Optimal indoor heat distribution: Virtual heaters
•A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters. It is well known th...
Uložené v:
| Vydané v: | Applied energy Ročník 254; s. 113616 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.11.2019
Elsevier |
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters.
It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in a specific room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°C and compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein. |
|---|---|
| AbstractList | •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters.
It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in a specific room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°C and compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein. It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in the room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°Cand compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein. |
| ArticleNumber | 113616 |
| Author | Léger, Jérémie Lassue, Stéphane Rousse, Daniel R. |
| Author_xml | – sequence: 1 givenname: Jérémie surname: Léger fullname: Léger, Jérémie organization: Industrial Research Group in Energy Technologies and Energy Efficiency (t3e), École de technologie supérieure, Université du Québec, 1100, rue Notre-Dame Ouest, Montréal H3C 1K3, Canada – sequence: 2 givenname: Daniel R. surname: Rousse fullname: Rousse, Daniel R. email: daniel.rousse@etsmtl.ca organization: Industrial Research Group in Energy Technologies and Energy Efficiency (t3e), École de technologie supérieure, Université du Québec, 1100, rue Notre-Dame Ouest, Montréal H3C 1K3, Canada – sequence: 3 givenname: Stéphane surname: Lassue fullname: Lassue, Stéphane organization: Laboratoire de Génie Civil et géo-Environnement (LGCgE), Univ. Artois, EA 4515, F-62400 Béthune, France |
| BackLink | https://hal.science/hal-03246393$$DView record in HAL |
| BookMark | eNqFkMFOAyEURYnRxFb9BdOlLqbyoAPFuNA0ak2adNO4JZR5Y2nGoQI16d_LZNSFG1cQOPfmvTMkx61vkZBLoGOgIG62Y7PDFsPbYcwoqDEAFyCOyACmkhUKYHpMBpRTUTAB6pQMY9xSShkwOiCw3CX3bpqRayvvw2iDJo0qF1Nw631yvr0dvbqQ9pnovjDEc3JSmybixfd5RlZPj6vZvFgsn19mD4vCcqlSwVTFZEURrKwntMxXhUKtmVqrUnI2NShLiYZOuWS1mVhuKg62BIuVXLOan5HrvnZjGr0LecZw0N44PX9Y6O6NcjYRXPFPyOxVz-6C_9hjTPrdRYtNY1r0-6gZpyUIkdfPqOhRG3yMAevfbqC606m3-ken7nTqXmcO3v0JWpdMZygF45r_4_d9HLOyT4dBR-uwzdu6gDbpyrv_Kr4AKT6WTw |
| CitedBy_id | crossref_primary_10_1016_j_energy_2020_118867 crossref_primary_10_1016_j_enbuild_2024_114815 |
| Cites_doi | 10.1016/j.enbuild.2010.08.034 10.1016/j.rser.2014.05.040 10.4028/www.scientific.net/AMM.861.417 10.1016/j.buildenv.2015.03.040 10.1007/s004840100093 10.1016/j.buildenv.2012.01.019 10.1016/j.buildenv.2017.11.035 10.1016/j.applthermaleng.2016.08.217 10.1016/j.buildenv.2016.11.029 10.1177/0143624416658088 10.1016/S0360-1323(97)00074-7 10.1016/j.enbuild.2017.09.095 10.1080/01457630600742480 10.1016/j.enbuild.2013.09.034 |
| ContentType | Journal Article |
| Copyright | 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC |
| DOI | 10.1016/j.apenergy.2019.113616 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai:HAL:hal-03246393v1 10_1016_j_apenergy_2019_113616 S0306261919312905 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c379t-29d27d0e1c7f4057d09e69b29b957328ae757ea08372fa4c3ad31c51ced7b2f3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497974600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Tue Oct 14 20:50:23 EDT 2025 Sun Sep 28 11:13:38 EDT 2025 Tue Nov 18 22:39:13 EST 2025 Sat Nov 29 07:18:52 EST 2025 Fri Feb 23 02:30:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Virtual heaters Thermal comfort Heat distribution Indoor heating Optimal heating Local optimization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c379t-29d27d0e1c7f4057d09e69b29b957328ae757ea08372fa4c3ad31c51ced7b2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4279-0947 |
| PQID | 2305166261 |
| PQPubID | 24069 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03246393v1 proquest_miscellaneous_2305166261 crossref_primary_10_1016_j_apenergy_2019_113616 crossref_citationtrail_10_1016_j_apenergy_2019_113616 elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_113616 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-15 |
| PublicationDateYYYYMMDD | 2019-11-15 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | ISO-7730. Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Tech. rep. ISO; 2005. Hannay, Laret, Lebrun, Marret, Nusgens (b0045) 1978; 84 [accessed: Oct 1 2016]. Halawa, van Hoof, Soebarto (b0065) 2014; 37 Sevilgen, Kilic (b0035) 2011; 43 Fanger (b0005) 1970 Krajčik, Kudiváni, Mahdavi (b0135) 2016; 861 Rhee, Kim (b0075) 2015; 91 Çengel, Boles (b0085) 2008 Myhren, Holmberg (b0030) 2006; vol. 2 Léger J, Rousse DR, Le Borgne K, Coulombe F. Des instruments de mesure pour la thermique du bâtiment: La klimat, in: Colloque Interuniversitaire Franco-Québecois sur la Thermique des Système, France; 2017. de Dear, Brager (b0020) 2001; 45 Inard, Meslem, Depecker (b0040) 1998; 33 Kwong, Adam, Sahari (b0070) 2014; 68 Ovchinnikov, Borodinecs, Strelets (b0080) 2017; 112 Patankar (b0090) 1980 Wang, Zewei, Zhou, Zhu, Huang, Yang (b0130) 2016; 37 Han, Li, Xu (b0060) 2014; 953 Olesen, Mortensen, Thorshauge, Berg-Munch (b0025) 1980; 86 ASHRAE-55. Thermal Environment Conditions for Human Occupancy. Tech. rep. ASHRAE; 2013. Léger, Rousse, Le Borgne, Lassue (b0115) 2018; 128 Incropera, DeWitt (b0095) 2011 Howell JR. A catalog of radiation heat transfer configuration factors. Ahmed, Gao, Kareem (b0140) 2017; 110 Ghaddar, Salam, Ghali (b0050) 2006; 27 Gou, Nik, Scartezzini, Zhao, Li (b0110) 2018; 169 Ashrae handbook fundamentals (b0125) 1973; 18 Tye-Gingras, Gosselin (b0055) 2012; 54 Nocedal, Wright (b0105) 1999 10.1016/j.apenergy.2019.113616_b0100 10.1016/j.apenergy.2019.113616_b0120 Wang (10.1016/j.apenergy.2019.113616_b0130) 2016; 37 Han (10.1016/j.apenergy.2019.113616_b0060) 2014; 953 Ashrae handbook fundamentals (10.1016/j.apenergy.2019.113616_b0125) 1973; 18 Fanger (10.1016/j.apenergy.2019.113616_b0005) 1970 Hannay (10.1016/j.apenergy.2019.113616_b0045) 1978; 84 Kwong (10.1016/j.apenergy.2019.113616_b0070) 2014; 68 de Dear (10.1016/j.apenergy.2019.113616_b0020) 2001; 45 Gou (10.1016/j.apenergy.2019.113616_b0110) 2018; 169 Ovchinnikov (10.1016/j.apenergy.2019.113616_b0080) 2017; 112 Incropera (10.1016/j.apenergy.2019.113616_b0095) 2011 10.1016/j.apenergy.2019.113616_b0015 10.1016/j.apenergy.2019.113616_b0010 Çengel (10.1016/j.apenergy.2019.113616_b0085) 2008 Myhren (10.1016/j.apenergy.2019.113616_b0030) 2006; vol. 2 Sevilgen (10.1016/j.apenergy.2019.113616_b0035) 2011; 43 Olesen (10.1016/j.apenergy.2019.113616_b0025) 1980; 86 Krajčik (10.1016/j.apenergy.2019.113616_b0135) 2016; 861 Ghaddar (10.1016/j.apenergy.2019.113616_b0050) 2006; 27 Inard (10.1016/j.apenergy.2019.113616_b0040) 1998; 33 Tye-Gingras (10.1016/j.apenergy.2019.113616_b0055) 2012; 54 Halawa (10.1016/j.apenergy.2019.113616_b0065) 2014; 37 Rhee (10.1016/j.apenergy.2019.113616_b0075) 2015; 91 Nocedal (10.1016/j.apenergy.2019.113616_b0105) 1999 Ahmed (10.1016/j.apenergy.2019.113616_b0140) 2017; 110 Patankar (10.1016/j.apenergy.2019.113616_b0090) 1980 Léger (10.1016/j.apenergy.2019.113616_b0115) 2018; 128 |
| References_xml | – year: 2011 ident: b0095 article-title: Fundamentals of heat and mass transfer – reference: Léger J, Rousse DR, Le Borgne K, Coulombe F. Des instruments de mesure pour la thermique du bâtiment: La klimat, in: Colloque Interuniversitaire Franco-Québecois sur la Thermique des Système, France; 2017. – volume: 861 start-page: 417 year: 2016 end-page: 424 ident: b0135 article-title: Energy saving potential of personalized ventilation applied in an open space office under winter conditions publication-title: Appl Mech Mater – volume: 43 start-page: 137 year: 2011 end-page: 146 ident: b0035 article-title: Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators publication-title: Energy Build – volume: 33 start-page: 279 year: 1998 end-page: 291 ident: b0040 article-title: Energy consumption and thermal comfort in dwelling-cells: a zonal-model approach publication-title: Build Environ – volume: 54 start-page: 1 year: 2012 end-page: 13 ident: b0055 article-title: Comfort and energy consumption of hydronic heating radiant ceilings and walls based on cfd analysis publication-title: Build Environ – reference: Howell JR. A catalog of radiation heat transfer configuration factors. – volume: 27 start-page: 29 year: 2006 end-page: 40 ident: b0050 article-title: Steady thermal comfort by radiant heat transfer: the impact of the heater position publication-title: Heat Transf Eng – volume: 84 start-page: 150 year: 1978 end-page: 175 ident: b0045 article-title: Thermal comfort and energy consumption in winter conditions. a new experimental approach publication-title: ASHRAE Trans – volume: vol. 2 year: 2006 ident: b0030 article-title: Comfort temperature and operative temperatures in an office with different heating methods publication-title: Proc. of the healthy buildings – volume: 37 start-page: 907 year: 2014 end-page: 918 ident: b0065 article-title: The impacts of the thermal radiation field on thermal comfort, energy consumption and control-a critical overview publication-title: Renew Sustain Energy Rev – volume: 68 start-page: 547 year: 2014 end-page: 557 ident: b0070 article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review publication-title: Energy Build – year: 2008 ident: b0085 article-title: Thermodynamics: an engineering approach – volume: 169 start-page: 484 year: 2018 end-page: 506 ident: b0110 article-title: Passive design optimization of newly-built residential buildings in shanghai for improving indoor thermal comfort while reducing building energy consumption publication-title: Energ Buildings – volume: 45 start-page: 100 year: 2001 end-page: 108 ident: b0020 article-title: The adaptive model of thermal comfort and energy conservation in the built environment publication-title: J Biometeorol – year: 1999 ident: b0105 article-title: Numerical optimization – volume: 37 start-page: 710 year: 2016 end-page: 729 ident: b0130 article-title: Experimental investigation on the airflow characteristics of an attachment-based personalized ventilation method publication-title: Build Serv Eng Res Technol – reference: ISO-7730. Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Tech. rep. ISO; 2005. – volume: 110 start-page: 821 year: 2017 end-page: 834 ident: b0140 article-title: Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms publication-title: Appl Therm Eng – year: 1970 ident: b0005 article-title: Thermal comfort. Analysis and applications in environmental engineering – volume: 112 start-page: 88 year: 2017 end-page: 98 ident: b0080 article-title: Utilization potential of low temperature hydronic space heating systems: a comparative review publication-title: Build Environ – volume: 128 start-page: 161 year: 2018 end-page: 169 ident: b0115 article-title: Comparing electric heating systems at equal thermal comfort: an experimental investigation publication-title: Build Environ – volume: 18 start-page: 1 year: 1973 end-page: 15 ident: b0125 article-title: American Society of Heating publication-title: Refrigeration and Air-Conditioning Engineers – volume: 86 start-page: 34 year: 1980 end-page: 48 ident: b0025 article-title: Thermal comfort in a room heated by different methods publication-title: ASHRAE Trans – volume: 91 start-page: 166 year: 2015 end-page: 190 ident: b0075 article-title: A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment publication-title: Build Environ – reference: ASHRAE-55. Thermal Environment Conditions for Human Occupancy. Tech. rep. ASHRAE; 2013. – volume: 953 start-page: 849 year: 2014 end-page: 853 ident: b0060 article-title: Comparative study on energy consumption of gas-fired infrared radiant and convection heating publication-title: Adv Mater Res – reference: [accessed: Oct 1 2016]. – year: 1980 ident: b0090 article-title: Numerical heat transfer and fluid flow – year: 1999 ident: 10.1016/j.apenergy.2019.113616_b0105 – ident: 10.1016/j.apenergy.2019.113616_b0120 – volume: 43 start-page: 137 year: 2011 ident: 10.1016/j.apenergy.2019.113616_b0035 article-title: Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators publication-title: Energy Build doi: 10.1016/j.enbuild.2010.08.034 – year: 2011 ident: 10.1016/j.apenergy.2019.113616_b0095 – volume: 37 start-page: 907 year: 2014 ident: 10.1016/j.apenergy.2019.113616_b0065 article-title: The impacts of the thermal radiation field on thermal comfort, energy consumption and control-a critical overview publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.040 – year: 1970 ident: 10.1016/j.apenergy.2019.113616_b0005 – volume: 861 start-page: 417 year: 2016 ident: 10.1016/j.apenergy.2019.113616_b0135 article-title: Energy saving potential of personalized ventilation applied in an open space office under winter conditions publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.861.417 – volume: 91 start-page: 166 year: 2015 ident: 10.1016/j.apenergy.2019.113616_b0075 article-title: A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment publication-title: Build Environ doi: 10.1016/j.buildenv.2015.03.040 – volume: 45 start-page: 100 year: 2001 ident: 10.1016/j.apenergy.2019.113616_b0020 article-title: The adaptive model of thermal comfort and energy conservation in the built environment publication-title: J Biometeorol doi: 10.1007/s004840100093 – volume: 54 start-page: 1 year: 2012 ident: 10.1016/j.apenergy.2019.113616_b0055 article-title: Comfort and energy consumption of hydronic heating radiant ceilings and walls based on cfd analysis publication-title: Build Environ doi: 10.1016/j.buildenv.2012.01.019 – volume: 128 start-page: 161 year: 2018 ident: 10.1016/j.apenergy.2019.113616_b0115 article-title: Comparing electric heating systems at equal thermal comfort: an experimental investigation publication-title: Build Environ doi: 10.1016/j.buildenv.2017.11.035 – ident: 10.1016/j.apenergy.2019.113616_b0015 – volume: vol. 2 year: 2006 ident: 10.1016/j.apenergy.2019.113616_b0030 article-title: Comfort temperature and operative temperatures in an office with different heating methods – volume: 953 start-page: 849 year: 2014 ident: 10.1016/j.apenergy.2019.113616_b0060 article-title: Comparative study on energy consumption of gas-fired infrared radiant and convection heating publication-title: Adv Mater Res – year: 2008 ident: 10.1016/j.apenergy.2019.113616_b0085 – volume: 110 start-page: 821 year: 2017 ident: 10.1016/j.apenergy.2019.113616_b0140 article-title: Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.08.217 – volume: 86 start-page: 34 year: 1980 ident: 10.1016/j.apenergy.2019.113616_b0025 article-title: Thermal comfort in a room heated by different methods publication-title: ASHRAE Trans – volume: 84 start-page: 150 year: 1978 ident: 10.1016/j.apenergy.2019.113616_b0045 article-title: Thermal comfort and energy consumption in winter conditions. a new experimental approach publication-title: ASHRAE Trans – ident: 10.1016/j.apenergy.2019.113616_b0010 – volume: 18 start-page: 1 year: 1973 ident: 10.1016/j.apenergy.2019.113616_b0125 article-title: American Society of Heating publication-title: Refrigeration and Air-Conditioning Engineers – volume: 112 start-page: 88 year: 2017 ident: 10.1016/j.apenergy.2019.113616_b0080 article-title: Utilization potential of low temperature hydronic space heating systems: a comparative review publication-title: Build Environ doi: 10.1016/j.buildenv.2016.11.029 – volume: 37 start-page: 710 year: 2016 ident: 10.1016/j.apenergy.2019.113616_b0130 article-title: Experimental investigation on the airflow characteristics of an attachment-based personalized ventilation method publication-title: Build Serv Eng Res Technol doi: 10.1177/0143624416658088 – volume: 33 start-page: 279 year: 1998 ident: 10.1016/j.apenergy.2019.113616_b0040 article-title: Energy consumption and thermal comfort in dwelling-cells: a zonal-model approach publication-title: Build Environ doi: 10.1016/S0360-1323(97)00074-7 – ident: 10.1016/j.apenergy.2019.113616_b0100 – year: 1980 ident: 10.1016/j.apenergy.2019.113616_b0090 – volume: 169 start-page: 484 year: 2018 ident: 10.1016/j.apenergy.2019.113616_b0110 article-title: Passive design optimization of newly-built residential buildings in shanghai for improving indoor thermal comfort while reducing building energy consumption publication-title: Energ Buildings doi: 10.1016/j.enbuild.2017.09.095 – volume: 27 start-page: 29 year: 2006 ident: 10.1016/j.apenergy.2019.113616_b0050 article-title: Steady thermal comfort by radiant heat transfer: the impact of the heater position publication-title: Heat Transf Eng doi: 10.1080/01457630600742480 – volume: 68 start-page: 547 year: 2014 ident: 10.1016/j.apenergy.2019.113616_b0070 article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review publication-title: Energy Build doi: 10.1016/j.enbuild.2013.09.034 |
| SSID | ssj0002120 |
| Score | 2.2975516 |
| Snippet | •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal... It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113616 |
| SubjectTerms | algorithms Civil Engineering energy Engineering Sciences Heat distribution heat transfer heaters Indoor heating Local optimization Optimal heating quadratic programming temperature Thermal comfort Virtual heaters |
| Title | Optimal indoor heat distribution: Virtual heaters |
| URI | https://dx.doi.org/10.1016/j.apenergy.2019.113616 https://www.proquest.com/docview/2305166261 https://hal.science/hal-03246393 |
| Volume | 254 |
| WOSCitedRecordID | wos000497974600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZYxwM8IBhMdAMUEOItECeNXfNWoU5jijqEgtQ3y7GdrRNLQ9tV-_ncxU5aoaKNB16i1omT6D7bufPdfUfI-zLVoESULEyYYuFAFSocamNg4kUqEVoVQjfs-hmfTIbTqfjm6-Utm3ICvKqGt7ei_q9QQxuAjamz_wB3d1NogN8AOhwBdjjeC_hzWASuGyoNM58vUBNcoRumq2yFewDr2aLJG8GTPgS-o6L1aqltkgK7eB3nUL9wAJ-5f97Lfj3rBsf3-c3SVWp0qeubcMRMIcAursx1qy-Vd-n7TQcqMPvOpV22yVYRC9H42rkKuw2Bq4-qdu-KEXSiqR5Dd9BeT87lyY8sk_l4mn-of4VYEQw95748yh7Zj3kqhj2yP_o6np5139nYk262r7KV_7370X9TPfYuMQb2j09xo1_kT8kTbxgEIwfoM_LAVgfk8RZd5AE5HG-yEuFSvywvnxPqMQ8c5gHCGmxj_jnwiAce8RckPxnnX05DXwsj1AkXqzAWJuYmslTzEnVsEwnLRBGLQqTIt6QsT7lVoFDzuFQDnSiTUJ1SbQ0v4jI5JL1qXtmXJIhKOC8KRZVhg9KwQum0YMibp0CIie6TtJWS1J4nHsuV_JRtQOCVbKUrUbrSSbdPPnX9aseUcmcP0YIgvb7n9DgJA-nOvu8Ate5BSJJ-OsoktkVgI4Denaxpn7xtQZWwaqIrDEY2zAQJhndKGRjz9Oge1xyTR5tJ8Ir0Vosb-5o81OvVbLl448flbxdrjL8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+indoor+heat+distribution%3A+virtual+heaters&rft.jtitle=Applied+energy&rft.au=L%C3%A9ger%2C+J%C3%A9r%C3%A9mie&rft.au=Rousse%2C+Daniel+R&rft.au=Lassue%2C+St%C3%A9phane&rft.date=2019-11-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2019.113616&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |