A dynamic multi-objective evolutionary algorithm based on prediction

The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational design and engineering Vol. 10; no. 1; pp. 1 - 15
Main Authors: Wu, Fei, Chen, Jiacheng, Wang, Wanliang
Format: Journal Article
Language:English
Published: Oxford University Press 01.02.2023
한국CDE학회
Subjects:
ISSN:2288-5048, 2288-4300, 2288-5048
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. Graphical Abstract Graphical Abstract
AbstractList The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs.
The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. KCI Citation Count: 4
The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and environment changes. In this paper, we provide a prediction approach based on diversity screening and special point prediction (DSSP) to tackle the dynamic optimization issue. First, we introduce a decision variable clustering and screening strategy that clusters the decision space of the non-dominated solution set to find the cluster centroids and then employs a decision variable screening strategy to filter out solutions that have an impact on the distribution of individuals. This approach can broaden the range of dynamic multi-objective optimization algorithms. Second, an approach for predicting special points is suggested. The algorithm’s convergence is improved following environmental changes by forecasting the special point tracking Pareto front in the object space. Finally, the forward-looking center points are used to predict the non-dominated solution set and eliminate the useless individuals in the population. The prediction strategy can help the solution set converge while maintaining its diversity, which is compared with the four other state-of-the-art strategies. Our experimental results demonstrate that the proposed algorithm, DSSP, can effectively tackle DMOPs. Graphical Abstract Graphical Abstract
Author Wu, Fei
Wang, Wanliang
Chen, Jiacheng
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0002-8483-5392
  surname: Wu
  fullname: Wu, Fei
– sequence: 2
  givenname: Jiacheng
  surname: Chen
  fullname: Chen, Jiacheng
– sequence: 3
  givenname: Wanliang
  surname: Wang
  fullname: Wang, Wanliang
  email: zjutwwl@zjut.edu.cn
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002934249$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF9PwjAUxRuDiYi8-QH6ZmKctN3K2keC_0hITAw-N117h4VtxW5A-PZuwoMx0adzH37n5J5ziXqVrwCha0ruKZHxaGUsjD732lCWnKE-Y0JEnCSi9-O-QMO6XhFCaMpiQmUfPUywPVS6dAaX26Jxkc9WYBq3Aww7X2wb5ysdDlgXSx9c81HiTNdgsa_wJoB1pgOu0HmuixqGJx2g96fHxfQlmr8-z6aTeWTiVDYRM6mVhAMRIjXcSE40BdY-k4OQIMcMjJFW5IRbniU6llrwzEIiYSxprG08QLfH3Crkam2c8tp969KrdVCTt8VMUUKFGJOkhe-OsAm-rgPkahNc2XZpEdUtprrF1GmxFme_cOMa3bVrgnbFX6abo8lvN__HfwEhcoEz
CitedBy_id crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1016_j_eswa_2023_121538
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1093_jcde_qwac139
crossref_primary_10_1093_jcde_qwad107
crossref_primary_10_1007_s00500_023_09157_x
crossref_primary_10_1016_j_eswa_2025_129642
crossref_primary_10_1093_jcde_qwae055
crossref_primary_10_1016_j_swevo_2025_102103
crossref_primary_10_1093_jcde_qwaf023
Cites_doi 10.1109/TCYB.2020.2986600
10.1016/j.csda.2004.11.011
10.1016/j.engappai.2020.103905
10.1016/j.asoc.2017.05.008
10.1109/FSKD.2016.7603180
10.1017/S026357471800156X
10.1109/TEVC.2020.3027620
10.1109/TCYB.2018.2842158
10.1007/s00500-014-1433-3
10.1080/0305215X.2010.548863
10.1016/j.hydromet.2017.08.007
10.1007/s00500-016-2370-0
10.1109/TCYB.2013.2245892
10.1016/j.swevo.2022.101041
10.1109/TEVC.2016.2600642
10.1007/3-540-36970-8_9
10.1007/s00500-012-0964-8
10.1007/BF01195985
10.1109/TEVC.2019.2912204
10.1109/TEVC.2016.2574621
10.1093/jcde/qwab065
10.1109/TEVC.2004.831456
10.2514/6.2006-7071
10.1007/s00500-018-3033-0
10.1007/978-3-642-11218-8_4
10.1016/j.adhoc.2013.08.017
10.1109/ACCESS.2021.3070634
10.1007/s00500-013-1085-8
10.1007/s00500-010-0674-z
10.1016/j.ins.2008.02.017
10.1109/TEVC.2017.2704782
10.1109/TEVC.2015.2455812
10.1109/TEVC.2007.894202
10.1016/j.swevo.2018.05.001
10.1109/TFUZZ.2020.3003506
10.1016/j.ins.2019.09.016
10.1007/s10489-018-1263-6
10.1109/TEVC.2018.2791283
10.1007/s00500-014-1477-4
10.1145/3205651.3208224
10.1109/TCYB.2015.2490738
10.1016/j.asoc.2017.08.004
10.1016/j.asoc.2017.05.044
10.1080/00207543.2018.1542177
10.1016/j.ins.2013.06.051
10.1093/jcde/qwac009
10.1016/j.asoc.2007.07.005
10.1016/j.swevo.2020.100695
10.1016/j.asoc.2016.09.032
10.1109/TCYB.2017.2780274
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2022
DBID TOX
AAYXX
CITATION
ACYCR
DOI 10.1093/jcde/qwac124
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 15
ExternalDocumentID oai_kci_go_kr_ARTI_10188604
10_1093_jcde_qwac124
10.1093/jcde/qwac124
GroupedDBID .UV
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
ABEJV
ABGNP
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
BCNDV
EBS
EJD
FDB
FRF
GROUPED_DOAJ
H13
IAO
IGS
IPNFZ
ITC
JDI
KQ8
KSI
M41
ML0
M~E
NCXOZ
O9-
OK1
RIG
ROL
ROX
SSZ
TOX
AAYXX
ABJCF
ADMLS
AFFHD
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
AAYWO
ACYCR
PMFND
ID FETCH-LOGICAL-c379t-2c7d905e0887c5c950a1e2001fe89e962ecc9d8f05d5b4a39a85bde49e6913ad3
IEDL.DBID TOX
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910075600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Sat May 31 03:24:09 EDT 2025
Tue Nov 18 21:56:12 EST 2025
Sat Nov 29 03:52:54 EST 2025
Tue Jan 28 07:47:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords prediction
knee point
convergence
dynamic multi-objective optimization
diversity maintenance strategy
close-to-boundary point
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-2c7d905e0887c5c950a1e2001fe89e962ecc9d8f05d5b4a39a85bde49e6913ad3
ORCID 0000-0002-8483-5392
OpenAccessLink https://dx.doi.org/10.1093/jcde/qwac124
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10188604
crossref_primary_10_1093_jcde_qwac124
crossref_citationtrail_10_1093_jcde_qwac124
oup_primary_10_1093_jcde_qwac124
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational design and engineering
PublicationYear 2023
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Zhou (2023011112244680200_bib57) 2007
Shang (2023011112244680200_bib39) 2014; 18
Liu (2023011112244680200_bib26) 2016
Fan (2023011112244680200_bib9) 2017; 59
Guo (2023011112244680200_bib14) 2019; 57
Gao (2023011112244680200_bib11) 2020; 28
Jiang (2023011112244680200_bib23) 2022; 55
Zhao (2023011112244680200_bib54) 2019; 49
Yang (2023011112244680200_bib48) 2008; 178
Hu (2023011112244680200_bib20) 2018
Chen (2023011112244680200_bib5) 2022; 70
Farina (2023011112244680200_bib10) 2004; 8
Das (2023011112244680200_bib7) 1999; 18
Zhou (2023011112244680200_bib58) 2013; 44
Sun (2023011112244680200_bib41) 2018; 23
Aelst (2023011112244680200_bib1) 2006; 50
Schutze (2023011112244680200_bib37) 2003
Wang (2023011112244680200_bib44) 2019; 49
Zille (2023011112244680200_bib60) 2018; 22
Goh (2023011112244680200_bib12) 2008; 13
Nadeem (2023011112244680200_bib30) 2014; 13
Chen (2023011112244680200_bib4) 2010
Li (2023011112244680200_bib24) 2019; 23
Wu (2023011112244680200_bib46) 2015; 19
Ruan (2023011112244680200_bib35) 2017; 58
Han (2023011112244680200_bib15) 2017; 173
Stewart (2023011112244680200_bib40) 2022; 9
Hatzakis (2023011112244680200_bib17) 2006
Deb (2023011112244680200_bib8) 2011; 43
Peng (2023011112244680200_bib31) 2015; 19
Qian (2023011112244680200_bib33) 2017; 21
Jiang (2023011112244680200_bib21) 2016; 21
Muruganantham (2023011112244680200_bib29) 2016; 46
Gong (2023011112244680200_bib13) 2019; 24
Rong (2023011112244680200_bib34) 2019; 49
Ma (2023011112244680200_bib27) 2016; 20
Zheng (2023011112244680200_bib55) 2017; 52
Chen (2023011112244680200_bib3) 2018; 43
Zhang (2023011112244680200_bib52) 2008; 8
Premkumar (2023011112244680200_bib32) 2021; 9
Liang (2023011112244680200_bib25) 2022; 52
Helbig (2023011112244680200_bib19) 2013; 250
Zhang (2023011112244680200_bib51) 2020; 95
Zhang (2023011112244680200_bib50) 2018; 22
Zhang (2023011112244680200_bib49) 2008; 12
He (2023011112244680200_bib18) 2021; 25
Zhou (2023011112244680200_bib59) 2014; 44
Mei (2023011112244680200_bib28) 2016; 42
Sathiya (2023011112244680200_bib36) 2019; 37
Hatzakis (2023011112244680200_bib16) 2006
Zhang (2023011112244680200_bib53) 2011; 15
Cámara (2023011112244680200_bib6) 2010
Wang (2023011112244680200_bib43) 2020; 56
Yang (2023011112244680200_bib47) 2011
Wei (2023011112244680200_bib45) 2021
Shang (2023011112244680200_bib38) 2005
Zou (2023011112244680200_bib62) 2017; 61
Ahmed (2023011112244680200_bib2) 2013; 17
Jiang (2023011112244680200_bib22) 2017; 21
Verma (2023011112244680200_bib42) 2021; 9
Zheng (2023011112244680200_bib56) 2015; 43
Zou (2023011112244680200_bib61) 2020; 509
References_xml – volume: 52
  start-page: 1602
  issue: 3
  year: 2022
  ident: 2023011112244680200_bib25
  article-title: A dynamic multiobjective evolutionary algorithm based on decision variable classification
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2986600
– volume: 50
  start-page: 1287
  issue: 5
  year: 2006
  ident: 2023011112244680200_bib1
  article-title: Linear grouping using orthogonal regression
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2004.11.011
– volume: 95
  start-page: 103905
  year: 2020
  ident: 2023011112244680200_bib51
  article-title: A modified particle swarm optimization for multimodal multi-objective optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103905
– volume: 58
  start-page: 631
  year: 2017
  ident: 2023011112244680200_bib35
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.008
– start-page: 235
  volume-title: Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
  year: 2016
  ident: 2023011112244680200_bib26
  article-title: A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction
  doi: 10.1109/FSKD.2016.7603180
– volume: 37
  start-page: 1363
  issue: 8
  year: 2019
  ident: 2023011112244680200_bib36
  article-title: Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning
  publication-title: Robotica
  doi: 10.1017/S026357471800156X
– volume: 25
  start-page: 292
  issue: 2
  year: 2021
  ident: 2023011112244680200_bib18
  article-title: Knee-based decision making and visualization in many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3027620
– volume: 49
  start-page: 3362
  issue: 9
  year: 2019
  ident: 2023011112244680200_bib34
  article-title: Multidirectional prediction approach for dynamic multiobjective optimization problems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2842158
– volume: 19
  start-page: 2633
  issue: 9
  year: 2015
  ident: 2023011112244680200_bib31
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1433-3
– volume: 43
  start-page: 1175
  issue: 11
  year: 2011
  ident: 2023011112244680200_bib8
  article-title: Understanding knee points in bicriteria problems and their implications as preferred solution principles
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2010.548863
– volume: 173
  start-page: 134
  year: 2017
  ident: 2023011112244680200_bib15
  article-title: Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.08.007
– volume: 21
  start-page: 3781
  issue: 13
  year: 2017
  ident: 2023011112244680200_bib33
  article-title: A micro-cloning dynamic multiobjective algorithm with an adaptive change reaction strategy
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2370-0
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 2023011112244680200_bib59
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Transactions on Cybernatics
  doi: 10.1109/TCYB.2013.2245892
– volume: 70
  start-page: 101041
  year: 2022
  ident: 2023011112244680200_bib5
  article-title: Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2022.101041
– volume: 22
  start-page: 97
  issue: 1
  year: 2018
  ident: 2023011112244680200_bib50
  article-title: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2600642
– start-page: 118
  volume-title: Evolutionary Multi-Criterion Optimization
  year: 2003
  ident: 2023011112244680200_bib37
  article-title: Covering Pareto sets by multilevel evolutionary subdivision techniques
  doi: 10.1007/3-540-36970-8_9
– volume: 17
  start-page: 1283
  issue: 7
  year: 2013
  ident: 2023011112244680200_bib2
  article-title: Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0964-8
– volume: 18
  start-page: 107
  issue: 2–3
  year: 1999
  ident: 2023011112244680200_bib7
  article-title: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection
  publication-title: Structural Optimization
  doi: 10.1007/BF01195985
– volume: 24
  start-page: 142
  issue: 1
  year: 2019
  ident: 2023011112244680200_bib13
  article-title: A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2912204
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 2023011112244680200_bib22
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2574621
– year: 2021
  ident: 2023011112244680200_bib45
  article-title: Multi-objective optimization for resource allocation in vehicular cloud computing networks
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 9
  start-page: 24
  issue: 1
  year: 2021
  ident: 2023011112244680200_bib32
  article-title: Multi-objective equilibrium optimizer: Framework and development for solving multi-objective optimization problems
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwab065
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 2023011112244680200_bib10
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.831456
– start-page: 7071
  volume-title: Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
  year: 2006
  ident: 2023011112244680200_bib17
  article-title: Topology of anticipatory populations for evolutionary dynamic multi-objective optimization
  doi: 10.2514/6.2006-7071
– volume: 23
  start-page: 3723
  issue: 11
  year: 2019
  ident: 2023011112244680200_bib24
  article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3033-0
– volume: 13
  start-page: 103
  issue: 1
  year: 2008
  ident: 2023011112244680200_bib12
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 63
  volume-title: Advances in multi-objective nature inspired computing
  year: 2010
  ident: 2023011112244680200_bib6
  article-title: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms
  doi: 10.1007/978-3-642-11218-8_4
– volume: 21
  start-page: 65
  issue: 1
  year: 2016
  ident: 2023011112244680200_bib21
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2574621
– volume: 13
  start-page: 368
  year: 2014
  ident: 2023011112244680200_bib30
  article-title: An intrusion detection & adaptive response mechanism for manets
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2013.08.017
– volume: 9
  start-page: 57757
  year: 2021
  ident: 2023011112244680200_bib42
  article-title: A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070634
– volume: 18
  start-page: 743
  issue: 4
  year: 2014
  ident: 2023011112244680200_bib39
  article-title: Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1085-8
– volume: 15
  start-page: 1333
  issue: 7
  year: 2011
  ident: 2023011112244680200_bib53
  article-title: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0674-z
– volume: 43
  start-page: 1816
  issue: 9
  year: 2015
  ident: 2023011112244680200_bib56
  article-title: A prediction strategy based on guide-individual for dynamic multi-objective optimization
  publication-title: Acta Electonica Sinica
– volume: 178
  start-page: 2985
  issue: 15
  year: 2008
  ident: 2023011112244680200_bib48
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.02.017
– volume: 22
  start-page: 260
  issue: 2
  year: 2018
  ident: 2023011112244680200_bib60
  article-title: A framework for large-scale multiobjective optimization based on problem transformation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2704782
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  ident: 2023011112244680200_bib27
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2455812
– start-page: 300
  volume-title: Proceedings of the 2010 11th International Conference on Parallel Problem Solving from Nature – PPSN XI, Part II
  year: 2010
  ident: 2023011112244680200_bib4
  article-title: Large-scale global optimization using cooperative coevolution with variable interaction learning
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 2023011112244680200_bib49
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.894202
– volume: 43
  start-page: 147
  year: 2018
  ident: 2023011112244680200_bib3
  article-title: A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.05.001
– start-page: 846
  volume-title: Proceedings of the 2005 International Conference on Computational Intelligence and Security, CIS 2005, Part I
  year: 2005
  ident: 2023011112244680200_bib38
  article-title: Clonal selection algorithm for dynamic multiobjective optimization
– start-page: 1782
  volume-title: Proceedings of the International Conference on Graphic and Image Processing (ICGIP 2011)
  year: 2011
  ident: 2023011112244680200_bib47
  article-title: Differential evolution based on hybrid crossover operators
– volume: 28
  start-page: 3265
  issue: 12
  year: 2020
  ident: 2023011112244680200_bib11
  article-title: Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2020.3003506
– volume: 509
  start-page: 193
  year: 2020
  ident: 2023011112244680200_bib61
  article-title: A knee-guided prediction approach for dynamic multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.09.016
– start-page: 832
  volume-title: Proceedings of the 2007 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007
  year: 2007
  ident: 2023011112244680200_bib57
  article-title: Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
– volume: 49
  start-page: 569
  issue: 2
  year: 2019
  ident: 2023011112244680200_bib54
  article-title: An improved adaptive NSGA-II with multi-population algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1263-6
– volume: 23
  start-page: 173
  issue: 2
  year: 2018
  ident: 2023011112244680200_bib41
  article-title: IGD indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2791283
– volume: 19
  start-page: 3221
  issue: 11
  year: 2015
  ident: 2023011112244680200_bib46
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-014-1477-4
– start-page: 1898
  volume-title: Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, GECCO 2018
  year: 2018
  ident: 2023011112244680200_bib20
  article-title: Incorporation of a decision space diversity maintenance mechanism into MOEA/D for multi-modal multi-objective optimization
  doi: 10.1145/3205651.3208224
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 2023011112244680200_bib29
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2490738
– volume: 61
  start-page: 806
  year: 2017
  ident: 2023011112244680200_bib62
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.08.004
– volume: 44
  start-page: 40
  issue: 1
  year: 2013
  ident: 2023011112244680200_bib58
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2245892
– volume: 42
  start-page: 13:1
  issue: 2
  year: 2016
  ident: 2023011112244680200_bib28
  article-title: A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization
  publication-title: ACM Transactions on Mathematical Software
– volume: 59
  start-page: 33
  year: 2017
  ident: 2023011112244680200_bib9
  article-title: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and biochemical dynamic optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.044
– start-page: 1201
  volume-title: Proceedings of the 2006 Genetic and Evolutionary Computation Conference, GECCO 2006
  year: 2006
  ident: 2023011112244680200_bib16
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach
– volume: 57
  start-page: 3522
  issue: 11
  year: 2019
  ident: 2023011112244680200_bib14
  article-title: First-train timing synchronisation using multi-objective optimisation in urban transit networks
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1542177
– volume: 250
  start-page: 61
  year: 2013
  ident: 2023011112244680200_bib19
  article-title: Performance measures for dynamic multi-objective optimisation algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.06.051
– volume: 9
  start-page: 480
  issue: 2
  year: 2022
  ident: 2023011112244680200_bib40
  article-title: An agent-based blackboard system for multi-objective optimization
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac009
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 2023011112244680200_bib52
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.07.005
– volume: 56
  start-page: 100695
  year: 2020
  ident: 2023011112244680200_bib43
  article-title: A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100695
– volume: 52
  start-page: 952
  year: 2017
  ident: 2023011112244680200_bib55
  article-title: On decomposition methods in interactive user-preference based optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.09.032
– volume: 55
  start-page: 1
  year: 2022
  ident: 2023011112244680200_bib23
  article-title: Evolutionary dynamic multi-objective optimisation: A survey
  publication-title: ACM Computing Surveys
– volume: 49
  start-page: 542
  issue: 2
  year: 2019
  ident: 2023011112244680200_bib44
  article-title: Improving metaheuristic algorithms with information feedback models
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2780274
SSID ssj0001723019
ssib053376903
Score 2.292214
Snippet The dynamic multi-objective optimization problem (DMOP) is a common problem in optimization problems; the main reasons are the objective’s conflict and...
SourceID nrf
crossref
oup
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 기계공학
Title A dynamic multi-objective evolutionary algorithm based on prediction
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002934249
Volume 10
WOSCitedRecordID wos000910075600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2023, 10(1), , pp.1-15
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M7S
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: BENPR
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: PIMPY
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5g4sCF8RTjMUUCTihaujRrcpyACSQ0OAy0W5Um6diDdnRliH9P0oaneJ16cZvIdmy3_voZgEPLEUUVVkjEPka-wAQxziginKkoMgWILsh0bi-Dbpf1-_zakSTNvmnhc9IYSaUbD09CmlRkYq1HmfXn3lX__VtKYAppjztc-9d7PmWcxSSLy3_ZPqSRTvXfG1gFK65ShO3StGtgQSfroOqqRujO5GwDnLahKsfKwwIdiNJoVEYxqOfOsUT2DMVkkGbD_O4e2sylYJrAaWbbNFZgE9x0znon58jNRkCSBDxHTRkojqm2QUJSySkWnrb4qFgzrnmraUzDFYsxVTTyBeGC0Uhpn-sW94hQZAtUkjTR28AsKkza92MqJfG1sIxEkY9jHfhcmhOqa-D4VX-hdMThdn7FJCwb2CS0Cgqdgmrg6E16WhJm_CB3YEwRjuUwtAzX9jpIw3EWmjr-wgLPGGthIwWNqX590M7fIrtg2U6JL8HWe6CSZ496HyzJeT6cZfXiNbxeeNQLF-jKaQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+based+on+prediction&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Wu%2C+Fei&rft.au=Chen%2C+Jiacheng&rft.au=Wang%2C+Wanliang&rft.date=2023-02-01&rft.pub=Oxford+University+Press&rft.eissn=2288-5048&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1093%2Fjcde%2Fqwac124&rft.externalDocID=10.1093%2Fjcde%2Fqwac124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon