A dynamic multi-objective evolutionary algorithm based on prediction
The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the...
Saved in:
| Published in: | Journal of computational design and engineering Vol. 10; no. 1; pp. 1 - 15 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford University Press
01.02.2023
한국CDE학회 |
| Subjects: | |
| ISSN: | 2288-5048, 2288-4300, 2288-5048 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs.
Graphical Abstract
Graphical Abstract |
|---|---|
| AbstractList | The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. KCI Citation Count: 4 The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. Graphical Abstract Graphical Abstract |
| Author | Wu, Fei Wang, Wanliang Chen, Jiacheng |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0002-8483-5392 surname: Wu fullname: Wu, Fei – sequence: 2 givenname: Jiacheng surname: Chen fullname: Chen, Jiacheng – sequence: 3 givenname: Wanliang surname: Wang fullname: Wang, Wanliang email: zjutwwl@zjut.edu.cn |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002934249$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kF9PwjAUxRuDiYi8-QH6ZmKctN3K2keC_0hITAw-N117h4VtxW5A-PZuwoMx0adzH37n5J5ziXqVrwCha0ruKZHxaGUsjD732lCWnKE-Y0JEnCSi9-O-QMO6XhFCaMpiQmUfPUywPVS6dAaX26Jxkc9WYBq3Aww7X2wb5ysdDlgXSx9c81HiTNdgsa_wJoB1pgOu0HmuixqGJx2g96fHxfQlmr8-z6aTeWTiVDYRM6mVhAMRIjXcSE40BdY-k4OQIMcMjJFW5IRbniU6llrwzEIiYSxprG08QLfH3Crkam2c8tp969KrdVCTt8VMUUKFGJOkhe-OsAm-rgPkahNc2XZpEdUtprrF1GmxFme_cOMa3bVrgnbFX6abo8lvN__HfwEhcoEz |
| CitedBy_id | crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_1016_j_eswa_2023_121538 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1093_jcde_qwac139 crossref_primary_10_1093_jcde_qwad107 crossref_primary_10_1007_s00500_023_09157_x crossref_primary_10_1016_j_eswa_2025_129642 crossref_primary_10_1093_jcde_qwae055 crossref_primary_10_1016_j_swevo_2025_102103 crossref_primary_10_1093_jcde_qwaf023 |
| Cites_doi | 10.1109/TCYB.2020.2986600 10.1016/j.csda.2004.11.011 10.1016/j.engappai.2020.103905 10.1016/j.asoc.2017.05.008 10.1109/FSKD.2016.7603180 10.1017/S026357471800156X 10.1109/TEVC.2020.3027620 10.1109/TCYB.2018.2842158 10.1007/s00500-014-1433-3 10.1080/0305215X.2010.548863 10.1016/j.hydromet.2017.08.007 10.1007/s00500-016-2370-0 10.1109/TCYB.2013.2245892 10.1016/j.swevo.2022.101041 10.1109/TEVC.2016.2600642 10.1007/3-540-36970-8_9 10.1007/s00500-012-0964-8 10.1007/BF01195985 10.1109/TEVC.2019.2912204 10.1109/TEVC.2016.2574621 10.1093/jcde/qwab065 10.1109/TEVC.2004.831456 10.2514/6.2006-7071 10.1007/s00500-018-3033-0 10.1007/978-3-642-11218-8_4 10.1016/j.adhoc.2013.08.017 10.1109/ACCESS.2021.3070634 10.1007/s00500-013-1085-8 10.1007/s00500-010-0674-z 10.1016/j.ins.2008.02.017 10.1109/TEVC.2017.2704782 10.1109/TEVC.2015.2455812 10.1109/TEVC.2007.894202 10.1016/j.swevo.2018.05.001 10.1109/TFUZZ.2020.3003506 10.1016/j.ins.2019.09.016 10.1007/s10489-018-1263-6 10.1109/TEVC.2018.2791283 10.1007/s00500-014-1477-4 10.1145/3205651.3208224 10.1109/TCYB.2015.2490738 10.1016/j.asoc.2017.08.004 10.1016/j.asoc.2017.05.044 10.1080/00207543.2018.1542177 10.1016/j.ins.2013.06.051 10.1093/jcde/qwac009 10.1016/j.asoc.2007.07.005 10.1016/j.swevo.2020.100695 10.1016/j.asoc.2016.09.032 10.1109/TCYB.2017.2780274 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022 |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022 |
| DBID | TOX AAYXX CITATION ACYCR |
| DOI | 10.1093/jcde/qwac124 |
| DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2288-5048 |
| EndPage | 15 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10188604 10_1093_jcde_qwac124 10.1093/jcde/qwac124 |
| GroupedDBID | .UV 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAPXW AAVAP AAXUO ABEJV ABGNP ABMAC ABPTD ABXVV ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMNDL AMRAJ BCNDV EBS EJD FDB FRF GROUPED_DOAJ H13 IAO IGS IPNFZ ITC JDI KQ8 KSI M41 ML0 M~E NCXOZ O9- OK1 RIG ROL ROX SSZ TOX AAYXX ABJCF ADMLS AFFHD AFKRA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M7S PHGZM PHGZT PIMPY PQGLB PTHSS AAYWO ACYCR PMFND |
| ID | FETCH-LOGICAL-c379t-2c7d905e0887c5c950a1e2001fe89e962ecc9d8f05d5b4a39a85bde49e6913ad3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910075600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2288-5048 2288-4300 |
