Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 233; číslo May; s. 109123
Hlavní autori: Wang, Chu, Dou, Manfeng, Li, Zhongliang, Outbib, Rachid, Zhao, Dongdong, Zuo, Jian, Wang, Yuanlin, Liang, Bin, Wang, Peng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2023
Elsevier
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.