 2020; 461
Torres, Hadjout, Sebaa, Martínez-Álvarez, Troncoso (b14) 2021; 9
Luong, Pham, Manning (b22) 2015
Shiblee, Kalra, Chandra (b25) 2009
Wang, Li, Outbib, Dou, Zhao (b30) 2022; 305
Zhang, Li, Liu, Yan (b2) 2019; 241
Zuo, Lv, Zhou, Xue, Jin, Zhou, Yang, Zhang (b21) 2021; 281
Mezzi, Yousfi-Steiner, Péra, Hissel, Larger (b19) 2021; 283
Bai, Kolter, Koltun (b11) 2018
Jouin, Bressel, Morando, Gouriveau, Hissel, Péra, Zerhouni, Jemei, Hilairet, Ould Bouamama (b5) 2016; 177
Ma, Zhang, Lin, Cong, Yang (b15) 2021; 46
Ma, Yang, Breaz, Li, Briois, Gao (b7) 2018; 231
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b24) 2014; 15
Luong (10.1016/j.apenergy.2022.118835_b22) 2015
Yue (10.1016/j.apenergy.2022.118835_b18) 2019; 44
Meraghni (10.1016/j.apenergy.2022.118835_b6) 2021; 46
Li (10.1016/j.apenergy.2022.118835_b9) 2020; 67
Zuo (10.1016/j.apenergy.2022.118835_b21) 2021; 281
Wang (10.1016/j.apenergy.2022.118835_b8) 2020; 461
Ma (10.1016/j.apenergy.2022.118835_b7) 2018; 231
Zhang (10.1016/j.apenergy.2022.118835_b2) 2019; 241
Jouin (10.1016/j.apenergy.2022.118835_b26) 2013; 38
YU (10.1016/j.apenergy.2022.118835_b28) 2018
Srivastava (10.1016/j.apenergy.2022.118835_b24) 2014; 15
Yue (10.1016/j.apenergy.2022.118835_b1) 2021; 146
van den Oord (10.1016/j.apenergy.2022.118835_b20) 2016
Linares (10.1016/j.apenergy.2022.118835_b17) 2018; 43
Orhan (10.1016/j.apenergy.2022.118835_b23) 2017
Bressel (10.1016/j.apenergy.2022.118835_b3) 2020; 45
Ma (10.1016/j.apenergy.2022.118835_b27) 2019; 55
Mezzi (10.1016/j.apenergy.2022.118835_b10) 2018
Torres (10.1016/j.apenergy.2022.118835_b14) 2021; 9
Bai (10.1016/j.apenergy.2022.118835_b11) 2018
Mezzi (10.1016/j.apenergy.2022.118835_b19) 2021; 283
Shiblee (10.1016/j.apenergy.2022.118835_b25) 2009
Borovykh (10.1016/j.apenergy.2022.118835_b29) 2017
Yuan (10.1016/j.apenergy.2022.118835_b13) 2020; 104
Huo (10.1016/j.apenergy.2022.118835_b16) 2021; 243
Wang (10.1016/j.apenergy.2022.118835_b30) 2022; 305
Jouin (10.1016/j.apenergy.2022.118835_b5) 2016; 177
Cannizzaro (10.1016/j.apenergy.2022.118835_b12) 2021; 181
Ma (10.1016/j.apenergy.2022.118835_b15) 2021; 46
Borowski (10.1016/j.apenergy.2022.118835_b4) 2021; 14
References_xml – volume: 43
  start-page: 5913
  year: 2018
  end-page: 5921
  ident: b17
  article-title: Pem single fuel cell as a dedicated power source for high-inductive superconducting coils
  publication-title: Int J Hydrogen Energy
– year: 2018
  ident: b28
  article-title: Stock price prediction based on ARIMA-RNN combined model
  publication-title: DEStech Trans Soc Sci Educ Hum Sci
– volume: 146
  year: 2021
  ident: b1
  article-title: Hydrogen energy systems: A critical review of technologies, applications, trends and challenges
  publication-title: Renew Sustain Energy Rev
– year: 2015
  ident: b22
  article-title: Effective approaches to attention-based neural machine translation
– year: 2017
  ident: b23
  article-title: Skip connections as effective symmetry-breaking
– year: 2017
  ident: b29
  article-title: Conditional time series forecasting with convolutional neural networks
  publication-title: ArXiv: Mach Learn
– volume: 231
  start-page: 102
  year: 2018
  end-page: 115
  ident: b7
  article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method
  publication-title: Appl Energy
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b24
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– start-page: 37
  year: 2009
  end-page: 44
  ident: b25
  article-title: Time series prediction with multilayer perceptron (MLP): A new generalized error based approach
  publication-title: Advances in Neuro-Information Processing
– volume: 305
  year: 2022
  ident: b30
  article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells
  publication-title: Appl Energy
– volume: 177
  start-page: 87
  year: 2016
  end-page: 97
  ident: b5
  article-title: Estimating the end-of-life of PEM fuel cells: Guidelines and metrics
  publication-title: Appl Energy
– volume: 461
  year: 2020
  ident: b8
  article-title: Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells
  publication-title: J Power Sources
– volume: 283
  year: 2021
  ident: b19
  article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile
  publication-title: Appl Energy
– volume: 281
  year: 2021
  ident: b21
  article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application
  publication-title: Appl Energy
– volume: 55
  start-page: 4321
  year: 2019
  end-page: 4331
  ident: b27
  article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation
  publication-title: IEEE Trans Ind Appl
– volume: 14
  year: 2021
  ident: b4
  article-title: Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector
  publication-title: Energies
– volume: 44
  start-page: 6844
  year: 2019
  end-page: 6861
  ident: b18
  article-title: Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies
  publication-title: Int J Hydrogen Energy
– year: 2018
  ident: b11
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– year: 2016
  ident: b20
  article-title: Wavenet: A generative model for raw audio
– volume: 104
  year: 2020
  ident: b13
  article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
  publication-title: Control Eng Pract
– volume: 181
  year: 2021
  ident: b12
  article-title: Solar radiation forecasting based on convolutional neural network and ensemble learning
  publication-title: Expert Syst Appl
– volume: 46
  start-page: 18534
  year: 2021
  end-page: 18545
  ident: b15
  article-title: Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– start-page: 1872
  year: 2018
  end-page: 1877
  ident: b10
  article-title: Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction
  publication-title: IECON 2018 - 44th annual conference of the ieee industrial electronics society
– volume: 9
  start-page: 3
  year: 2021
  end-page: 21
  ident: b14
  article-title: Deep learning for time series forecasting: A survey
  publication-title: Big Data
– volume: 46
  start-page: 2555
  year: 2021
  end-page: 2564
  ident: b6
  article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction
  publication-title: Int J Hydrogen Energy
– volume: 243
  year: 2021
  ident: b16
  article-title: Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection
  publication-title: Energy Convers Manage
– volume: 241
  start-page: 483
  year: 2019
  end-page: 490
  ident: b2
  article-title: Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management
  publication-title: Appl Energy
– volume: 45
  start-page: 11242
  year: 2020
  end-page: 11254
  ident: b3
  article-title: Model-based aging tolerant control with power loss prediction of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 15307
  year: 2013
  end-page: 15317
  ident: b26
  article-title: Prognostics and health management of PEMFC – state of the art and remaining challenges
  publication-title: Int J Hydrogen Energy
– volume: 67
  start-page: 379
  year: 2020
  end-page: 389
  ident: b9
  article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space
  publication-title: IEEE Trans Ind Electron
– volume: 14
  issue: 7
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b4
  article-title: Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector
  publication-title: Energies
  doi: 10.3390/en14071885
– volume: 67
  start-page: 379
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2022.118835_b9
  article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2893827
– year: 2017
  ident: 10.1016/j.apenergy.2022.118835_b23
– volume: 38
  start-page: 15307
  issue: 35
  year: 2013
  ident: 10.1016/j.apenergy.2022.118835_b26
  article-title: Prognostics and health management of PEMFC – state of the art and remaining challenges
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.051
– volume: 243
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b16
  article-title: Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.114367
– start-page: 37
  year: 2009
  ident: 10.1016/j.apenergy.2022.118835_b25
  article-title: Time series prediction with multilayer perceptron (MLP): A new generalized error based approach
– start-page: 1872
  year: 2018
  ident: 10.1016/j.apenergy.2022.118835_b10
  article-title: Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction
– volume: 46
  start-page: 2555
  issue: 2
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b6
  article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.108
– volume: 181
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b12
  article-title: Solar radiation forecasting based on convolutional neural network and ensemble learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115167
– volume: 177
  start-page: 87
  year: 2016
  ident: 10.1016/j.apenergy.2022.118835_b5
  article-title: Estimating the end-of-life of PEM fuel cells: Guidelines and metrics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.076
– volume: 43
  start-page: 5913
  issue: 11
  year: 2018
  ident: 10.1016/j.apenergy.2022.118835_b17
  article-title: Pem single fuel cell as a dedicated power source for high-inductive superconducting coils
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.013
– year: 2015
  ident: 10.1016/j.apenergy.2022.118835_b22
– volume: 55
  start-page: 4321
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2022.118835_b27
  article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2019.2911846
– year: 2016
  ident: 10.1016/j.apenergy.2022.118835_b20
– volume: 241
  start-page: 483
  year: 2019
  ident: 10.1016/j.apenergy.2022.118835_b2
  article-title: Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.040
– volume: 44
  start-page: 6844
  issue: 13
  year: 2019
  ident: 10.1016/j.apenergy.2022.118835_b18
  article-title: Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.190
– year: 2018
  ident: 10.1016/j.apenergy.2022.118835_b28
  article-title: Stock price prediction based on ARIMA-RNN combined model
  publication-title: DEStech Trans Soc Sci Educ Hum Sci
– volume: 305
  year: 2022
  ident: 10.1016/j.apenergy.2022.118835_b30
  article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117918
– volume: 9
  start-page: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b14
  article-title: Deep learning for time series forecasting: A survey
  publication-title: Big Data
  doi: 10.1089/big.2020.0159
– volume: 104
  year: 2020
  ident: 10.1016/j.apenergy.2022.118835_b13
  article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2020.104614
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: 10.1016/j.apenergy.2022.118835_b24
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 2017
  ident: 10.1016/j.apenergy.2022.118835_b29
  article-title: Conditional time series forecasting with convolutional neural networks
  publication-title: ArXiv: Mach Learn
– volume: 281
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b21
  article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115937
– volume: 146
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b1
  article-title: Hydrogen energy systems: A critical review of technologies, applications, trends and challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111180
– volume: 283
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b19
  article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116297
– volume: 46
  start-page: 18534
  issue: 35
  year: 2021
  ident: 10.1016/j.apenergy.2022.118835_b15
  article-title: Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.02.204
– volume: 231
  start-page: 102
  year: 2018
  ident: 10.1016/j.apenergy.2022.118835_b7
  article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.111
– volume: 461
  year: 2020
  ident: 10.1016/j.apenergy.2022.118835_b8
  article-title: Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228170
– year: 2018
  ident: 10.1016/j.apenergy.2022.118835_b11
– volume: 45
  start-page: 11242
  issue: 19
  year: 2020
  ident: 10.1016/j.apenergy.2022.118835_b3
  article-title: Model-based aging tolerant control with power loss prediction of proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.219
SSID ssj0002120
Score 2.623909
Snippet Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118835
SubjectTerms Automatic
commercialization
Computer Science
Convolutional neural network
Data Structures and Algorithms
durability
Electric power
energy
Engineering Sciences
Fluid mechanics
fuel cells
markets
Mechanics
neural networks
Physics
prediction
Prognostics
Proton membrane exchange fuel cell
Thermics
Time series prediction
uncertainty
Title A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell
URI https://dx.doi.org/10.1016/j.apenergy.2022.118835
https://www.proquest.com/docview/2675562141
https://hal.science/hal-04154058
Volume 313
WOSCitedRecordID wos000808002700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZm4QAHBAOjKZsMQlwqD9na2McKtRqgKhyKVHGxEttpO2qT0E298dd5ju00Gg2a4cAlqqzYSfx9fX7PfgtC79MMSBuJDpFRxEhEux1CQyqIF8okDNJQBKJKmT-MRyM6mbDvR0e_XSzMbhHnOd3vWflfoYY2AFuHzv4D3PWg0AC_AXS4AuxwvRfwvbb2-iRypeWYrRBdORNWvoMEUC1JAiK4yg8g57ZUeC7biyKfEi2pK6etvDAZnLVH9KrQyTfU3kQJw5hLsLFBO822atHWW_9NFdfptaqKKqzNfZUn0ymIlmoD9esM1iVZS5yt2R5X84VbSCuXxqWqjvEHZud6Oa_9iH-q1QyGmpuDpy18hnTuAXYDA2zf2l3QBW55XaINuaZQDv2wXYI8p6AhkltFvdl1uL5MSvM9l3ps2-OwuLkD_dE3PvgxHPJxfzL-UP4iuuyYPp63NViO0WkQdxiIxdPe5_7kS72YBzazp3vHRpD57Y_-m35zPNOOtjfW-0qJGT9Bj631gXuGNU_RkcrP0KNGTsozdN4_hD7CrVb2r5-hTQ83iIUNsTAQC98kFj4QCwOxcE0s3CAWLjJsiIUdsbAjFtbEwppYz9F40B9_uiK2ZgcRYcw2JAwzqUAl9tPYzygLElCRJM0SoSTLZFd6USYDL82ibpSlImK-SGNGhS9lEKVShefoJC9ydYEw6L4i8Do0qRIwMZUyKbX5H6Wh9GjmtVDHTTQXNp-9Lquy4M5x8Zo7gLgGiBuAWuhj3a80GV3u7MEcjtzqpUbf5MDFO_u-A-DrB-lk7le9IddtOjkGmEt057fQW8cLDtJdTy_MdbFd8wDsebBQ_Mh_cY97XqKHhz_YK3SyWW3Va_RA7Dbz9eqNpfYfA3DLUA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+for+multi-step-ahead+prediction+and+long-term+prognostics+of+proton+exchange+membrane+fuel+cell&rft.jtitle=Applied+energy&rft.au=Benaggoune%2C+Khaled&rft.au=Yue%2C+Meiling&rft.au=Jeme%C3%AF%2C+Samir&rft.au=Zerhouni%2C+Noureddine&rft.date=2022-05-01&rft.issn=0306-2619&rft.volume=313+p.118835-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon