TTK is Getting MPI-Ready

This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on visualization and computer graphics Ročník 30; číslo 8; s. 5875 - 5892
Hlavní autori: Le Guillou, Eve, Will, Michael, Guillou, Pierre, Lukasczyk, Jonas, Fortin, Pierre, Garth, Christoph, Tierny, Julien
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines , i.e., a sequence of topological algorithms interacting together, possibly on distinct numbers of processes. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. Specifically, we describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Detailed performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a standard cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
AbstractList This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines , i.e., a sequence of topological algorithms interacting together, possibly on distinct numbers of processes. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. Specifically, we describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Detailed performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a standard cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.e., a sequence of topological algorithms interacting together, possibly on distinct numbers of processes. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. Specifically, we describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Detailed performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a standard cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.e., a sequence of topological algorithms interacting together, possibly on distinct numbers of processes. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. Specifically, we describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Detailed performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a standard cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.e. a sequence of topological algorithms interacting together. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. We describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
Author Fortin, Pierre
Le Guillou, Eve
Will, Michael
Guillou, Pierre
Lukasczyk, Jonas
Garth, Christoph
Tierny, Julien
Author_xml – sequence: 1
  givenname: Eve
  orcidid: 0009-0008-6123-2039
  surname: Le Guillou
  fullname: Le Guillou, Eve
  email: eve.le_guillou@sorbonne-universite.fr
  organization: CNRS, Sorbonne Université and University of Lille, Paris, France
– sequence: 2
  givenname: Michael
  orcidid: 0009-0007-1344-3694
  surname: Will
  fullname: Will, Michael
  email: mswill@rptu.de
  organization: RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
– sequence: 3
  givenname: Pierre
  surname: Guillou
  fullname: Guillou, Pierre
  email: Pierre.Guillou@sorbonne-universite.fr
  organization: CNRS, Sorbonne Université, Paris, France
– sequence: 4
  givenname: Jonas
  orcidid: 0000-0001-6650-770X
  surname: Lukasczyk
  fullname: Lukasczyk, Jonas
  email: lukasczyk@rptu.de
  organization: RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
– sequence: 5
  givenname: Pierre
  orcidid: 0000-0003-3117-9122
  surname: Fortin
  fullname: Fortin, Pierre
  email: pierre.fortin@univ-lille.fr
  organization: Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France
– sequence: 6
  givenname: Christoph
  orcidid: 0000-0003-1669-8549
  surname: Garth
  fullname: Garth, Christoph
  email: garth@rptu.de
  organization: RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
– sequence: 7
  givenname: Julien
  orcidid: 0000-0003-0056-2831
  surname: Tierny
  fullname: Tierny, Julien
  email: Julien.Tierny@sorbonne-universite.fr
  organization: CNRS, Sorbonne Université, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38630564$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04552256$$DView record in HAL
BookMark eNpd0V1LwzAUBuAgih_TewWRgTd60XnOyUebyzF0EyeKVG9D2mZa2drZdIL_3oxOEa8SwvMmnLwHbLuqK8fYCcIAEfRV-jIaDwhIDDjXQKi32D5qgRFIUNthD3EckSK1xw68fwdAIRK9y_Z4ojhIJfbZcZre9UvfH7u2LavX_v3jbfTkbPF1yHZmdu7d0Wbtseeb63Q0iaYP49vRcBrlPNZthJQnSay4BQeZtkUMNiPMSAgsCHPOaaZnlKCMpXUZyoKcjZ1zmizkWeJ4j112977ZuVk25cI2X6a2pZkMp2Z9BkJKIqk-MdiLzi6b-mPlfGsWpc_dfG4rV6-84SCQOIVEoOf_6Hu9aqowSVCxFKSAU1BnG7XKFq74ff_nfwLADuRN7X3jZr8Ewaw7MOsOzLoDs-kgZE67TBnm_OMlCCU0_wYz73xV
CODEN ITVGEA
Cites_doi 10.1109/TVCG.2023.3238008
10.1109/TVCG.2017.2743980
10.1109/LDAV57265.2022.9966403
10.1109/HiPC.2012.6507496
10.1109/TVCG.2010.253
10.1002/qua.26133
10.1109/TVCG.2011.249
10.1109/TVCG.2016.2599017
10.1109/TVCG.2015.2452919
10.1007/s00454-002-2885-2
10.1109/TVCG.2018.2864848
10.2307/1968813
10.1109/LDAV48142.2019.8944365
10.1111/cgf.12361
10.1137/1.9781611973198.4
10.1109/TVCG.2019.2948616
10.1109/VISUAL.2004.96
10.1109/TVCG.2023.3327182
10.1080/00029890.1970.11992523
10.1147/rd.45.0518
10.1109/TVCG.2006.186
10.1111/j.1365-2966.2011.18394.x
10.1007/978-3-319-04099-8_6
10.1007/978-3-030-43036-8_2
10.21105/joss.01370
10.1111/j.1467-8659.2012.03089.x
10.1109/TVCG.2020.3030353
10.1007/s00453-003-1052-3
10.1109/LDAV.2016.7874333
10.1109/TVCG.2015.2467432
10.1109/LDAV.2016.7874307
10.1016/b978-012387582-2/50038-1
10.1145/2442516.2442526
10.1109/TVCG.2014.2346403
10.1109/TVCG.2016.2570215
10.1109/TVCG.2023.3261981
10.1039/D2CP05893F
10.1109/TPAMI.2011.95
10.1109/TPDS.2019.2898436
10.1109/PACIFICVIS.2015.7156387
10.1002/jcc.25181
10.1007/978-3-030-83500-2_16
10.1109/TVCG.2012.228
10.1111/cgf.12933
10.1145/2814935
10.1090/mbk/069
10.1145/2535927
10.1145/3295500.3356188
10.1109/TVCG.2021.3076875
10.1109/TVCG.2008.119
10.1145/3447818.3460358
10.1016/j.jsc.2016.03.008
10.1109/LDAV57265.2022.9966394
10.1109/TVCG.2020.3030441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
DOI 10.1109/TVCG.2024.3390219
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0506
EndPage 5892
ExternalDocumentID oai:HAL:hal-04552256v1
38630564
10_1109_TVCG_2024_3390219
10504649
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Commission
  grantid: ERC-2019-COG
  funderid: 10.13039/501100000780
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
VOOES
ID FETCH-LOGICAL-c379t-12c88763a0e0b9ad70ab21b2441d21c332f9f281575aeb15d2ea7eee92a0cb8e3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262914400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Thu Nov 13 06:21:03 EST 2025
Sat Sep 27 19:43:03 EDT 2025
Sun Jun 29 16:52:31 EDT 2025
Mon Jul 21 06:01:36 EDT 2025
Sat Nov 29 03:31:48 EST 2025
Wed Aug 27 02:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Distributed-memory algorithms
High-performance computing HPC
Pipelines
Memory management
Software algorithms
Clustering algorithms
Parallel processing
Data structures
Topology
Topological data analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-12c88763a0e0b9ad70ab21b2441d21c332f9f281575aeb15d2ea7eee92a0cb8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1669-8549
0000-0001-6650-770X
0009-0007-1344-3694
0009-0008-6123-2039
0000-0003-3117-9122
0000-0003-0056-2831
OpenAccessLink https://hal.science/hal-04552256
PMID 38630564
PQID 3075426032
PQPubID 75741
PageCount 18
ParticipantIDs ieee_primary_10504649
crossref_primary_10_1109_TVCG_2024_3390219
proquest_miscellaneous_3041232045
pubmed_primary_38630564
hal_primary_oai_HAL_hal_04552256v1
proquest_journals_3075426032
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref12
Edelsbrunner (ref16) 2004
ref56
ref15
ref59
ref14
Edwards (ref19) 2010
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref18
Gueunet (ref25) 2019
ref51
Forman (ref21) 2001; 48
ref46
ref45
ref48
ref47
ref42
Klacansky (ref36) 2020
ref41
ref49
(ref65) 2022
ref8
ref7
Favelier (ref20) 2016
ref9
ref4
ref3
ref6
ref5
(ref53) 2020
ref40
ref35
ref34
ref37
ref31
ref30
ref33
Tierny (ref62) 2017
ref32
ref2
ref1
ref39
ref38
(ref44) 2021
Maljovec (ref43) 2016
(ref64) 2020
ref24
ref23
ref67
ref26
ref63
ref22
ref66
ref28
ref27
ref29
Nigmetov (ref50) 2020
ref60
ref61
References_xml – ident: ref26
  doi: 10.1109/TVCG.2023.3238008
– ident: ref9
  doi: 10.1109/TVCG.2017.2743980
– year: 2020
  ident: ref64
  article-title: TTK Data
– volume: 48
  volume-title: Sém. Lothar. Combin.
  year: 2001
  ident: ref21
  article-title: A user’s guide to discrete morse theory
– year: 2020
  ident: ref36
  article-title: Open scientific visualization data sets
– ident: ref48
  doi: 10.1109/LDAV57265.2022.9966403
– ident: ref42
  doi: 10.1109/HiPC.2012.6507496
– ident: ref10
  doi: 10.1109/TVCG.2010.253
– ident: ref51
  doi: 10.1002/qua.26133
– ident: ref35
  doi: 10.1109/TVCG.2011.249
– ident: ref61
  doi: 10.1109/TVCG.2016.2599017
– ident: ref57
  doi: 10.1109/TVCG.2015.2452919
– ident: ref18
  doi: 10.1007/s00454-002-2885-2
– ident: ref28
  doi: 10.1109/TVCG.2018.2864848
– ident: ref30
  doi: 10.2307/1968813
– ident: ref59
  doi: 10.1109/LDAV48142.2019.8944365
– ident: ref27
  doi: 10.1111/cgf.12361
– ident: ref5
  doi: 10.1137/1.9781611973198.4
– ident: ref13
  doi: 10.1109/TVCG.2019.2948616
– year: 2020
  ident: ref50
  article-title: Reeber: A. library for shared- and distributed-memory parallel computation of merge trees
– year: 2021
  ident: ref44
  article-title: MPI: A message-passing interface standard, version 4.0
– ident: ref12
  doi: 10.1109/VISUAL.2004.96
– ident: ref39
  doi: 10.1109/TVCG.2023.3327182
– ident: ref4
  doi: 10.1080/00029890.1970.11992523
– year: 2017
  ident: ref62
  article-title: The topology toolkit
– ident: ref33
  doi: 10.1147/rd.45.0518
– ident: ref38
  doi: 10.1109/TVCG.2006.186
– ident: ref60
  doi: 10.1111/j.1365-2966.2011.18394.x
– ident: ref47
  doi: 10.1007/978-3-319-04099-8_6
– ident: ref58
  doi: 10.1007/978-3-030-43036-8_2
– year: 2022
  ident: ref65
  article-title: TTK online example database
– ident: ref67
  doi: 10.21105/joss.01370
– ident: ref56
  doi: 10.1111/j.1467-8659.2012.03089.x
– volume-title: Jacobi Sets of Multiple Morse Functions
  year: 2004
  ident: ref16
– volume-title: Proc. IEEE SciVis Contest
  year: 2016
  ident: ref20
  article-title: Visualizing ensembles of viscous fingers
– ident: ref40
  doi: 10.1109/TVCG.2020.3030353
– ident: ref54
  doi: 10.1007/s00453-003-1052-3
– ident: ref23
  doi: 10.1109/LDAV.2016.7874333
– ident: ref29
  doi: 10.1109/TVCG.2015.2467432
– ident: ref45
  doi: 10.1109/LDAV.2016.7874307
– ident: ref2
  doi: 10.1016/b978-012387582-2/50038-1
– ident: ref46
  doi: 10.1145/2442516.2442526
– ident: ref22
  doi: 10.1109/TVCG.2014.2346403
– ident: ref37
  doi: 10.1109/TVCG.2016.2570215
– ident: ref41
  doi: 10.1109/TVCG.2023.3261981
– ident: ref52
  doi: 10.1039/D2CP05893F
– ident: ref55
  doi: 10.1109/TPAMI.2011.95
– ident: ref24
  doi: 10.1109/TPDS.2019.2898436
– ident: ref1
  doi: 10.1109/PACIFICVIS.2015.7156387
– ident: ref7
  doi: 10.1002/jcc.25181
– ident: ref8
  doi: 10.1007/978-3-030-83500-2_16
– ident: ref63
  doi: 10.1109/TVCG.2012.228
– ident: ref31
  doi: 10.1111/cgf.12933
– ident: ref34
  doi: 10.1145/2814935
– ident: ref17
  doi: 10.1090/mbk/069
– ident: ref14
  doi: 10.1145/2535927
– year: 2020
  ident: ref53
  article-title: OpenMP application program interface version 5.1
– start-page: 27
  volume-title: Proc. Eurographics Symp. Parallel Graph. Visual.
  year: 2019
  ident: ref25
  article-title: Task-based augmented Reeb graphs with dynamic ST-Trees
– ident: ref49
  doi: 10.1145/3295500.3356188
– ident: ref66
  doi: 10.1109/TVCG.2021.3076875
– ident: ref3
  doi: 10.1109/TVCG.2008.119
– ident: ref32
  doi: 10.1145/3447818.3460358
– year: 2010
  ident: ref19
  article-title: SIERRA toolkit computational mesh conceptual model
– ident: ref6
  doi: 10.1016/j.jsc.2016.03.008
– ident: ref11
  doi: 10.1109/LDAV57265.2022.9966394
– ident: ref15
  doi: 10.1109/TVCG.2020.3030441
– start-page: 64
  volume-title: Proc. IEEE Pacific Visual. Symp.
  year: 2016
  ident: ref43
  article-title: Topology-inspired partition-based sensitivity analysis and visualization of nuclear simulations
SSID ssj0014489
Score 2.4644136
Snippet This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5875
SubjectTerms Algorithms
Apexes
Clustering algorithms
Computer Science
Data structures
Distributed memory
Distributed, Parallel, and Cluster Computing
distributed-memory algorithms
Documents
high-performance computing
Memory management
Message passing
Parallel processing
Pipelines
Preconditioning
Software algorithms
Software engineering
Taxonomy
Topological data analysis
Topology
Triangulation
Title TTK is Getting MPI-Ready
URI https://ieeexplore.ieee.org/document/10504649
https://www.ncbi.nlm.nih.gov/pubmed/38630564
https://www.proquest.com/docview/3075426032
https://www.proquest.com/docview/3041232045
https://hal.science/hal-04552256
Volume 30
WOSCitedRecordID wos001262914400076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB51UYXgAH3wCC-FqqdKobYTx_YRIR5VAXFYqr1FfkXlsovYXaT--8442RUcOHCLEst2Ps_E32QeBvjuGG-1rmVhnGVFVbWoczLIwmsRSueCND4Vcb1Wt7d6NDJ3fbJ6yoWJMabgs3hCl8mXHyZ-Tr_KUMMleeLMAAZKqS5Za-kyQDvDdAGGqhBI03sXJmfm5_DP2SWagqI6KdHERx1dg9VS18Seq1f70eAvRUOmY1beZpxp57nYfOecP8FGTzHz004mPsOHOP4C6y8KD36F3eHwd_4wzS9jCnvOb-5-FRRO_28L7i_Oh2dXRX9GQuFLZWYFF15TUTnLInPGBsWsE9zhps2D4L4sRWtaoTmyMoufZRlEtAonaYRl3ulYbsPKeDKOu5BLVPegKqfrEKtaOuvqNniL1nPgTEeWwY8FUs1jVwqjSSYEMw0h3BDCTY9wBt8Qy2U7KmJ9dXrd0D0kkUj6ZP3MM9giwF701mGVwcEC-6ZXqWmDs5NUTr8UGRwvH6MykIfDjuNkTm0qoog4QgY73ZotO18s-N4bg-7DGr1AF9x3ACuzp3k8hI_-efYwfTpCiRvpoyRx_wEZBssl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUksPFFoKaWmbIk5IobZjJ_YRIWARy4pDirhZfkXlsluxu0j8-46d7IoeOPQWJZbtfPZkvsk8DHBkCW2lrEShrCEF5y3KnPCicJL50lovlEtFXIf1aCTv79Vtn6yecmFCCCn4LJzEy-TL9xM3j7_KUMJF9MSpVVgXnDPapWstnQZoaaguxLAuGBL13olJifrZ3J1dojHI-EmJRj5K6Sa8KWUV-TP_RyOt_o7xkOmgldc5Z9I9F-__c9bbsNWTzPy02xU7sBLGH-Ddi9KDH2G_aa7zh2l-GVLgc35ze1XEgPrnXfh1cd6cDYr-lITClbWaFZQ5GcvKGRKIVcbXxFhGLapt6hl1Zcla1TJJkZcZ_DALz4KpcZKKGeKsDOUnWBtPxmEfcoEC72tuZeUDr4Q1tmq9M2g_e0pkIBkcL5DSf7piGDoZEUTpiLCOCOse4QwOEctlu1jGenA61PEe0kikfaJ6ohnsRsBe9NZhlcHBAnvdC9VU4-xELKhfsgx-LB-jOEQfhxmHyTy24ZEk4ggZ7HVrtux8seCfXxn0O7wdNDdDPbwaXX-BzfgyXajfAazNHufhK2y4p9nD9PFb2nd_ARDHzYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TTK+is+Getting+MPI-Ready&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Le+Guillou%2C+Eve&rft.au=Will%2C+Michael&rft.au=Guillou%2C+Pierre&rft.au=Lukasczyk%2C+Jonas&rft.date=2024-08-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1077-2626&rft.volume=30&rft.issue=8&rft.spage=5875&rft.epage=5892&rft_id=info:doi/10.1109%2FTVCG.2024.3390219&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04552256v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon