A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell
Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durabi...
Uložené v:
| Vydané v: | Applied energy Ročník 313; s. 118835 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2022
Elsevier |
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics.
•A dilated CNN is applied for the multi-step-ahead fuel cell degradation prediction.•An attention block is combined to improve the prediction performance.•The prediction performance is compared with three other RNN prediction tools.•A conditional CNN is proposed to improve the long-term prognostics performance. |
|---|---|
| AbstractList | Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics. Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells (PEMFCs) are increasingly used in transportation applications and small stationary applications; however, the cost and the unsatisfying durability of the PEMFC stack have limited their successful commercialization and market penetration. In recent years, thanks to the availability and the quality of emerging data of PEMFCs, digitization is happening to offer possibilities to increase the productivity and the flexibility in fuel cell applications. Therefore, it is crucial to clarify the potential of digitization measures, how and where they can be applied, and their benefits. This paper focuses on the degradation performance of the PEMFC stacks and develops a data-driven intelligent method to predict both the short-term and long-term degradation. The dilated convolutional neural network is for the first time applied for predicting the time-dependent fuel cell performance and is proved to be more efficient than other recurrent networks. To deal with the long-term performance uncertainty, a conditional neural network is proposed. Results have shown that the proposed method can predict not only the degradation tendency, but also contain the degradation behaviour dynamics. •A dilated CNN is applied for the multi-step-ahead fuel cell degradation prediction.•An attention block is combined to improve the prediction performance.•The prediction performance is compared with three other RNN prediction tools.•A conditional CNN is proposed to improve the long-term prognostics performance. |
| ArticleNumber | 118835 |
| Author | Benaggoune, Khaled Zerhouni, Noureddine Yue, Meiling Jemei, Samir |
| Author_xml | – sequence: 1 givenname: Khaled surname: Benaggoune fullname: Benaggoune, Khaled organization: FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France – sequence: 2 givenname: Meiling orcidid: 0000-0002-4624-4743 surname: Yue fullname: Yue, Meiling email: meiling.yue@femto-st.fr, yueml@bjtu.edu.cn organization: School of mechanical, electronic and control engineering, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Samir surname: Jemei fullname: Jemei, Samir organization: FEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, CNRS, Belfort, France – sequence: 4 givenname: Noureddine surname: Zerhouni fullname: Zerhouni, Noureddine organization: FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France |
| BackLink | https://hal.science/hal-04154058$$DView record in HAL |
| BookMark | eNqFUU1rGzEUFCWFOGn_QtCxOcjRx35CDjEhbQqGXnIXWunJltmVXEk2yb-vlm0uueT0eO_NDMPMFbrwwQNCN4yuGWXN3WGtjuAh7t7WnHK-ZqzrRP0FrVjXctKX9QKtqKAN4Q3rL9FVSgdKKWecrlDeYKOyIia6M3g8Qd4Hg22IeDqN2ZGU4UjUHpTBxwjG6eyCx8obPAa_IxniVB5h50PKTicc7LzmgoFXvVd-B0VzGqLygO0JRqxhHL-hr1aNCb7_n9fo5efTy-Mz2f759ftxsyVatH0mQlgDvBVsaJnteq4EFaazSoPprWkMrazhdLBVU9lBVz3TQ9t3mhnDq8GAuEa3i-xejfIY3aTimwzKyefNVs43WrG6onV3ZgX7Y8EW939PkLKcXJq9FuPhlCRv2rpuOKtm6P0C1TGkFMFK7bKac8lRuVEyKude5EG-9yLnXuTSS6E3H-jv1j4lPixEKJGdHUSZtANf0nARdJYmuM8k_gF8ZbA1 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_134899 crossref_primary_10_1109_TTE_2023_3266803 crossref_primary_10_1016_j_ijhydene_2024_02_181 crossref_primary_10_1109_TEC_2024_3489436 crossref_primary_10_1016_j_energy_2024_132634 crossref_primary_10_1109_TTE_2024_3357202 crossref_primary_10_1016_j_enconman_2024_118978 crossref_primary_10_1016_j_renene_2024_121770 crossref_primary_10_1016_j_psep_2025_107674 crossref_primary_10_1109_TEC_2023_3311460 crossref_primary_10_1016_j_renene_2024_121328 crossref_primary_10_1109_TTE_2022_3229716 crossref_primary_10_1016_j_renene_2025_124439 crossref_primary_10_1016_j_isci_2024_110979 crossref_primary_10_1016_j_ijhydene_2024_12_512 crossref_primary_10_1016_j_energy_2024_133995 crossref_primary_10_1016_j_ijhydene_2024_05_048 crossref_primary_10_1016_j_jpowsour_2025_237781 crossref_primary_10_3390_electronics13122335 crossref_primary_10_1016_j_rser_2025_116235 crossref_primary_10_1016_j_ijhydene_2025_02_317 crossref_primary_10_1016_j_renene_2024_120648 crossref_primary_10_3390_en17235855 crossref_primary_10_1016_j_ijhydene_2024_12_067 crossref_primary_10_1016_j_engappai_2024_108186 crossref_primary_10_1016_j_ijhydene_2025_01_079 crossref_primary_10_1016_j_ijhydene_2023_04_143 crossref_primary_10_1016_j_renene_2025_122924 crossref_primary_10_3390_en16124772 crossref_primary_10_3390_e24071009 crossref_primary_10_1016_j_energy_2025_137582 crossref_primary_10_1016_j_jpowsour_2025_236726 crossref_primary_10_1016_j_ijhydene_2023_12_168 crossref_primary_10_1080_15435075_2023_2194373 crossref_primary_10_1016_j_ijhydene_2024_11_127 crossref_primary_10_1016_j_jpowsour_2025_236464 crossref_primary_10_1016_j_energy_2025_137225 crossref_primary_10_1016_j_ijhydene_2025_05_013 crossref_primary_10_1080_09544828_2024_2436968 crossref_primary_10_1016_j_renene_2025_123019 crossref_primary_10_1016_j_apenergy_2022_120333 crossref_primary_10_1016_j_compind_2022_103766 crossref_primary_10_1016_j_renene_2025_124142 crossref_primary_10_1002_acs_3860 crossref_primary_10_1016_j_apenergy_2023_121077 crossref_primary_10_1016_j_ijhydene_2023_08_191 crossref_primary_10_1016_j_ijhydene_2024_09_229 crossref_primary_10_1007_s40430_023_04645_5 crossref_primary_10_1016_j_jpowsour_2023_232771 crossref_primary_10_1109_TTE_2025_3550906 crossref_primary_10_3390_en15134844 crossref_primary_10_1002_ese3_1669 crossref_primary_10_1016_j_ijhydene_2025_01_405 crossref_primary_10_1016_j_heliyon_2024_e34783 crossref_primary_10_1016_j_rser_2023_114193 crossref_primary_10_1016_j_ijhydene_2025_150242 crossref_primary_10_1109_TTE_2023_3343519 crossref_primary_10_1016_j_apenergy_2023_120945 crossref_primary_10_1016_j_ijhydene_2025_150162 crossref_primary_10_1016_j_ijhydene_2023_03_316 crossref_primary_10_1109_JSEN_2023_3269030 crossref_primary_10_1016_j_jpowsour_2025_238297 crossref_primary_10_1016_j_apenergy_2022_119839 crossref_primary_10_1016_j_est_2025_116152 crossref_primary_10_1016_j_mtcomm_2024_110232 crossref_primary_10_3390_su14169842 crossref_primary_10_1016_j_energy_2025_138127 crossref_primary_10_1016_j_seta_2024_103789 crossref_primary_10_3390_en17123050 crossref_primary_10_1016_j_apenergy_2025_125763 crossref_primary_10_1016_j_egyr_2022_08_075 crossref_primary_10_1016_j_apenergy_2022_120385 crossref_primary_10_1016_j_rser_2024_114613 crossref_primary_10_1016_j_apenergy_2025_125967 crossref_primary_10_1038_s44287_025_00178_2 crossref_primary_10_1080_15435075_2025_2495081 crossref_primary_10_1016_j_energy_2023_127721 crossref_primary_10_1016_j_jpowsour_2024_235634 crossref_primary_10_1016_j_apenergy_2025_125569 crossref_primary_10_1002_fuce_202300182 crossref_primary_10_1016_j_ijhydene_2022_12_005 crossref_primary_10_1016_j_ijhydene_2024_08_123 crossref_primary_10_1109_TPEL_2024_3502499 crossref_primary_10_1016_j_energy_2023_129469 crossref_primary_10_1140_epjs_s11734_024_01408_8 crossref_primary_10_1016_j_ijhydene_2024_06_090 crossref_primary_10_1016_j_ijhydene_2024_07_448 crossref_primary_10_1016_j_jpowsour_2024_234828 |
| Cites_doi | 10.3390/en14071885 10.1109/TIE.2019.2893827 10.1016/j.ijhydene.2013.09.051 10.1016/j.enconman.2021.114367 10.1016/j.ijhydene.2020.10.108 10.1016/j.eswa.2021.115167 10.1016/j.apenergy.2016.05.076 10.1016/j.ijhydene.2017.09.013 10.1109/TIA.2019.2911846 10.1016/j.apenergy.2019.02.040 10.1016/j.ijhydene.2019.01.190 10.1016/j.apenergy.2021.117918 10.1089/big.2020.0159 10.1016/j.conengprac.2020.104614 10.1016/j.apenergy.2020.115937 10.1016/j.rser.2021.111180 10.1016/j.apenergy.2020.116297 10.1016/j.ijhydene.2021.02.204 10.1016/j.apenergy.2018.09.111 10.1016/j.jpowsour.2020.228170 10.1016/j.ijhydene.2018.11.219 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC |
| DOI | 10.1016/j.apenergy.2022.118835 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Physics Computer Science |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai:HAL:hal-04154058v1 10_1016_j_apenergy_2022_118835 S0306261922002756 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c379t-33fde2731b71f892a303d8faced9fd6d04fd20bf464fbc491cb798c1dd24bde3 |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808002700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Tue Oct 14 20:34:49 EDT 2025 Sat Sep 27 20:47:55 EDT 2025 Tue Nov 18 22:28:38 EST 2025 Sat Nov 29 07:19:05 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Proton membrane exchange fuel cell Time series prediction Convolutional neural network Prognostics |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c379t-33fde2731b71f892a303d8faced9fd6d04fd20bf464fbc491cb798c1dd24bde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4624-4743 0000-0003-0195-903X |
| PQID | 2675562141 |
| PQPubID | 24069 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04154058v1 proquest_miscellaneous_2675562141 crossref_citationtrail_10_1016_j_apenergy_2022_118835 crossref_primary_10_1016_j_apenergy_2022_118835 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118835 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Yue, Lambert, Pahon, Roche, Jemei, Hissel (b1) 2021; 146 Bressel, Hilairet, Hissel, Ould Bouamama (b3) 2020; 45 Yue, Jemei, Gouriveau, Zerhouni (b18) 2019; 44 Mezzi, Morando, Steiner, Péra, Hissel, Larger (b10) 2018 Linares, Ral, Berger, Hinaje, Lévêque (b17) 2018; 43 Huo, Li, Zhang, Sun, Zhou, Gong (b16) 2021; 243 Jouin, Gouriveau, Hissel, Péra, Zerhouni (b26) 2013; 38 Meraghni, Terrissa, Yue, Ma, Jemei, Zerhouni (b6) 2021; 46 Ma, Li, Breaz, Liu, Bai, Briois, Gao (b27) 2019; 55 Li, Zheng, Outbib (b9) 2020; 67 van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b20) 2016 YU, Li (b28) 2018 Yuan, Qi, Wang, Xia (b13) 2020; 104 Orhan (b23) 2017 Borovykh, Bohté, Oosterlee (b29) 2017 Borowski (b4) 2021; 14 Cannizzaro, Aliberti, Bottaccioli, Macii, Acquaviva, Patti (b12) 2021; 181 Wang, Mamo, Cheng (b8) 2020; 461 Torres, Hadjout, Sebaa, Martínez-Álvarez, Troncoso (b14) 2021; 9 Luong, Pham, Manning (b22) 2015 Shiblee, Kalra, Chandra (b25) 2009 Wang, Li, Outbib, Dou, Zhao (b30) 2022; 305 Zhang, Li, Liu, Yan (b2) 2019; 241 Zuo, Lv, Zhou, Xue, Jin, Zhou, Yang, Zhang (b21) 2021; 281 Mezzi, Yousfi-Steiner, Péra, Hissel, Larger (b19) 2021; 283 Bai, Kolter, Koltun (b11) 2018 Jouin, Bressel, Morando, Gouriveau, Hissel, Péra, Zerhouni, Jemei, Hilairet, Ould Bouamama (b5) 2016; 177 Ma, Zhang, Lin, Cong, Yang (b15) 2021; 46 Ma, Yang, Breaz, Li, Briois, Gao (b7) 2018; 231 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b24) 2014; 15 Luong (10.1016/j.apenergy.2022.118835_b22) 2015 Yue (10.1016/j.apenergy.2022.118835_b18) 2019; 44 Meraghni (10.1016/j.apenergy.2022.118835_b6) 2021; 46 Li (10.1016/j.apenergy.2022.118835_b9) 2020; 67 Zuo (10.1016/j.apenergy.2022.118835_b21) 2021; 281 Wang (10.1016/j.apenergy.2022.118835_b8) 2020; 461 Ma (10.1016/j.apenergy.2022.118835_b7) 2018; 231 Zhang (10.1016/j.apenergy.2022.118835_b2) 2019; 241 Jouin (10.1016/j.apenergy.2022.118835_b26) 2013; 38 YU (10.1016/j.apenergy.2022.118835_b28) 2018 Srivastava (10.1016/j.apenergy.2022.118835_b24) 2014; 15 Yue (10.1016/j.apenergy.2022.118835_b1) 2021; 146 van den Oord (10.1016/j.apenergy.2022.118835_b20) 2016 Linares (10.1016/j.apenergy.2022.118835_b17) 2018; 43 Orhan (10.1016/j.apenergy.2022.118835_b23) 2017 Bressel (10.1016/j.apenergy.2022.118835_b3) 2020; 45 Ma (10.1016/j.apenergy.2022.118835_b27) 2019; 55 Mezzi (10.1016/j.apenergy.2022.118835_b10) 2018 Torres (10.1016/j.apenergy.2022.118835_b14) 2021; 9 Bai (10.1016/j.apenergy.2022.118835_b11) 2018 Mezzi (10.1016/j.apenergy.2022.118835_b19) 2021; 283 Shiblee (10.1016/j.apenergy.2022.118835_b25) 2009 Borovykh (10.1016/j.apenergy.2022.118835_b29) 2017 Yuan (10.1016/j.apenergy.2022.118835_b13) 2020; 104 Huo (10.1016/j.apenergy.2022.118835_b16) 2021; 243 Wang (10.1016/j.apenergy.2022.118835_b30) 2022; 305 Jouin (10.1016/j.apenergy.2022.118835_b5) 2016; 177 Cannizzaro (10.1016/j.apenergy.2022.118835_b12) 2021; 181 Ma (10.1016/j.apenergy.2022.118835_b15) 2021; 46 Borowski (10.1016/j.apenergy.2022.118835_b4) 2021; 14 |
| References_xml | – volume: 43 start-page: 5913 year: 2018 end-page: 5921 ident: b17 article-title: Pem single fuel cell as a dedicated power source for high-inductive superconducting coils publication-title: Int J Hydrogen Energy – year: 2018 ident: b28 article-title: Stock price prediction based on ARIMA-RNN combined model publication-title: DEStech Trans Soc Sci Educ Hum Sci – volume: 146 year: 2021 ident: b1 article-title: Hydrogen energy systems: A critical review of technologies, applications, trends and challenges publication-title: Renew Sustain Energy Rev – year: 2015 ident: b22 article-title: Effective approaches to attention-based neural machine translation – year: 2017 ident: b23 article-title: Skip connections as effective symmetry-breaking – year: 2017 ident: b29 article-title: Conditional time series forecasting with convolutional neural networks publication-title: ArXiv: Mach Learn – volume: 231 start-page: 102 year: 2018 end-page: 115 ident: b7 article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method publication-title: Appl Energy – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b24 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – start-page: 37 year: 2009 end-page: 44 ident: b25 article-title: Time series prediction with multilayer perceptron (MLP): A new generalized error based approach publication-title: Advances in Neuro-Information Processing – volume: 305 year: 2022 ident: b30 article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells publication-title: Appl Energy – volume: 177 start-page: 87 year: 2016 end-page: 97 ident: b5 article-title: Estimating the end-of-life of PEM fuel cells: Guidelines and metrics publication-title: Appl Energy – volume: 461 year: 2020 ident: b8 article-title: Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells publication-title: J Power Sources – volume: 283 year: 2021 ident: b19 article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile publication-title: Appl Energy – volume: 281 year: 2021 ident: b21 article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application publication-title: Appl Energy – volume: 55 start-page: 4321 year: 2019 end-page: 4331 ident: b27 article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation publication-title: IEEE Trans Ind Appl – volume: 14 year: 2021 ident: b4 article-title: Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector publication-title: Energies – volume: 44 start-page: 6844 year: 2019 end-page: 6861 ident: b18 article-title: Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies publication-title: Int J Hydrogen Energy – year: 2018 ident: b11 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – year: 2016 ident: b20 article-title: Wavenet: A generative model for raw audio – volume: 104 year: 2020 ident: b13 article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data publication-title: Control Eng Pract – volume: 181 year: 2021 ident: b12 article-title: Solar radiation forecasting based on convolutional neural network and ensemble learning publication-title: Expert Syst Appl – volume: 46 start-page: 18534 year: 2021 end-page: 18545 ident: b15 article-title: Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – start-page: 1872 year: 2018 end-page: 1877 ident: b10 article-title: Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction publication-title: IECON 2018 - 44th annual conference of the ieee industrial electronics society – volume: 9 start-page: 3 year: 2021 end-page: 21 ident: b14 article-title: Deep learning for time series forecasting: A survey publication-title: Big Data – volume: 46 start-page: 2555 year: 2021 end-page: 2564 ident: b6 article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction publication-title: Int J Hydrogen Energy – volume: 243 year: 2021 ident: b16 article-title: Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection publication-title: Energy Convers Manage – volume: 241 start-page: 483 year: 2019 end-page: 490 ident: b2 article-title: Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management publication-title: Appl Energy – volume: 45 start-page: 11242 year: 2020 end-page: 11254 ident: b3 article-title: Model-based aging tolerant control with power loss prediction of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – volume: 38 start-page: 15307 year: 2013 end-page: 15317 ident: b26 article-title: Prognostics and health management of PEMFC – state of the art and remaining challenges publication-title: Int J Hydrogen Energy – volume: 67 start-page: 379 year: 2020 end-page: 389 ident: b9 article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space publication-title: IEEE Trans Ind Electron – volume: 14 issue: 7 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b4 article-title: Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector publication-title: Energies doi: 10.3390/en14071885 – volume: 67 start-page: 379 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2022.118835_b9 article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2893827 – year: 2017 ident: 10.1016/j.apenergy.2022.118835_b23 – volume: 38 start-page: 15307 issue: 35 year: 2013 ident: 10.1016/j.apenergy.2022.118835_b26 article-title: Prognostics and health management of PEMFC – state of the art and remaining challenges publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.051 – volume: 243 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b16 article-title: Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.114367 – start-page: 37 year: 2009 ident: 10.1016/j.apenergy.2022.118835_b25 article-title: Time series prediction with multilayer perceptron (MLP): A new generalized error based approach – start-page: 1872 year: 2018 ident: 10.1016/j.apenergy.2022.118835_b10 article-title: Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction – volume: 46 start-page: 2555 issue: 2 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b6 article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.108 – volume: 181 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b12 article-title: Solar radiation forecasting based on convolutional neural network and ensemble learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115167 – volume: 177 start-page: 87 year: 2016 ident: 10.1016/j.apenergy.2022.118835_b5 article-title: Estimating the end-of-life of PEM fuel cells: Guidelines and metrics publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.05.076 – volume: 43 start-page: 5913 issue: 11 year: 2018 ident: 10.1016/j.apenergy.2022.118835_b17 article-title: Pem single fuel cell as a dedicated power source for high-inductive superconducting coils publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.013 – year: 2015 ident: 10.1016/j.apenergy.2022.118835_b22 – volume: 55 start-page: 4321 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2022.118835_b27 article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2019.2911846 – year: 2016 ident: 10.1016/j.apenergy.2022.118835_b20 – volume: 241 start-page: 483 year: 2019 ident: 10.1016/j.apenergy.2022.118835_b2 article-title: Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.040 – volume: 44 start-page: 6844 issue: 13 year: 2019 ident: 10.1016/j.apenergy.2022.118835_b18 article-title: Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.190 – year: 2018 ident: 10.1016/j.apenergy.2022.118835_b28 article-title: Stock price prediction based on ARIMA-RNN combined model publication-title: DEStech Trans Soc Sci Educ Hum Sci – volume: 305 year: 2022 ident: 10.1016/j.apenergy.2022.118835_b30 article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117918 – volume: 9 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b14 article-title: Deep learning for time series forecasting: A survey publication-title: Big Data doi: 10.1089/big.2020.0159 – volume: 104 year: 2020 ident: 10.1016/j.apenergy.2022.118835_b13 article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2020.104614 – volume: 15 start-page: 1929 issue: 56 year: 2014 ident: 10.1016/j.apenergy.2022.118835_b24 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – year: 2017 ident: 10.1016/j.apenergy.2022.118835_b29 article-title: Conditional time series forecasting with convolutional neural networks publication-title: ArXiv: Mach Learn – volume: 281 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b21 article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115937 – volume: 146 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b1 article-title: Hydrogen energy systems: A critical review of technologies, applications, trends and challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111180 – volume: 283 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b19 article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116297 – volume: 46 start-page: 18534 issue: 35 year: 2021 ident: 10.1016/j.apenergy.2022.118835_b15 article-title: Impedance prediction model based on convolutional neural networks methodology for proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.02.204 – volume: 231 start-page: 102 year: 2018 ident: 10.1016/j.apenergy.2022.118835_b7 article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.111 – volume: 461 year: 2020 ident: 10.1016/j.apenergy.2022.118835_b8 article-title: Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228170 – year: 2018 ident: 10.1016/j.apenergy.2022.118835_b11 – volume: 45 start-page: 11242 issue: 19 year: 2020 ident: 10.1016/j.apenergy.2022.118835_b3 article-title: Model-based aging tolerant control with power loss prediction of proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.11.219 |
| SSID | ssj0002120 |
| Score | 2.623909 |
| Snippet | Fuel cell technology has been rapidly developed in the last decade owing to its clean characteristic and high efficiency. Proton exchange membrane fuel cells... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118835 |
| SubjectTerms | Automatic commercialization Computer Science Convolutional neural network Data Structures and Algorithms durability Electric power energy Engineering Sciences Fluid mechanics fuel cells markets Mechanics neural networks Physics prediction Prognostics Proton membrane exchange fuel cell Thermics Time series prediction uncertainty |
| Title | A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.118835 https://www.proquest.com/docview/2675562141 https://hal.science/hal-04154058 |
| Volume | 313 |
| WOSCitedRecordID | wos000808002700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZm4QAHBAOjKZsMQlwqD9na2McKtRqgKhyKVHGxEttpO2qT0E298dd5ju00Gg2a4cAlqqzYSfx9fX7PfgtC79MMSBuJDpFRxEhEux1CQyqIF8okDNJQBKJKmT-MRyM6mbDvR0e_XSzMbhHnOd3vWflfoYY2AFuHzv4D3PWg0AC_AXS4AuxwvRfwvbb2-iRypeWYrRBdORNWvoMEUC1JAiK4yg8g57ZUeC7biyKfEi2pK6etvDAZnLVH9KrQyTfU3kQJw5hLsLFBO822atHWW_9NFdfptaqKKqzNfZUn0ymIlmoD9esM1iVZS5yt2R5X84VbSCuXxqWqjvEHZud6Oa_9iH-q1QyGmpuDpy18hnTuAXYDA2zf2l3QBW55XaINuaZQDv2wXYI8p6AhkltFvdl1uL5MSvM9l3ps2-OwuLkD_dE3PvgxHPJxfzL-UP4iuuyYPp63NViO0WkQdxiIxdPe5_7kS72YBzazp3vHRpD57Y_-m35zPNOOtjfW-0qJGT9Bj631gXuGNU_RkcrP0KNGTsozdN4_hD7CrVb2r5-hTQ83iIUNsTAQC98kFj4QCwOxcE0s3CAWLjJsiIUdsbAjFtbEwppYz9F40B9_uiK2ZgcRYcw2JAwzqUAl9tPYzygLElCRJM0SoSTLZFd6USYDL82ibpSlImK-SGNGhS9lEKVShefoJC9ydYEw6L4i8Do0qRIwMZUyKbX5H6Wh9GjmtVDHTTQXNp-9Lquy4M5x8Zo7gLgGiBuAWuhj3a80GV3u7MEcjtzqpUbf5MDFO_u-A-DrB-lk7le9IddtOjkGmEt057fQW8cLDtJdTy_MdbFd8wDsebBQ_Mh_cY97XqKHhz_YK3SyWW3Va_RA7Dbz9eqNpfYfA3DLUA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+method+for+multi-step-ahead+prediction+and+long-term+prognostics+of+proton+exchange+membrane+fuel+cell&rft.jtitle=Applied+energy&rft.au=Benaggoune%2C+Khaled&rft.au=Yue%2C+Meiling&rft.au=Jeme%C3%AF%2C+Samir&rft.au=Zerhouni%2C+Noureddine&rft.date=2022-05-01&rft.issn=0306-2619&rft.volume=313+p.118835-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118835&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |