The dynamic Allan variance II: a fast computational algorithm
The stability of an atomic clock can change with time due to several factors, such as temperature, humidity, radiations, aging, and sudden breakdowns. The dynamic Allan variance, or DAVAR, is a representation of the time-varying stability of an atomic clock, and it can be used to monitor the clock b...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Jg. 57; H. 1; S. 182 - 188 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.01.2010
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0885-3010, 1525-8955, 1525-8955 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The stability of an atomic clock can change with time due to several factors, such as temperature, humidity, radiations, aging, and sudden breakdowns. The dynamic Allan variance, or DAVAR, is a representation of the time-varying stability of an atomic clock, and it can be used to monitor the clock behavior. Unfortunately, the computational time of the DAVAR grows very quickly with the length of the analyzed time series. In this article, we present a fast algorithm for the computation of the DAVAR, and we also extend it to the case of missing data. Numerical simulations show that the fast algorithm dramatically reduces the computational time. The fast algorithm is useful when the analyzed time series is long, or when many clocks must be monitored, or when the computational power is low, as happens onboard satellites and space probes. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 0885-3010 1525-8955 1525-8955 |
| DOI: | 10.1109/TUFFC.2010.1396 |