| IngestDate | Sat May 31 03:24:09 EDT 2025 Tue Nov 18 21:56:12 EST 2025 Sat Nov 29 03:52:54 EST 2025 Tue Jan 28 07:47:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | prediction knee point convergence dynamic multi-objective optimization diversity maintenance strategy close-to-boundary point |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-2c7d905e0887c5c950a1e2001fe89e962ecc9d8f05d5b4a39a85bde49e6913ad3 |
| ORCID | 0000-0002-8483-5392 |
| OpenAccessLink | https://dx.doi.org/10.1093/jcde/qwac124 |
| PageCount | 15 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10188604 crossref_primary_10_1093_jcde_qwac124 crossref_citationtrail_10_1093_jcde_qwac124 oup_primary_10_1093_jcde_qwac124 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational design and engineering |
| PublicationYear | 2023 |
| Publisher | Oxford University Press 한국CDE학회 |
| Publisher_xml | – name: Oxford University Press – name: 한국CDE학회 |
| References | Zhou (2023011112244680200_bib57) 2007 Shang (2023011112244680200_bib39) 2014; 18 Liu (2023011112244680200_bib26) 2016 Fan (2023011112244680200_bib9) 2017; 59 Guo (2023011112244680200_bib14) 2019; 57 Gao (2023011112244680200_bib11) 2020; 28 Jiang (2023011112244680200_bib23) 2022; 55 Zhao (2023011112244680200_bib54) 2019; 49 Yang (2023011112244680200_bib48) 2008; 178 Hu (2023011112244680200_bib20) 2018 Chen (2023011112244680200_bib5) 2022; 70 Farina (2023011112244680200_bib10) 2004; 8 Das (2023011112244680200_bib7) 1999; 18 Zhou (2023011112244680200_bib58) 2013; 44 Sun (2023011112244680200_bib41) 2018; 23 Aelst (2023011112244680200_bib1) 2006; 50 Schutze (2023011112244680200_bib37) 2003 Wang (2023011112244680200_bib44) 2019; 49 Zille (2023011112244680200_bib60) 2018; 22 Goh (2023011112244680200_bib12) 2008; 13 Nadeem (2023011112244680200_bib30) 2014; 13 Chen (2023011112244680200_bib4) 2010 Li (2023011112244680200_bib24) 2019; 23 Wu (2023011112244680200_bib46) 2015; 19 Ruan (2023011112244680200_bib35) 2017; 58 Han (2023011112244680200_bib15) 2017; 173 Stewart (2023011112244680200_bib40) 2022; 9 Hatzakis (2023011112244680200_bib17) 2006 Deb (2023011112244680200_bib8) 2011; 43 Peng (2023011112244680200_bib31) 2015; 19 Qian (2023011112244680200_bib33) 2017; 21 Jiang (2023011112244680200_bib21) 2016; 21 Muruganantham (2023011112244680200_bib29) 2016; 46 Gong (2023011112244680200_bib13) 2019; 24 Rong (2023011112244680200_bib34) 2019; 49 Ma (2023011112244680200_bib27) 2016; 20 Zheng (2023011112244680200_bib55) 2017; 52 Chen (2023011112244680200_bib3) 2018; 43 Zhang (2023011112244680200_bib52) 2008; 8 Premkumar (2023011112244680200_bib32) 2021; 9 Liang (2023011112244680200_bib25) 2022; 52 Helbig (2023011112244680200_bib19) 2013; 250 Zhang (2023011112244680200_bib51) 2020; 95 Zhang (2023011112244680200_bib50) 2018; 22 Zhang (2023011112244680200_bib49) 2008; 12 He (2023011112244680200_bib18) 2021; 25 Zhou (2023011112244680200_bib59) 2014; 44 Mei (2023011112244680200_bib28) 2016; 42 Sathiya (2023011112244680200_bib36) 2019; 37 Hatzakis (2023011112244680200_bib16) 2006 Zhang (2023011112244680200_bib53) 2011; 15 Cámara (2023011112244680200_bib6) 2010 Wang (2023011112244680200_bib43) 2020; 56 Yang (2023011112244680200_bib47) 2011 Wei (2023011112244680200_bib45) 2021 Shang (2023011112244680200_bib38) 2005 Zou (2023011112244680200_bib62) 2017; 61 Ahmed (2023011112244680200_bib2) 2013; 17 Jiang (2023011112244680200_bib22) 2017; 21 Verma (2023011112244680200_bib42) 2021; 9 Zheng (2023011112244680200_bib56) 2015; 43 Zou (2023011112244680200_bib61) 2020; 509 |
| References_xml | – volume: 52 start-page: 1602 issue: 3 year: 2022 ident: 2023011112244680200_bib25 article-title: A dynamic multiobjective evolutionary algorithm based on decision variable classification publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2986600 – volume: 50 start-page: 1287 issue: 5 year: 2006 ident: 2023011112244680200_bib1 article-title: Linear grouping using orthogonal regression publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2004.11.011 – volume: 95 start-page: 103905 year: 2020 ident: 2023011112244680200_bib51 article-title: A modified particle swarm optimization for multimodal multi-objective optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103905 – volume: 58 start-page: 631 year: 2017 ident: 2023011112244680200_bib35 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.008 – start-page: 235 volume-title: Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) year: 2016 ident: 2023011112244680200_bib26 article-title: A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction doi: 10.1109/FSKD.2016.7603180 – volume: 37 start-page: 1363 issue: 8 year: 2019 ident: 2023011112244680200_bib36 article-title: Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning publication-title: Robotica doi: 10.1017/S026357471800156X – volume: 25 start-page: 292 issue: 2 year: 2021 ident: 2023011112244680200_bib18 article-title: Knee-based decision making and visualization in many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2020.3027620 – volume: 49 start-page: 3362 issue: 9 year: 2019 ident: 2023011112244680200_bib34 article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2842158 – volume: 19 start-page: 2633 issue: 9 year: 2015 ident: 2023011112244680200_bib31 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Computing doi: 10.1007/s00500-014-1433-3 – volume: 43 start-page: 1175 issue: 11 year: 2011 ident: 2023011112244680200_bib8 article-title: Understanding knee points in bicriteria problems and their implications as preferred solution principles publication-title: Engineering Optimization doi: 10.1080/0305215X.2010.548863 – volume: 173 start-page: 134 year: 2017 ident: 2023011112244680200_bib15 article-title: Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.08.007 – volume: 21 start-page: 3781 issue: 13 year: 2017 ident: 2023011112244680200_bib33 article-title: A micro-cloning dynamic multiobjective algorithm with an adaptive change reaction strategy publication-title: Soft Computing doi: 10.1007/s00500-016-2370-0 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 2023011112244680200_bib59 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Transactions on Cybernatics doi: 10.1109/TCYB.2013.2245892 – volume: 70 start-page: 101041 year: 2022 ident: 2023011112244680200_bib5 article-title: Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2022.101041 – volume: 22 start-page: 97 issue: 1 year: 2018 ident: 2023011112244680200_bib50 article-title: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2600642 – start-page: 118 volume-title: Evolutionary Multi-Criterion Optimization year: 2003 ident: 2023011112244680200_bib37 article-title: Covering Pareto sets by multilevel evolutionary subdivision techniques doi: 10.1007/3-540-36970-8_9 – volume: 17 start-page: 1283 issue: 7 year: 2013 ident: 2023011112244680200_bib2 article-title: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms publication-title: Soft Computing doi: 10.1007/s00500-012-0964-8 – volume: 18 start-page: 107 issue: 2–3 year: 1999 ident: 2023011112244680200_bib7 article-title: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection publication-title: Structural Optimization doi: 10.1007/BF01195985 – volume: 24 start-page: 142 issue: 1 year: 2019 ident: 2023011112244680200_bib13 article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2912204 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 2023011112244680200_bib22 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2574621 – year: 2021 ident: 2023011112244680200_bib45 article-title: Multi-objective optimization for resource allocation in vehicular cloud computing networks publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 9 start-page: 24 issue: 1 year: 2021 ident: 2023011112244680200_bib32 article-title: Multi-objective equilibrium optimizer: Framework and development for solving multi-objective optimization problems publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwab065 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 2023011112244680200_bib10 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.831456 – start-page: 7071 volume-title: Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference year: 2006 ident: 2023011112244680200_bib17 article-title: Topology of anticipatory populations for evolutionary dynamic multi-objective optimization doi: 10.2514/6.2006-7071 – volume: 23 start-page: 3723 issue: 11 year: 2019 ident: 2023011112244680200_bib24 article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization publication-title: Soft Computing doi: 10.1007/s00500-018-3033-0 – volume: 13 start-page: 103 issue: 1 year: 2008 ident: 2023011112244680200_bib12 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 63 volume-title: Advances in multi-objective nature inspired computing year: 2010 ident: 2023011112244680200_bib6 article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms doi: 10.1007/978-3-642-11218-8_4 – volume: 21 start-page: 65 issue: 1 year: 2016 ident: 2023011112244680200_bib21 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2574621 – volume: 13 start-page: 368 year: 2014 ident: 2023011112244680200_bib30 article-title: An intrusion detection & adaptive response mechanism for manets publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2013.08.017 – volume: 9 start-page: 57757 year: 2021 ident: 2023011112244680200_bib42 article-title: A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070634 – volume: 18 start-page: 743 issue: 4 year: 2014 ident: 2023011112244680200_bib39 article-title: Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization publication-title: Soft Computing doi: 10.1007/s00500-013-1085-8 – volume: 15 start-page: 1333 issue: 7 year: 2011 ident: 2023011112244680200_bib53 article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems publication-title: Soft Computing doi: 10.1007/s00500-010-0674-z – volume: 43 start-page: 1816 issue: 9 year: 2015 ident: 2023011112244680200_bib56 article-title: A prediction strategy based on guide-individual for dynamic multi-objective optimization publication-title: Acta Electonica Sinica – volume: 178 start-page: 2985 issue: 15 year: 2008 ident: 2023011112244680200_bib48 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.017 – volume: 22 start-page: 260 issue: 2 year: 2018 ident: 2023011112244680200_bib60 article-title: A framework for large-scale multiobjective optimization based on problem transformation publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2704782 – volume: 20 start-page: 275 issue: 2 year: 2016 ident: 2023011112244680200_bib27 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2455812 – start-page: 300 volume-title: Proceedings of the 2010 11th International Conference on Parallel Problem Solving from Nature – PPSN XI, Part II year: 2010 ident: 2023011112244680200_bib4 article-title: Large-scale global optimization using cooperative coevolution with variable interaction learning – volume: 12 start-page: 41 issue: 1 year: 2008 ident: 2023011112244680200_bib49 article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.894202 – volume: 43 start-page: 147 year: 2018 ident: 2023011112244680200_bib3 article-title: A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.05.001 – start-page: 846 volume-title: Proceedings of the 2005 International Conference on Computational Intelligence and Security, CIS 2005, Part I year: 2005 ident: 2023011112244680200_bib38 article-title: Clonal selection algorithm for dynamic multiobjective optimization – start-page: 1782 volume-title: Proceedings of the International Conference on Graphic and Image Processing (ICGIP 2011) year: 2011 ident: 2023011112244680200_bib47 article-title: Differential evolution based on hybrid crossover operators – volume: 28 start-page: 3265 issue: 12 year: 2020 ident: 2023011112244680200_bib11 article-title: Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2020.3003506 – volume: 509 start-page: 193 year: 2020 ident: 2023011112244680200_bib61 article-title: A knee-guided prediction approach for dynamic multi-objective optimization publication-title: Information Sciences doi: 10.1016/j.ins.2019.09.016 – start-page: 832 volume-title: Proceedings of the 2007 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007 year: 2007 ident: 2023011112244680200_bib57 article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization – volume: 49 start-page: 569 issue: 2 year: 2019 ident: 2023011112244680200_bib54 article-title: An improved adaptive NSGA-II with multi-population algorithm publication-title: Applied Intelligence doi: 10.1007/s10489-018-1263-6 – volume: 23 start-page: 173 issue: 2 year: 2018 ident: 2023011112244680200_bib41 article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2018.2791283 – volume: 19 start-page: 3221 issue: 11 year: 2015 ident: 2023011112244680200_bib46 article-title: A directed search strategy for evolutionary dynamic multiobjective optimization publication-title: Soft Computing doi: 10.1007/s00500-014-1477-4 – start-page: 1898 volume-title: Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, GECCO 2018 year: 2018 ident: 2023011112244680200_bib20 article-title: Incorporation of a decision space diversity maintenance mechanism into MOEA/D for multi-modal multi-objective optimization doi: 10.1145/3205651.3208224 – volume: 46 start-page: 2862 issue: 12 year: 2016 ident: 2023011112244680200_bib29 article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2490738 – volume: 61 start-page: 806 year: 2017 ident: 2023011112244680200_bib62 article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.08.004 – volume: 44 start-page: 40 issue: 1 year: 2013 ident: 2023011112244680200_bib58 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2245892 – volume: 42 start-page: 13:1 issue: 2 year: 2016 ident: 2023011112244680200_bib28 article-title: A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization publication-title: ACM Transactions on Mathematical Software – volume: 59 start-page: 33 year: 2017 ident: 2023011112244680200_bib9 article-title: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and biochemical dynamic optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.044 – start-page: 1201 volume-title: Proceedings of the 2006 Genetic and Evolutionary Computation Conference, GECCO 2006 year: 2006 ident: 2023011112244680200_bib16 article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach – volume: 57 start-page: 3522 issue: 11 year: 2019 ident: 2023011112244680200_bib14 article-title: First-train timing synchronisation using multi-objective optimisation in urban transit networks publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1542177 – volume: 250 start-page: 61 year: 2013 ident: 2023011112244680200_bib19 article-title: Performance measures for dynamic multi-objective optimisation algorithms publication-title: Information Sciences doi: 10.1016/j.ins.2013.06.051 – volume: 9 start-page: 480 issue: 2 year: 2022 ident: 2023011112244680200_bib40 article-title: An agent-based blackboard system for multi-objective optimization publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwac009 – volume: 8 start-page: 959 issue: 2 year: 2008 ident: 2023011112244680200_bib52 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.07.005 – volume: 56 start-page: 100695 year: 2020 ident: 2023011112244680200_bib43 article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100695 – volume: 52 start-page: 952 year: 2017 ident: 2023011112244680200_bib55 article-title: On decomposition methods in interactive user-preference based optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.09.032 – volume: 55 start-page: 1 year: 2022 ident: 2023011112244680200_bib23 article-title: Evolutionary dynamic multi-objective optimisation: A survey publication-title: ACM Computing Surveys – volume: 49 start-page: 542 issue: 2 year: 2019 ident: 2023011112244680200_bib44 article-title: Improving metaheuristic algorithms with information feedback models publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2780274 |
| SSID | ssj0001723019 ssib053376903 |
| Score | 2.292214 |
| Snippet | The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and... |
| SourceID | nrf crossref oup |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 기계공학 |
| Title | A dynamic multi-objective evolutionary algorithm based on prediction |
| URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002934249 |
| Volume | 10 |
| WOSCitedRecordID | wos000910075600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Computational Design and Engineering , 2023, 10(1), , pp.1-15 |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: TOX dateStart: 20140101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: M7S dateStart: 20211001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: BENPR dateStart: 20211001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2288-5048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723019 issn: 2288-5048 databaseCode: PIMPY dateStart: 20211001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5g4sCF8RTjMUUCTihaujRrcpyACSQ0OAy0W5Um6diDdnRliH9P0oaneJ16cZvIdmy3_voZgEPLEUUVVkjEPka-wAQxziginKkoMgWILsh0bi-Dbpf1-_zakSTNvmnhc9IYSaUbD09CmlRkYq1HmfXn3lX__VtKYAppjztc-9d7PmWcxSSLy3_ZPqSRTvXfG1gFK65ShO3StGtgQSfroOqqRujO5GwDnLahKsfKwwIdiNJoVEYxqOfOsUT2DMVkkGbD_O4e2sylYJrAaWbbNFZgE9x0znon58jNRkCSBDxHTRkojqm2QUJSySkWnrb4qFgzrnmraUzDFYsxVTTyBeGC0Uhpn-sW94hQZAtUkjTR28AsKkza92MqJfG1sIxEkY9jHfhcmhOqa-D4VX-hdMThdn7FJCwb2CS0Cgqdgmrg6E16WhJm_CB3YEwRjuUwtAzX9jpIw3EWmjr-wgLPGGthIwWNqX590M7fIrtg2U6JL8HWe6CSZ496HyzJeT6cZfXiNbxeeNQLF-jKaQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+based+on+prediction&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Wu%2C+Fei&rft.au=Chen%2C+Jiacheng&rft.au=Wang%2C+Wanliang&rft.date=2023-02-01&rft.pub=Oxford+University+Press&rft.eissn=2288-5048&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1093%2Fjcde%2Fqwac124&rft.externalDocID=10.1093%2Fjcde%2Fqwac124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon |