Optimal indoor heat distribution: Virtual heaters

•A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters. It is well known th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 254; s. 113616
Hlavní autori: Léger, Jérémie, Rousse, Daniel R., Lassue, Stéphane
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.11.2019
Elsevier
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters. It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in a specific room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°C and compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein.
AbstractList •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal heat distribution can be found without any technological biases.•A case study demonstrates how to apply the virtual heaters. It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in a specific room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°C and compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein.
It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic has focused on specific heaters and how they distribute heat, this paper proposes a new concept termed virtual heaters. Virtual heaters are a set of two optimized heat distributors that respectively maximize and minimize the energy consumption inside a room while maintaining the same level of thermal comfort. The maximum and minimum virtual heaters are then applied in a comparison with a real heater tested in the room at constant thermal comfort in order to quantify its ability to provide comfort while using a minimum amount of energy. To calculate the ”virtual heaters”, a simplified heat transfer model is formulated and implemented. A volumetric thermal comfort model using the predicted mean vote is also discussed and used. The ”simplified” heat transfer model with the thermal comfort constraint is then optimized via a sequential quadratic programming algorithm. The proposed method is applied to the heating of a room subject to an outdoor temperature of -20°Cand compared to experimental results. Results show that the maximum virtual heater consumes approximately 35% more energy than the minimum virtual heater for the case considered herein.
ArticleNumber 113616
Author Léger, Jérémie
Lassue, Stéphane
Rousse, Daniel R.
Author_xml – sequence: 1
  givenname: Jérémie
  surname: Léger
  fullname: Léger, Jérémie
  organization: Industrial Research Group in Energy Technologies and Energy Efficiency (t3e), École de technologie supérieure, Université du Québec, 1100, rue Notre-Dame Ouest, Montréal H3C 1K3, Canada
– sequence: 2
  givenname: Daniel R.
  surname: Rousse
  fullname: Rousse, Daniel R.
  email: daniel.rousse@etsmtl.ca
  organization: Industrial Research Group in Energy Technologies and Energy Efficiency (t3e), École de technologie supérieure, Université du Québec, 1100, rue Notre-Dame Ouest, Montréal H3C 1K3, Canada
– sequence: 3
  givenname: Stéphane
  surname: Lassue
  fullname: Lassue, Stéphane
  organization: Laboratoire de Génie Civil et géo-Environnement (LGCgE), Univ. Artois, EA 4515, F-62400 Béthune, France
BackLink https://hal.science/hal-03246393$$DView record in HAL
BookMark eNqFkMFOAyEURYnRxFb9BdOlLqbyoAPFuNA0ak2adNO4JZR5Y2nGoQI16d_LZNSFG1cQOPfmvTMkx61vkZBLoGOgIG62Y7PDFsPbYcwoqDEAFyCOyACmkhUKYHpMBpRTUTAB6pQMY9xSShkwOiCw3CX3bpqRayvvw2iDJo0qF1Nw631yvr0dvbqQ9pnovjDEc3JSmybixfd5RlZPj6vZvFgsn19mD4vCcqlSwVTFZEURrKwntMxXhUKtmVqrUnI2NShLiYZOuWS1mVhuKg62BIuVXLOan5HrvnZjGr0LecZw0N44PX9Y6O6NcjYRXPFPyOxVz-6C_9hjTPrdRYtNY1r0-6gZpyUIkdfPqOhRG3yMAevfbqC606m3-ken7nTqXmcO3v0JWpdMZygF45r_4_d9HLOyT4dBR-uwzdu6gDbpyrv_Kr4AKT6WTw
CitedBy_id crossref_primary_10_1016_j_energy_2020_118867
crossref_primary_10_1016_j_enbuild_2024_114815
Cites_doi 10.1016/j.enbuild.2010.08.034
10.1016/j.rser.2014.05.040
10.4028/www.scientific.net/AMM.861.417
10.1016/j.buildenv.2015.03.040
10.1007/s004840100093
10.1016/j.buildenv.2012.01.019
10.1016/j.buildenv.2017.11.035
10.1016/j.applthermaleng.2016.08.217
10.1016/j.buildenv.2016.11.029
10.1177/0143624416658088
10.1016/S0360-1323(97)00074-7
10.1016/j.enbuild.2017.09.095
10.1080/01457630600742480
10.1016/j.enbuild.2013.09.034
ContentType Journal Article
Copyright 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.apenergy.2019.113616
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID oai:HAL:hal-03246393v1
10_1016_j_apenergy_2019_113616
S0306261919312905
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
1XC
ID FETCH-LOGICAL-c379t-29d27d0e1c7f4057d09e69b29b957328ae757ea08372fa4c3ad31c51ced7b2f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497974600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 14 20:50:23 EDT 2025
Sun Sep 28 11:13:38 EDT 2025
Tue Nov 18 22:39:13 EST 2025
Sat Nov 29 07:18:52 EST 2025
Fri Feb 23 02:30:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Virtual heaters
Thermal comfort
Heat distribution
Indoor heating
Optimal heating
Local optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-29d27d0e1c7f4057d09e69b29b957328ae757ea08372fa4c3ad31c51ced7b2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4279-0947
PQID 2305166261
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03246393v1
proquest_miscellaneous_2305166261
crossref_primary_10_1016_j_apenergy_2019_113616
crossref_citationtrail_10_1016_j_apenergy_2019_113616
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_113616
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References ISO-7730. Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Tech. rep. ISO; 2005.
Hannay, Laret, Lebrun, Marret, Nusgens (b0045) 1978; 84
[accessed: Oct 1 2016].
Halawa, van Hoof, Soebarto (b0065) 2014; 37
Sevilgen, Kilic (b0035) 2011; 43
Fanger (b0005) 1970
Krajčik, Kudiváni, Mahdavi (b0135) 2016; 861
Rhee, Kim (b0075) 2015; 91
Çengel, Boles (b0085) 2008
Myhren, Holmberg (b0030) 2006; vol. 2
Léger J, Rousse DR, Le Borgne K, Coulombe F. Des instruments de mesure pour la thermique du bâtiment: La klimat, in: Colloque Interuniversitaire Franco-Québecois sur la Thermique des Système, France; 2017.
de Dear, Brager (b0020) 2001; 45
Inard, Meslem, Depecker (b0040) 1998; 33
Kwong, Adam, Sahari (b0070) 2014; 68
Ovchinnikov, Borodinecs, Strelets (b0080) 2017; 112
Patankar (b0090) 1980
Wang, Zewei, Zhou, Zhu, Huang, Yang (b0130) 2016; 37
Han, Li, Xu (b0060) 2014; 953
Olesen, Mortensen, Thorshauge, Berg-Munch (b0025) 1980; 86
ASHRAE-55. Thermal Environment Conditions for Human Occupancy. Tech. rep. ASHRAE; 2013.
Léger, Rousse, Le Borgne, Lassue (b0115) 2018; 128
Incropera, DeWitt (b0095) 2011
Howell JR. A catalog of radiation heat transfer configuration factors.
Ahmed, Gao, Kareem (b0140) 2017; 110
Ghaddar, Salam, Ghali (b0050) 2006; 27
Gou, Nik, Scartezzini, Zhao, Li (b0110) 2018; 169
Ashrae handbook fundamentals (b0125) 1973; 18
Tye-Gingras, Gosselin (b0055) 2012; 54
Nocedal, Wright (b0105) 1999
10.1016/j.apenergy.2019.113616_b0100
10.1016/j.apenergy.2019.113616_b0120
Wang (10.1016/j.apenergy.2019.113616_b0130) 2016; 37
Han (10.1016/j.apenergy.2019.113616_b0060) 2014; 953
Ashrae handbook fundamentals (10.1016/j.apenergy.2019.113616_b0125) 1973; 18
Fanger (10.1016/j.apenergy.2019.113616_b0005) 1970
Hannay (10.1016/j.apenergy.2019.113616_b0045) 1978; 84
Kwong (10.1016/j.apenergy.2019.113616_b0070) 2014; 68
de Dear (10.1016/j.apenergy.2019.113616_b0020) 2001; 45
Gou (10.1016/j.apenergy.2019.113616_b0110) 2018; 169
Ovchinnikov (10.1016/j.apenergy.2019.113616_b0080) 2017; 112
Incropera (10.1016/j.apenergy.2019.113616_b0095) 2011
10.1016/j.apenergy.2019.113616_b0015
10.1016/j.apenergy.2019.113616_b0010
Çengel (10.1016/j.apenergy.2019.113616_b0085) 2008
Myhren (10.1016/j.apenergy.2019.113616_b0030) 2006; vol. 2
Sevilgen (10.1016/j.apenergy.2019.113616_b0035) 2011; 43
Olesen (10.1016/j.apenergy.2019.113616_b0025) 1980; 86
Krajčik (10.1016/j.apenergy.2019.113616_b0135) 2016; 861
Ghaddar (10.1016/j.apenergy.2019.113616_b0050) 2006; 27
Inard (10.1016/j.apenergy.2019.113616_b0040) 1998; 33
Tye-Gingras (10.1016/j.apenergy.2019.113616_b0055) 2012; 54
Halawa (10.1016/j.apenergy.2019.113616_b0065) 2014; 37
Rhee (10.1016/j.apenergy.2019.113616_b0075) 2015; 91
Nocedal (10.1016/j.apenergy.2019.113616_b0105) 1999
Ahmed (10.1016/j.apenergy.2019.113616_b0140) 2017; 110
Patankar (10.1016/j.apenergy.2019.113616_b0090) 1980
Léger (10.1016/j.apenergy.2019.113616_b0115) 2018; 128
References_xml – year: 2011
  ident: b0095
  article-title: Fundamentals of heat and mass transfer
– reference: Léger J, Rousse DR, Le Borgne K, Coulombe F. Des instruments de mesure pour la thermique du bâtiment: La klimat, in: Colloque Interuniversitaire Franco-Québecois sur la Thermique des Système, France; 2017.
– volume: 861
  start-page: 417
  year: 2016
  end-page: 424
  ident: b0135
  article-title: Energy saving potential of personalized ventilation applied in an open space office under winter conditions
  publication-title: Appl Mech Mater
– volume: 43
  start-page: 137
  year: 2011
  end-page: 146
  ident: b0035
  article-title: Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators
  publication-title: Energy Build
– volume: 33
  start-page: 279
  year: 1998
  end-page: 291
  ident: b0040
  article-title: Energy consumption and thermal comfort in dwelling-cells: a zonal-model approach
  publication-title: Build Environ
– volume: 54
  start-page: 1
  year: 2012
  end-page: 13
  ident: b0055
  article-title: Comfort and energy consumption of hydronic heating radiant ceilings and walls based on cfd analysis
  publication-title: Build Environ
– reference: Howell JR. A catalog of radiation heat transfer configuration factors.
– volume: 27
  start-page: 29
  year: 2006
  end-page: 40
  ident: b0050
  article-title: Steady thermal comfort by radiant heat transfer: the impact of the heater position
  publication-title: Heat Transf Eng
– volume: 84
  start-page: 150
  year: 1978
  end-page: 175
  ident: b0045
  article-title: Thermal comfort and energy consumption in winter conditions. a new experimental approach
  publication-title: ASHRAE Trans
– volume: vol. 2
  year: 2006
  ident: b0030
  article-title: Comfort temperature and operative temperatures in an office with different heating methods
  publication-title: Proc. of the healthy buildings
– volume: 37
  start-page: 907
  year: 2014
  end-page: 918
  ident: b0065
  article-title: The impacts of the thermal radiation field on thermal comfort, energy consumption and control-a critical overview
  publication-title: Renew Sustain Energy Rev
– volume: 68
  start-page: 547
  year: 2014
  end-page: 557
  ident: b0070
  article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review
  publication-title: Energy Build
– year: 2008
  ident: b0085
  article-title: Thermodynamics: an engineering approach
– volume: 169
  start-page: 484
  year: 2018
  end-page: 506
  ident: b0110
  article-title: Passive design optimization of newly-built residential buildings in shanghai for improving indoor thermal comfort while reducing building energy consumption
  publication-title: Energ Buildings
– volume: 45
  start-page: 100
  year: 2001
  end-page: 108
  ident: b0020
  article-title: The adaptive model of thermal comfort and energy conservation in the built environment
  publication-title: J Biometeorol
– year: 1999
  ident: b0105
  article-title: Numerical optimization
– volume: 37
  start-page: 710
  year: 2016
  end-page: 729
  ident: b0130
  article-title: Experimental investigation on the airflow characteristics of an attachment-based personalized ventilation method
  publication-title: Build Serv Eng Res Technol
– reference: ISO-7730. Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Tech. rep. ISO; 2005.
– volume: 110
  start-page: 821
  year: 2017
  end-page: 834
  ident: b0140
  article-title: Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms
  publication-title: Appl Therm Eng
– year: 1970
  ident: b0005
  article-title: Thermal comfort. Analysis and applications in environmental engineering
– volume: 112
  start-page: 88
  year: 2017
  end-page: 98
  ident: b0080
  article-title: Utilization potential of low temperature hydronic space heating systems: a comparative review
  publication-title: Build Environ
– volume: 128
  start-page: 161
  year: 2018
  end-page: 169
  ident: b0115
  article-title: Comparing electric heating systems at equal thermal comfort: an experimental investigation
  publication-title: Build Environ
– volume: 18
  start-page: 1
  year: 1973
  end-page: 15
  ident: b0125
  article-title: American Society of Heating
  publication-title: Refrigeration and Air-Conditioning Engineers
– volume: 86
  start-page: 34
  year: 1980
  end-page: 48
  ident: b0025
  article-title: Thermal comfort in a room heated by different methods
  publication-title: ASHRAE Trans
– volume: 91
  start-page: 166
  year: 2015
  end-page: 190
  ident: b0075
  article-title: A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment
  publication-title: Build Environ
– reference: ASHRAE-55. Thermal Environment Conditions for Human Occupancy. Tech. rep. ASHRAE; 2013.
– volume: 953
  start-page: 849
  year: 2014
  end-page: 853
  ident: b0060
  article-title: Comparative study on energy consumption of gas-fired infrared radiant and convection heating
  publication-title: Adv Mater Res
– reference: [accessed: Oct 1 2016].
– year: 1980
  ident: b0090
  article-title: Numerical heat transfer and fluid flow
– year: 1999
  ident: 10.1016/j.apenergy.2019.113616_b0105
– ident: 10.1016/j.apenergy.2019.113616_b0120
– volume: 43
  start-page: 137
  year: 2011
  ident: 10.1016/j.apenergy.2019.113616_b0035
  article-title: Numerical analysis of air flow, heat transfer, moisture transport and thermal comfort in a room heated by two-panel radiators
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.08.034
– year: 2011
  ident: 10.1016/j.apenergy.2019.113616_b0095
– volume: 37
  start-page: 907
  year: 2014
  ident: 10.1016/j.apenergy.2019.113616_b0065
  article-title: The impacts of the thermal radiation field on thermal comfort, energy consumption and control-a critical overview
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.040
– year: 1970
  ident: 10.1016/j.apenergy.2019.113616_b0005
– volume: 861
  start-page: 417
  year: 2016
  ident: 10.1016/j.apenergy.2019.113616_b0135
  article-title: Energy saving potential of personalized ventilation applied in an open space office under winter conditions
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.861.417
– volume: 91
  start-page: 166
  year: 2015
  ident: 10.1016/j.apenergy.2019.113616_b0075
  article-title: A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2015.03.040
– volume: 45
  start-page: 100
  year: 2001
  ident: 10.1016/j.apenergy.2019.113616_b0020
  article-title: The adaptive model of thermal comfort and energy conservation in the built environment
  publication-title: J Biometeorol
  doi: 10.1007/s004840100093
– volume: 54
  start-page: 1
  year: 2012
  ident: 10.1016/j.apenergy.2019.113616_b0055
  article-title: Comfort and energy consumption of hydronic heating radiant ceilings and walls based on cfd analysis
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2012.01.019
– volume: 128
  start-page: 161
  year: 2018
  ident: 10.1016/j.apenergy.2019.113616_b0115
  article-title: Comparing electric heating systems at equal thermal comfort: an experimental investigation
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2017.11.035
– ident: 10.1016/j.apenergy.2019.113616_b0015
– volume: vol. 2
  year: 2006
  ident: 10.1016/j.apenergy.2019.113616_b0030
  article-title: Comfort temperature and operative temperatures in an office with different heating methods
– volume: 953
  start-page: 849
  year: 2014
  ident: 10.1016/j.apenergy.2019.113616_b0060
  article-title: Comparative study on energy consumption of gas-fired infrared radiant and convection heating
  publication-title: Adv Mater Res
– year: 2008
  ident: 10.1016/j.apenergy.2019.113616_b0085
– volume: 110
  start-page: 821
  year: 2017
  ident: 10.1016/j.apenergy.2019.113616_b0140
  article-title: Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.08.217
– volume: 86
  start-page: 34
  year: 1980
  ident: 10.1016/j.apenergy.2019.113616_b0025
  article-title: Thermal comfort in a room heated by different methods
  publication-title: ASHRAE Trans
– volume: 84
  start-page: 150
  year: 1978
  ident: 10.1016/j.apenergy.2019.113616_b0045
  article-title: Thermal comfort and energy consumption in winter conditions. a new experimental approach
  publication-title: ASHRAE Trans
– ident: 10.1016/j.apenergy.2019.113616_b0010
– volume: 18
  start-page: 1
  year: 1973
  ident: 10.1016/j.apenergy.2019.113616_b0125
  article-title: American Society of Heating
  publication-title: Refrigeration and Air-Conditioning Engineers
– volume: 112
  start-page: 88
  year: 2017
  ident: 10.1016/j.apenergy.2019.113616_b0080
  article-title: Utilization potential of low temperature hydronic space heating systems: a comparative review
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2016.11.029
– volume: 37
  start-page: 710
  year: 2016
  ident: 10.1016/j.apenergy.2019.113616_b0130
  article-title: Experimental investigation on the airflow characteristics of an attachment-based personalized ventilation method
  publication-title: Build Serv Eng Res Technol
  doi: 10.1177/0143624416658088
– volume: 33
  start-page: 279
  year: 1998
  ident: 10.1016/j.apenergy.2019.113616_b0040
  article-title: Energy consumption and thermal comfort in dwelling-cells: a zonal-model approach
  publication-title: Build Environ
  doi: 10.1016/S0360-1323(97)00074-7
– ident: 10.1016/j.apenergy.2019.113616_b0100
– year: 1980
  ident: 10.1016/j.apenergy.2019.113616_b0090
– volume: 169
  start-page: 484
  year: 2018
  ident: 10.1016/j.apenergy.2019.113616_b0110
  article-title: Passive design optimization of newly-built residential buildings in shanghai for improving indoor thermal comfort while reducing building energy consumption
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2017.09.095
– volume: 27
  start-page: 29
  year: 2006
  ident: 10.1016/j.apenergy.2019.113616_b0050
  article-title: Steady thermal comfort by radiant heat transfer: the impact of the heater position
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630600742480
– volume: 68
  start-page: 547
  year: 2014
  ident: 10.1016/j.apenergy.2019.113616_b0070
  article-title: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.09.034
SSID ssj0002120
Score 2.2975516
Snippet •A new method for investigating indoor heat distribution is introduced.•New performance indices are defined using the new method (virtual heaters).•Optimal...
It is well known that indoor heat distribution can affect energy consumption according to the thermal comfort of the occupants. While most work on this topic...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113616
SubjectTerms algorithms
Civil Engineering
energy
Engineering Sciences
Heat distribution
heat transfer
heaters
Indoor heating
Local optimization
Optimal heating
quadratic programming
temperature
Thermal comfort
Virtual heaters
Title Optimal indoor heat distribution: Virtual heaters
URI https://dx.doi.org/10.1016/j.apenergy.2019.113616
https://www.proquest.com/docview/2305166261
https://hal.science/hal-03246393
Volume 254
WOSCitedRecordID wos000497974600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZYxwM8IBhMdAMUEOItECeNXfNWoU5jijqEgtQ3y7GdrRNLQ9tV-_ncxU5aoaKNB16i1omT6D7bufPdfUfI-zLVoESULEyYYuFAFSocamNg4kUqEVoVQjfs-hmfTIbTqfjm6-Utm3ICvKqGt7ei_q9QQxuAjamz_wB3d1NogN8AOhwBdjjeC_hzWASuGyoNM58vUBNcoRumq2yFewDr2aLJG8GTPgS-o6L1aqltkgK7eB3nUL9wAJ-5f97Lfj3rBsf3-c3SVWp0qeubcMRMIcAursx1qy-Vd-n7TQcqMPvOpV22yVYRC9H42rkKuw2Bq4-qdu-KEXSiqR5Dd9BeT87lyY8sk_l4mn-of4VYEQw95748yh7Zj3kqhj2yP_o6np5139nYk262r7KV_7370X9TPfYuMQb2j09xo1_kT8kTbxgEIwfoM_LAVgfk8RZd5AE5HG-yEuFSvywvnxPqMQ8c5gHCGmxj_jnwiAce8RckPxnnX05DXwsj1AkXqzAWJuYmslTzEnVsEwnLRBGLQqTIt6QsT7lVoFDzuFQDnSiTUJ1SbQ0v4jI5JL1qXtmXJIhKOC8KRZVhg9KwQum0YMibp0CIie6TtJWS1J4nHsuV_JRtQOCVbKUrUbrSSbdPPnX9aseUcmcP0YIgvb7n9DgJA-nOvu8Ate5BSJJ-OsoktkVgI4Denaxpn7xtQZWwaqIrDEY2zAQJhndKGRjz9Oge1xyTR5tJ8Ir0Vosb-5o81OvVbLl448flbxdrjL8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+indoor+heat+distribution%3A+virtual+heaters&rft.jtitle=Applied+energy&rft.au=L%C3%A9ger%2C+J%C3%A9r%C3%A9mie&rft.au=Rousse%2C+Daniel+R&rft.au=Lassue%2C+St%C3%A9phane&rft.date=2019-11-15&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2019.113616&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon