Fuzzy Weighted Support Vector Regression With a Fuzzy Partition

The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Ročník 37; číslo 3; s. 630 - 640
Hlavní autor: Chuang, Chen-Chia
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2007
Témata:
ISSN:1083-4419
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although the local SVR approach can indeed model local behavior of models better than the global SVR approach does, the local SVR approach still has the problem of boundary effects, which may generate a large bias at the boundary and also need more time to calculate. In this paper, the fuzzy weighted SVR with a fuzzy partition is proposed. Because the concept of locally weighted regression is not used in the proposed approach, the boundary effects will not appear. The proposed method first employs the fuzzy c-mean clustering algorithm to split training data into several training subsets. Then, the local-regression models (LRMs) are independently obtained by the SVR approach for each training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to form the output. Experimental results show that the proposed approach needs less computational time than the local SVR approach and can have more accurate results than the local/global SVR approaches does
AbstractList The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although the local SVR approach can indeed model local behavior of models better than the global SVR approach does, the local SVR approach still has the problem of boundary effects, which may generate a large bias at the boundary and also need more time to calculate. In this paper, the fuzzy weighted SVR with a fuzzy partition is proposed. Because the concept of locally weighted regression is not used in the proposed approach, the boundary effects will not appear. The proposed method first employs the fuzzy c-mean clustering algorithm to split training data into several training subsets. Then, the local-regression models (LRMs) are independently obtained by the SVR approach for each training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to form the output. Experimental results show that the proposed approach needs less computational time than the local SVR approach and can have more accurate results than the local/global SVR approaches does.
The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although the local SVR approach can indeed model local behavior of models better than the global SVR approach does, the local SVR approach still has the problem of boundary effects, which may generate a large bias at the boundary and also need more time to calculate. In this paper, the fuzzy weighted SVR with a fuzzy partition is proposed. Because the concept of locally weighted regression is not used in the proposed approach, the boundary effects will not appear. The proposed method first employs the fuzzy c-mean clustering algorithm to split training data into several training subsets. Then, the local-regression models (LRMs) are independently obtained by the SVR approach for each training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to form the output. Experimental results show that the proposed approach needs less computational time than the local SVR approach and can have more accurate results than the local/global SVR approaches does.The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although the local SVR approach can indeed model local behavior of models better than the global SVR approach does, the local SVR approach still has the problem of boundary effects, which may generate a large bias at the boundary and also need more time to calculate. In this paper, the fuzzy weighted SVR with a fuzzy partition is proposed. Because the concept of locally weighted regression is not used in the proposed approach, the boundary effects will not appear. The proposed method first employs the fuzzy c-mean clustering algorithm to split training data into several training subsets. Then, the local-regression models (LRMs) are independently obtained by the SVR approach for each training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to form the output. Experimental results show that the proposed approach needs less computational time than the local SVR approach and can have more accurate results than the local/global SVR approaches does.
The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local behavior of the estimated models. An approach called the local SVR approach was proposed in the literature to cope with this problem. Although the local SVR approach can indeed model local behavior of models better than the global SVR approach does, the local SVR approach still has the problem of boundary effects, which may generate a large bias at the boundary and also need more time to calculate. In this paper, the fuzzy weighted SVR with a fuzzy partition is proposed. Because the concept of locally weighted regression is not used in the proposed approach, the boundary effects will not appear. The proposed method first employs the fuzzy c-mean clustering algorithm to split training data into several training subsets. Then, the local-regression models (LRMs) are independently obtained by the SVR approach for each training subset. Finally, those LRMs are combined by a fuzzy weighted mechanism to form the output. Experimental results show that the proposed approach needs less computational time than the local SVR approach and can have more accurate results than the local/global SVR approaches does
Author Chen-Chia Chuang
Author_xml – sequence: 1
  givenname: Chen-Chia
  surname: Chuang
  fullname: Chuang, Chen-Chia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17550117$$D View this record in MEDLINE/PubMed
BookMark eNp90E9PwjAcxvEeMILoCzAmZic9DVvW9c_JKBE1wWgE5biU7jeogW223QFevcOhJh44NWk-T5t8j1ArL3JA6JTgHiFYXk3GT4PbXh9j1hNCMkJaqEOwiEJKiWyjI-c-MMYSS36I2oTHMSaEd9D1sNps1sEUzHzhIQ3GVVkW1gfvoH1hg1eYW3DOFHkwNX4RqKDxL8p64-vrY3SQqaWDk93ZRW_Du8ngIRw93z8ObkahjrjwYRZzmkrMACItFRUkompGtORpJrGmTAkeU05nqdQiE6kUgmSYgqTAII4Ejbrosnm3tMVnBc4nK-M0LJcqh6JyieCsT3nEt_Jir-Q4ZoxRUcPzHaxmK0iT0pqVsuvkJ04NSAO0LZyzkP0RnGyjJ9_Rk230pIleb_i_jTZebUt5q8xy7_KsWRoA-P2J1oRLGn0Bzz2PvQ
CODEN ITSCFI
CitedBy_id crossref_primary_10_1007_s10489_013_0472_2
crossref_primary_10_1016_j_eswa_2014_09_038
crossref_primary_10_1109_TFUZZ_2010_2040185
crossref_primary_10_1007_s10479_022_04575_w
crossref_primary_10_1109_TFUZZ_2010_2046904
crossref_primary_10_1016_j_eswa_2009_02_007
crossref_primary_10_1007_s11063_020_10380_y
crossref_primary_10_1016_j_neucom_2016_01_038
crossref_primary_10_1016_j_cam_2023_115377
crossref_primary_10_1049_iet_smt_2015_0190
crossref_primary_10_1016_j_neunet_2011_05_016
crossref_primary_10_1109_TFUZZ_2019_2893863
crossref_primary_10_1111_exsy_13471
crossref_primary_10_1177_09544089221124288
crossref_primary_10_1007_s40314_022_01974_4
crossref_primary_10_1007_s11063_022_11040_z
crossref_primary_10_1016_j_engappai_2015_11_009
crossref_primary_10_1109_TITB_2008_2007080
crossref_primary_10_1109_TIM_2023_3259022
crossref_primary_10_1016_j_knosys_2018_04_014
crossref_primary_10_1109_TIE_2012_2206336
crossref_primary_10_1109_TSMCC_2013_2258337
crossref_primary_10_1016_j_fss_2023_108531
crossref_primary_10_1109_TFUZZ_2011_2174997
crossref_primary_10_1016_j_ejor_2016_09_005
crossref_primary_10_1049_iet_cta_2013_0707
crossref_primary_10_1007_s40815_024_01763_7
crossref_primary_10_1016_j_ijar_2021_02_006
crossref_primary_10_1109_TFUZZ_2025_3580614
crossref_primary_10_1016_j_fss_2022_03_001
crossref_primary_10_1016_j_neunet_2008_09_001
crossref_primary_10_1007_s11432_009_0097_6
crossref_primary_10_1016_j_neunet_2024_106767
crossref_primary_10_1007_s10462_023_10485_5
crossref_primary_10_1155_2018_7387650
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1016_j_chemolab_2013_04_018
crossref_primary_10_1007_s10489_019_01465_w
crossref_primary_10_1016_j_fss_2014_12_004
Cites_doi 10.1023/A:1006511328852
10.1016/S0893-6080(03)00169-2
10.1109/TNN.2002.804227
10.1016/S0925-2312(03)00436-3
10.1007/10984697_11
10.1162/neco.1992.4.6.888
10.1007/978-1-4757-2440-0
10.1023/A:1009715923555
10.1162/089976602753633402
10.1162/15324430152733142
10.1016/j.neucom.2004.02.004
10.1016/S0305-0483(01)00026-3
10.1109/TFUZZ.2003.817839
10.1016/j.neucom.2005.05.006
10.1016/S0893-6080(00)00077-0
10.1016/S0165-0114(02)00570-5
10.1109/3477.552181
10.1109/72.991432
10.1109/TSMCB.2002.804371
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U1
C1K
DOI 10.1109/TSMCB.2006.889611
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Risk Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Risk Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
MEDLINE - Academic

Risk Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EndPage 640
ExternalDocumentID 17550117
10_1109_TSMCB_2006_889611
4200794
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7U1
C1K
ID FETCH-LOGICAL-c378t-f574d906ee3c9a48134ab1c97df90c46a875474bd9c8f8d9881f04e94e6e53843
IEDL.DBID RIE
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246641800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4419
IngestDate Tue Oct 07 09:22:03 EDT 2025
Thu Jul 10 23:42:50 EDT 2025
Wed Feb 19 02:12:11 EST 2025
Sat Nov 29 03:17:31 EST 2025
Tue Nov 18 21:09:54 EST 2025
Tue Aug 26 16:42:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-f574d906ee3c9a48134ab1c97df90c46a875474bd9c8f8d9881f04e94e6e53843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17550117
PQID 70566648
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1109_TSMCB_2006_889611
ieee_primary_4200794
crossref_citationtrail_10_1109_TSMCB_2006_889611
proquest_miscellaneous_876247374
pubmed_primary_17550117
proquest_miscellaneous_70566648
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
References 23
25
26
27
Leski (15) 2004; 34
Fan (12) 1996
Lin (13) 1996
Lin (16) 2005
Jain (29) 1988
Chuang (6) 2004; 6
30
31
10
14
Burges (28) 1998; 2
17
18
Smola (24)
19
Chen (22) 2005; 3930, Lecture
2
Gilardi (8) 2003; 4
4
He (21) 2005; 3930, Lecture
Mukherjee (3) 1997
5
Fernandez (9) 1999
7
Vapnik (1) 1995
Atkeson (11) 1997; 11
20
References_xml – volume: 11
  start-page: 75
  year: 1997
  ident: 11
  article-title: Locally weighted learning for control
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006511328852
– ident: 26
  doi: 10.1016/S0893-6080(03)00169-2
– ident: 27
  doi: 10.1109/TNN.2002.804227
– volume: 3930, Lecture
  start-page: 871
  year: 2005
  ident: 21
  publication-title: A parallel genetic algorithm for solving the inverse problem of support vector machine
– ident: 7
  doi: 10.1016/S0925-2312(03)00436-3
– start-page: 233
  year: 2005
  ident: 16
  article-title: Fuzzy support vector machines with automatic membership setting
  publication-title: Support Vector Machines: Training and Applications
  doi: 10.1007/10984697_11
– ident: 31
– ident: 10
  doi: 10.1162/neco.1992.4.6.888
– year: 1995
  ident: 1
  publication-title: The Nature of Statistical Learning Theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 2
  start-page: 1
  year: 1998
  ident: 28
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discovery
  doi: 10.1023/A:1009715923555
– ident: 23
  doi: 10.1162/089976602753633402
– volume: 4
  start-page: 11
  year: 2003
  ident: 8
  article-title: Local machine learning models for spatial data analysis
  publication-title: J. Geograph. Inf. Decis. Anal.
– ident: 25
  doi: 10.1162/15324430152733142
– ident: 17
  doi: 10.1016/j.neucom.2004.02.004
– ident: 4
  doi: 10.1016/S0305-0483(01)00026-3
– year: 1988
  ident: 29
  publication-title: Algorithms for Clustering Data
– start-page: 24
  year: 1997
  ident: 3
  article-title: Nonlinear prediction of chaotic time series using a support vector machine
  publication-title: Proc. NNSP
– year: 1999
  ident: 9
  article-title: Predicting time series with a local support vector regression machine
  publication-title: Proc. ACAI
– ident: 24
  publication-title: A tutorial on support vector regression
– year: 1996
  ident: 12
  publication-title: Local Polynomial Modeling and Its Applications
– volume: 3930, Lecture
  start-page: 918
  year: 2005
  ident: 22
  publication-title: A method to construct the mapping to the feature space for the dot product kernels
– ident: 14
  doi: 10.1109/TFUZZ.2003.817839
– ident: 30
– year: 1996
  ident: 13
  publication-title: Neural Fuzzy Systems
– ident: 20
  doi: 10.1016/j.neucom.2005.05.006
– ident: 2
  doi: 10.1016/S0893-6080(00)00077-0
– ident: 5
  doi: 10.1016/S0165-0114(02)00570-5
– ident: 19
  doi: 10.1109/3477.552181
– ident: 18
  doi: 10.1109/72.991432
– volume: 34
  start-page: 4
  year: 2004
  ident: 15
  article-title: ref_formula
  publication-title: IEEE Trans. Syst., Man, Cybern. B, Cybern.
  doi: 10.1109/TSMCB.2002.804371
– volume: 6
  start-page: 63
  year: 2004
  ident: 6
  article-title: Selection of initial structures with support vector regression for fuzzy neural networks
  publication-title: Int. J. Fuzzy Syst.
SSID ssj0009097
Score 1.9687022
Snippet The problem of the traditional support vector regression (SVR) approach, referred to as the global SVR approach, is the incapability of interpreting local...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 630
SubjectTerms Algorithms
Associate members
Clustering algorithms
Computer Simulation
Fuzzy c-mean (FCM) clustering algorithm
Fuzzy Logic
fuzzy weighted mechanism
Models, Statistical
Optimal control
Partitioning algorithms
Pattern Recognition, Automated - methods
Quadratic programming
Regression Analysis
Support vector machine classification
Support vector machines
support vector regression (SVR)
Training data
Upper bound
Title Fuzzy Weighted Support Vector Regression With a Fuzzy Partition
URI https://ieeexplore.ieee.org/document/4200794
https://www.ncbi.nlm.nih.gov/pubmed/17550117
https://www.proquest.com/docview/70566648
https://www.proquest.com/docview/876247374
Volume 37
WOSCitedRecordID wos000246641800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1083-4419
  databaseCode: RIE
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 20121231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0009097
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB61FQc4QB88An34wAEQS22tY3tOVVsR9UJVQaG5rbz2GCqhDWoSJPrr8WOTcKBI3PYwu2t5xp7PM-P5AF6S1hbbtq2GdfCV1IpXFgOvXBhiaHlL3ttMNqHPz814jBdr8HZ5F4aIcvEZvUuPOZfvJ26eQmWHMgXWUK7Dutaq3NVaNdjlhUglQooqunjsM5iC4-Hlpw-nJyXvYAwqkdlhdITmItOUrdxR5le5G2pmlzN69H-D3YSHPbRkx8UWtmCNum148EfDwW3Y6pfylL3q-02_3oGj0fz29he7ykFS8iwRfUZQzr7kgD77SF9LrWzHrq5n35hlRf4iGV1S62P4PHp_eXpW9bwKlau1mVVhqKVHrohqh1YaUUvbCofaB-ROKhvPMFLL1qMzwXg0RgQuCSUpivujrJ_ARjfp6BmwuNOreCBREaNbGVprXAg-CEwNkyQJGgBfTG_j-qbjifvie5MPHxybrJxEhqmaopwBvFm-8qN03PiX8E6a-aVgP-kDOFjosInLJeVAbEeT-bTREfApJc0A2B0SyT1IXev4kadF-6th9Ebz_O9_fQH3F9WEXOzCxuxmTntwz_2cXU9v9qPRjs1-NtrfjxTmLQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8AmiAPKqByitIHH9Sw0mZ7_XgyQrhghAvRU3jbdNspkJg9wt2RyF9vP_bufAAS3vow2206086vM-38AN6jlEbXdV10S-8KLgUtjPa0sL6rfU1rdM4ksgnZ76vTU328ANuztzCImC6f4efYTLl8N7STGCrb4TGwpvkiPOry0M6vteYldmmmUgmgoghOXrc5TEb1zuDn0d5uzjwopQVL_DAygHOWiMrmDikxrNwNNpPT6T172HCfw9MWXJKv2RpWYQGbNVj5r-TgGqy2i3lEPrQVpz-uw5fe5ObmLzlJYVJ0JFJ9BlhOfqeQPvmBZ_m2bENOLsbnxJAsfxzNLir2Bfzq7Q_2DoqWWaGwpVTjwncld5oKxNJqwxUruamZ1dJ5TS0XJpxiuOS101Z55bRSzFOOmqPAsEPy8iUsNcMGN4CEvV6EI4kIKN1wXxtlvXee6VgyiSPDDtDp9Fa2LTse2S_-VOn4QXWVlBPpMEWVldOBT7NPLnPNjfuE1-PMzwTbSe_A1lSHVVgwMQtiGhxORpUMkE8IrjpA7pCIDoLLUoZOXmXtz4fRGs3r2_-6BcsHg6PD6vBb__sbeDK9W0jZJiyNryb4Fh7b6_HF6OpdMt1_Q0_ojA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+weighted+support+vector+regression+with+a+fuzzy+partition&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.au=Chuang%2C+Chen-Chia&rft.date=2007-06-01&rft.issn=1083-4419&rft.volume=37&rft.issue=3&rft.spage=630&rft_id=info:doi/10.1109%2FTSMCB.2006.889611&rft_id=info%3Apmid%2F17550117&rft.externalDocID=17550117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon