Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reliability engineering & system safety Ročník 233; číslo May; s. 109123
Hlavní autoři: Wang, Chu, Dou, Manfeng, Li, Zhongliang, Outbib, Rachid, Zhao, Dongdong, Zuo, Jian, Wang, Yuanlin, Liang, Bin, Wang, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2023
Elsevier
Témata:
ISSN:0951-8320, 1879-0836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
AbstractList Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
ArticleNumber 109123
Author Wang, Peng
Dou, Manfeng
Zuo, Jian
Zhao, Dongdong
Wang, Chu
Liang, Bin
Wang, Yuanlin
Li, Zhongliang
Outbib, Rachid
Author_xml – sequence: 1
  givenname: Chu
  orcidid: 0000-0002-7515-3875
  surname: Wang
  fullname: Wang, Chu
  email: chu.wang@etu.univ-amu.fr
  organization: School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, China
– sequence: 2
  givenname: Manfeng
  surname: Dou
  fullname: Dou, Manfeng
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 3
  givenname: Zhongliang
  surname: Li
  fullname: Li, Zhongliang
  email: zhongliang.li@lis-lab.fr
  organization: LIS Lab (UMR CNRS 7020), Aix-Marseille Université, Marseille 13397, France
– sequence: 4
  givenname: Rachid
  surname: Outbib
  fullname: Outbib, Rachid
  organization: LIS Lab (UMR CNRS 7020), Aix-Marseille Université, Marseille 13397, France
– sequence: 5
  givenname: Dongdong
  surname: Zhao
  fullname: Zhao, Dongdong
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 6
  givenname: Jian
  surname: Zuo
  fullname: Zuo, Jian
  organization: LIS Lab (UMR CNRS 7020), Aix-Marseille Université, Marseille 13397, France
– sequence: 7
  givenname: Yuanlin
  surname: Wang
  fullname: Wang, Yuanlin
  organization: School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 8
  givenname: Bin
  surname: Liang
  fullname: Liang, Bin
  organization: Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 9
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: wang_peng@xatu.edu.cn
  organization: School of Electronic Information Engineering, Xi'an Technological University, Xi'an 710021, China
BackLink https://hal.science/hal-03956056$$DView record in HAL
BookMark eNp9kLFuFDEQhi0UJC6BF6ByS7GHvb61dyWaKBCCdBIN1NasPQYfPjvY3kPb8ej4dNBQpJrRzP_NSN81uYopIiGvOdtyxuXbwzZjKdue9aINJt6LZ2TDRzV1bBTyimzYNPBuFD17Qa5LOTDGdtOgNuT3e6jQ2exPGOljTt9iKtWbQmcoaGmKtPojdi7jzwWjWSlECGvxpTWWlvU4p-ANzWiWnDFWGnHJEFqpv1L-QV3K1C0YqMEQCl2ixUztGuHYqJDAviTPHYSCr_7WG_L1_sOXu4du__njp7vbfWeEGmtnnWHKTUZJBcapWfGd4dPIARFm28vegFVup-TMpGobId08MBhmZScnrBE35M3l7ncI-jH7I-RVJ_D64XavzzMmpkGyQZ54y46XrMmplIxOG1-h-hRrBh80Z_psXR_02bo-W9cX6w3t_0P__XoSeneBsAk4ecy6GN9so_VNbNU2-afwP4NsoW8
CitedBy_id crossref_primary_10_1016_j_cej_2025_167895
crossref_primary_10_1016_j_ijhydene_2024_11_127
crossref_primary_10_1088_1742_6596_2849_1_012019
crossref_primary_10_1016_j_renene_2025_123193
crossref_primary_10_1016_j_ress_2024_110365
crossref_primary_10_1039_D5EE03443D
crossref_primary_10_1016_j_ress_2025_110906
crossref_primary_10_1109_TEC_2023_3311460
crossref_primary_10_1016_j_ijhydene_2024_09_229
crossref_primary_10_1016_j_est_2024_114274
crossref_primary_10_1016_j_heliyon_2024_e26230
crossref_primary_10_1016_j_oceaneng_2025_121410
crossref_primary_10_1016_j_neucom_2023_126380
crossref_primary_10_1016_j_isci_2024_110979
crossref_primary_10_1016_j_ress_2024_110700
crossref_primary_10_1016_j_ress_2023_109660
crossref_primary_10_1088_1742_6596_2872_1_012041
crossref_primary_10_1109_TTE_2023_3341065
crossref_primary_10_1016_j_enconman_2025_120224
crossref_primary_10_1016_j_energy_2024_133995
crossref_primary_10_1016_j_ijhydene_2025_05_422
crossref_primary_10_3390_s24144451
crossref_primary_10_1016_j_ress_2025_110893
crossref_primary_10_59400_sv2904
crossref_primary_10_1016_j_rser_2024_114613
crossref_primary_10_1088_1742_6596_2849_1_012045
crossref_primary_10_1016_j_jobe_2024_111614
crossref_primary_10_1088_1742_6596_2849_1_012025
crossref_primary_10_1016_j_renene_2024_120648
crossref_primary_10_1016_j_ress_2023_109659
crossref_primary_10_1016_j_ijhydene_2024_12_067
crossref_primary_10_1088_1742_6596_2872_1_012010
crossref_primary_10_1016_j_ijhydene_2024_08_123
crossref_primary_10_1016_j_ress_2023_109276
crossref_primary_10_1016_j_ress_2024_110313
crossref_primary_10_1109_TTE_2024_3423404
crossref_primary_10_1016_j_ijhydene_2023_12_168
Cites_doi 10.1016/j.energy.2021.120451
10.1016/j.compchemeng.2016.08.018
10.1016/j.jpowsour.2021.230892
10.1016/j.ress.2021.107864
10.1109/TTE.2021.3075531
10.1016/j.apenergy.2020.116297
10.1007/s10618-020-00689-6
10.1016/j.dib.2021.106775
10.1016/j.apenergy.2019.113439
10.1016/j.ress.2021.108263
10.1016/j.energy.2019.03.059
10.1016/j.etran.2022.100166
10.1016/j.apenergy.2016.05.076
10.1016/j.jpowsour.2015.09.041
10.3115/v1/D14-1179
10.1109/TIA.2019.2911846
10.1109/TIE.2016.2519328
10.1109/TIE.2019.2893827
10.1016/j.apenergy.2020.115937
10.1016/j.ress.2021.107530
10.1016/j.ijhydene.2022.01.121
10.1016/j.dsp.2021.103292
10.1016/j.ress.2019.01.006
10.1016/j.conengprac.2021.104959
10.1016/j.rser.2020.109721
10.1016/j.ress.2021.108082
10.1098/rspa.1998.0193
10.1016/j.apenergy.2021.117918
10.1016/j.aei.2021.101405
10.1016/j.ress.2021.108012
10.1016/j.ress.2021.108119
10.1016/j.apenergy.2020.116346
10.1016/j.renene.2021.08.045
10.1016/j.apenergy.2017.09.106
10.1109/TIE.2018.2811366
10.1016/j.enconman.2021.113825
10.1016/j.ijhydene.2021.01.126
10.1016/j.jpowsour.2022.231256
10.1016/j.ress.2021.108063
10.1016/j.ress.2021.108297
10.1016/j.ress.2020.107369
10.1016/j.ress.2020.107257
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ress.2023.109123
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID oai:HAL:hal-03956056v1
10_1016_j_ress_2023_109123
S0951832023000388
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964267300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Oct 14 20:52:13 EDT 2025
Tue Nov 18 22:08:38 EST 2025
Sat Nov 29 07:10:29 EST 2025
Fri Feb 23 02:38:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue May
Keywords Symbolic representation gated recurrent unit
Empirical mode decomposition
Proton exchange membrane fuel cell
Time-frequency-energy spectrum
Remaining useful life
Dynamic load
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3
ORCID 0000-0002-7515-3875
0000-0003-0985-2763
OpenAccessLink https://hal.science/hal-03956056
ParticipantIDs hal_primary_oai_HAL_hal_03956056v1
crossref_citationtrail_10_1016_j_ress_2023_109123
crossref_primary_10_1016_j_ress_2023_109123
elsevier_sciencedirect_doi_10_1016_j_ress_2023_109123
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zio (bib0007) 2022; 218
Zhang, Xin, Liu, Chi, Ma (bib0040) 2022; 220
Cho K., Merriënboer B.V., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. (2014) arXiv preprint 2014;arXiv:1406.1078.
Chang, Fang, Zhang (bib0025) 2017; 206
Fu, Zhang, Lin, Zhao, Zhong (bib0034) 2021; 216
Bressel, Hilairet, Hissel, Ould-Bouamama (bib0012) 2016; 63
Kingma D.P., Ba J., Adam: a method for stochastic optimization. (2014) arXiv preprint 2014;arXiv:1412.6980
Ma, Xie, Xu, Huangfu, Li (bib0013) 2021; 7
Yang, Li, Li, Miao (bib0041) 2019; 175
Hu, Miao, Si, Pan, Zio (bib0008) 2022; 217
Li, Zheng, Outbib (bib0014) 2020; 67
Souza, Escola, Brito (bib0024) 2022; 120
Wang, Li, Outbib, Dou, Zhao (bib0016) 2022; 305
Chung J., Gulcehre C., Cho K., Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. (2014) arXiv preprint 2014;arXiv:1412.3555.
Chen, Chen, Liu, Cheng, Li (bib0026) 2021; 50
Chen, Laghrouche, Djerdir (bib0018) 2019; 252
Zuo, Lv, Zhou, Xue, Jin, Zhou (bib0020) 2021; 281
Yue, Jemei, Zerhouni, Gouriveau (bib0001) 2021; 179
Tang, Yuan (bib0027) 2022; 217
Zuo, Lv, Zhou, Xue, Jin, Zhou (bib0044) 2021; 35
Chen, Feng, Jiang, Zhu (bib0042) 2021; 227
Elsworth, Güttel (bib0022) 2020; 34
Wang, Dou, Li, Outbib, Zhao, Liang (bib0033) 2022; 12
Theissler, Pérez-Velázquez, Kettelgerdes, Elger (bib0009) 2021; 215
.
Ma, Li, Breaz, Liu, Bai, Briois (bib0049) 2019; 55
Yue, Li, Roche, Jemei, Zerhouni (bib0015) 2022; 118
Damour, Benne, Grondin-Perez, Bessafi, Hissel, Chabriat (bib0030) 2015; 299
Ramsden T. 2019 Annual progress report: DOE hydrogen and fuel cells program. United States, 2020.
Hart, Jones, Lewis (bib0004) 2021
Lorenzo, Bouquain, Hibon, Hissel (bib0005) 2021; 212
Saxena, Celaya, Balaban, Goebel, Saha, Schwabacher (bib0046) 2008
Wang, Li, Outbib, Dou, Zhao (bib0021) 2022; 47
Liu, Chen, Hissel, Lu, Hou, Shao (bib0002) 2020; 123
Jouin, Bressel, Morando, Gouriveau, Hissel, Pera (bib0047) 2016; 177
Nguyen, Baraldi, Zio (bib0028) 2021; 283
Zhang, He, Zhan, Han (bib0031) 2021; 46
Hua, Zheng, Pahon, Péra, Gao (bib0017) 2021; 231
Zhang, Jiang, Wu, Li, Luo, Yin (bib0039) 2022; 221
Kurtz, Sprik, Saur, Onorato (bib0006) 2019
Chen, Zhao, Zhang, Shen, Shen, Liu (bib0043) 2022; 521
Jha, Bressel, Ould-Bouamama, Dauphin-Tanguy (bib0011) 2016; 95
Shi, Chehade (bib0035) 2021; 205
Hua, Zheng, Pahon, Péra, Gao (bib0003) 2022; 529
Mezzi, Yousfi-Steiner, Péra, Hissel, Larger (bib0019) 2021; 283
Huang, Shen, Long, Wu, Shih, Zheng (bib0023) 1998; 454
Xu, Saleh (bib0010) 2021; 211
Chen, Jing, Chang, Liu (bib0038) 2019; 185
Wang, Li, Outbib, Zhao, Dou (bib0032) 2020
Wu, Wu, Cao, Or, Deng, Shao (bib0029) 2019; 66
Damour (10.1016/j.ress.2023.109123_bib0030) 2015; 299
Xu (10.1016/j.ress.2023.109123_bib0010) 2021; 211
Tang (10.1016/j.ress.2023.109123_bib0027) 2022; 217
Ma (10.1016/j.ress.2023.109123_bib0013) 2021; 7
Hua (10.1016/j.ress.2023.109123_bib0017) 2021; 231
Mezzi (10.1016/j.ress.2023.109123_bib0019) 2021; 283
Kurtz (10.1016/j.ress.2023.109123_bib0006) 2019
Chen (10.1016/j.ress.2023.109123_bib0043) 2022; 521
Wang (10.1016/j.ress.2023.109123_bib0021) 2022; 47
Wang (10.1016/j.ress.2023.109123_bib0032) 2020
Zhang (10.1016/j.ress.2023.109123_bib0039) 2022; 221
10.1016/j.ress.2023.109123_bib0045
Chen (10.1016/j.ress.2023.109123_bib0026) 2021; 50
Wang (10.1016/j.ress.2023.109123_bib0033) 2022; 12
10.1016/j.ress.2023.109123_bib0048
Zio (10.1016/j.ress.2023.109123_bib0007) 2022; 218
Chang (10.1016/j.ress.2023.109123_bib0025) 2017; 206
Hu (10.1016/j.ress.2023.109123_bib0008) 2022; 217
Zhang (10.1016/j.ress.2023.109123_bib0031) 2021; 46
Elsworth (10.1016/j.ress.2023.109123_bib0022) 2020; 34
Jha (10.1016/j.ress.2023.109123_bib0011) 2016; 95
Hart (10.1016/j.ress.2023.109123_bib0004) 2021
Ma (10.1016/j.ress.2023.109123_bib0049) 2019; 55
Yang (10.1016/j.ress.2023.109123_bib0041) 2019; 175
Zuo (10.1016/j.ress.2023.109123_bib0020) 2021; 281
Chen (10.1016/j.ress.2023.109123_bib0042) 2021; 227
Huang (10.1016/j.ress.2023.109123_bib0023) 1998; 454
Yue (10.1016/j.ress.2023.109123_bib0001) 2021; 179
Theissler (10.1016/j.ress.2023.109123_bib0009) 2021; 215
10.1016/j.ress.2023.109123_bib0036
10.1016/j.ress.2023.109123_bib0037
Zhang (10.1016/j.ress.2023.109123_bib0040) 2022; 220
Chen (10.1016/j.ress.2023.109123_bib0038) 2019; 185
Hua (10.1016/j.ress.2023.109123_bib0003) 2022; 529
Fu (10.1016/j.ress.2023.109123_bib0034) 2021; 216
Chen (10.1016/j.ress.2023.109123_bib0018) 2019; 252
Lorenzo (10.1016/j.ress.2023.109123_bib0005) 2021; 212
Shi (10.1016/j.ress.2023.109123_bib0035) 2021; 205
Zuo (10.1016/j.ress.2023.109123_bib0044) 2021; 35
Yue (10.1016/j.ress.2023.109123_bib0015) 2022; 118
Saxena (10.1016/j.ress.2023.109123_bib0046) 2008
Nguyen (10.1016/j.ress.2023.109123_bib0028) 2021; 283
Li (10.1016/j.ress.2023.109123_bib0014) 2020; 67
Wu (10.1016/j.ress.2023.109123_bib0029) 2019; 66
Liu (10.1016/j.ress.2023.109123_bib0002) 2020; 123
Jouin (10.1016/j.ress.2023.109123_bib0047) 2016; 177
Wang (10.1016/j.ress.2023.109123_bib0016) 2022; 305
Souza (10.1016/j.ress.2023.109123_bib0024) 2022; 120
Bressel (10.1016/j.ress.2023.109123_bib0012) 2016; 63
References_xml – volume: 529
  year: 2022
  ident: bib0003
  article-title: A review on lifetime prediction of proton exchange membrane fuel cells system
  publication-title: J Power Sources
– volume: 118
  year: 2022
  ident: bib0015
  article-title: Degradation identification and prognostics of proton exchange membrane fuel cell under dynamic load
  publication-title: Control Eng Pract
– volume: 211
  year: 2021
  ident: bib0010
  article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities
  publication-title: Reliab Eng Syst Saf
– reference: Chung J., Gulcehre C., Cho K., Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. (2014) arXiv preprint 2014;arXiv:1412.3555.
– volume: 220
  year: 2022
  ident: bib0040
  article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
  publication-title: Reliab Eng Syst Saf
– volume: 283
  year: 2021
  ident: bib0028
  article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants
  publication-title: Appl Energy
– volume: 212
  year: 2021
  ident: bib0005
  article-title: Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applications
  publication-title: Reliab Eng Syst Saf
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0023
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc A Math Phys Eng Sci
– volume: 221
  year: 2022
  ident: bib0039
  article-title: Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
  publication-title: Reliab Eng Syst Saf
– volume: 35
  year: 2021
  ident: bib0044
  article-title: Long-term dynamic durability test datasets for single proton exchange membrane fuel cell
  publication-title: Data Brief
– volume: 55
  start-page: 4321
  year: 2019
  end-page: 4331
  ident: bib0049
  article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation
  publication-title: IEEE Trans Ind Appl
– volume: 305
  year: 2022
  ident: bib0016
  article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells
  publication-title: Appl Energy
– volume: 50
  year: 2021
  ident: bib0026
  article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
  publication-title: Adv Eng Inform
– volume: 34
  start-page: 1175
  year: 2020
  end-page: 1200
  ident: bib0022
  article-title: Abba: adaptive brownian bridge-based symbolic aggregation of time series
  publication-title: Data Min Knowl Discov
– volume: 206
  start-page: 1564
  year: 2017
  end-page: 1578
  ident: bib0025
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
  publication-title: Appl Energy
– volume: 179
  start-page: 2277
  year: 2021
  end-page: 2294
  ident: bib0001
  article-title: Proton exchange membrane fuel cell system prognostics and decision-making: current status and perspectives
  publication-title: Renew Energy
– volume: 227
  year: 2021
  ident: bib0042
  article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
  publication-title: Energy
– volume: 283
  year: 2021
  ident: bib0019
  article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile
  publication-title: Appl Energy
– volume: 12
  year: 2022
  ident: bib0033
  article-title: A fusion prognostics strategy for fuel cells operating under dynamic conditions
  publication-title: eTransportation
– volume: 521
  year: 2022
  ident: bib0043
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J Power Sources
– volume: 216
  year: 2021
  ident: bib0034
  article-title: Deep residual LSTM with domain-invariance for remaining useful life prediction across domains
  publication-title: Reliab Eng Syst Saf
– year: 2019
  ident: bib0006
  article-title: Fuel cell electric vehicle durability and fuel cell performance
– reference: Ramsden T. 2019 Annual progress report: DOE hydrogen and fuel cells program. United States, 2020.
– volume: 185
  start-page: 372
  year: 2019
  end-page: 382
  ident: bib0038
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
– year: 2021
  ident: bib0004
  article-title: The fuel cell industry review
– reference: Kingma D.P., Ba J., Adam: a method for stochastic optimization. (2014) arXiv preprint 2014;arXiv:1412.6980
– volume: 63
  start-page: 2569
  year: 2016
  end-page: 2577
  ident: bib0012
  article-title: Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load
  publication-title: IEEE Trans Ind Electron
– reference: Cho K., Merriënboer B.V., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. (2014) arXiv preprint 2014;arXiv:1406.1078.
– volume: 252
  year: 2019
  ident: bib0018
  article-title: Degradation model of proton exchange membrane fuel cell based on a novel hybrid method
  publication-title: Appl Energy
– volume: 95
  start-page: 216
  year: 2016
  end-page: 230
  ident: bib0011
  article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework
  publication-title: Comput Chem Eng
– volume: 123
  year: 2020
  ident: bib0002
  article-title: Prognostics methods and degradation indexes of proton exchange membrane fuel cells: a review
  publication-title: Renew Sustain Energy Rev
– volume: 215
  year: 2021
  ident: bib0009
  article-title: Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry
  publication-title: Reliab Eng Syst Saf
– volume: 299
  start-page: 596
  year: 2015
  end-page: 603
  ident: bib0030
  article-title: Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition
  publication-title: J Power Sources
– volume: 175
  start-page: 66
  year: 2019
  end-page: 75
  ident: bib0041
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
– volume: 217
  year: 2022
  ident: bib0027
  article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
  publication-title: Reliab Eng Syst Saf
– volume: 281
  year: 2021
  ident: bib0020
  article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application
  publication-title: Appl Energy
– volume: 217
  year: 2022
  ident: bib0008
  article-title: Prognostics and health management: a review from the perspectives of design, development and decision
  publication-title: Reliab Eng Syst Saf
– volume: 7
  start-page: 2318
  year: 2021
  end-page: 2331
  ident: bib0013
  article-title: A hybrid prognostic method for pemfc with aging parameter prediction
  publication-title: IEEE Trans Transp Electrif
– volume: 205
  year: 2021
  ident: bib0035
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– volume: 66
  start-page: 529
  year: 2019
  end-page: 539
  ident: bib0029
  article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines
  publication-title: IEEE Trans Ind Electron
– volume: 177
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib0047
  article-title: Estimating the end-of-life of PEM fuel cells: guidelines and metrics
  publication-title: Appl Energy
– reference: .
– volume: 218
  year: 2022
  ident: bib0007
  article-title: Prognostics and Health Management (PHM): where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
– volume: 120
  year: 2022
  ident: bib0024
  article-title: A survey on hilbert-huang transform: evolution, challenges and solutions
  publication-title: Digit Signal Process
– start-page: 1
  year: 2008
  end-page: 17
  ident: bib0046
  article-title: Metrics for evaluating performance of prognostic techniques
  publication-title: Proceedings of the international conference on prognostics and health management
– start-page: 3969
  year: 2020
  end-page: 3974
  ident: bib0032
  article-title: Proton exchange membrane fuel cells prognostic strategy based on navigation sequence driven long short-term memory networks
  publication-title: Proceedings of the 46th annual conference of the ieee industrial electronics society IECON
– volume: 46
  start-page: 18511
  year: 2021
  end-page: 18523
  ident: bib0031
  article-title: Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method
  publication-title: Int J Hydrog Energy
– volume: 67
  start-page: 379
  year: 2020
  end-page: 389
  ident: bib0014
  article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space
  publication-title: IEEE Trans Ind Electron
– volume: 231
  year: 2021
  ident: bib0017
  article-title: Remaining useful life prediction of pemfc systems under dynamic operating conditions
  publication-title: Energy Convers Manag
– volume: 47
  start-page: 10395
  year: 2022
  end-page: 10408
  ident: bib0021
  article-title: A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells
  publication-title: Int J Hydrog Energy
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2023.109123_bib0046
  article-title: Metrics for evaluating performance of prognostic techniques
– volume: 227
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0042
  article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120451
– volume: 95
  start-page: 216
  year: 2016
  ident: 10.1016/j.ress.2023.109123_bib0011
  article-title: Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2016.08.018
– volume: 521
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0043
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230892
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0009
  article-title: Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107864
– volume: 7
  start-page: 2318
  issue: 4
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0013
  article-title: A hybrid prognostic method for pemfc with aging parameter prediction
  publication-title: IEEE Trans Transp Electrif
  doi: 10.1109/TTE.2021.3075531
– volume: 283
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0019
  article-title: An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116297
– volume: 34
  start-page: 1175
  issue: 4
  year: 2020
  ident: 10.1016/j.ress.2023.109123_bib0022
  article-title: Abba: adaptive brownian bridge-based symbolic aggregation of time series
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-020-00689-6
– volume: 35
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0044
  article-title: Long-term dynamic durability test datasets for single proton exchange membrane fuel cell
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.106775
– volume: 252
  year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0018
  article-title: Degradation model of proton exchange membrane fuel cell based on a novel hybrid method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113439
– volume: 220
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0040
  article-title: Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108263
– ident: 10.1016/j.ress.2023.109123_bib0045
– start-page: 3969
  year: 2020
  ident: 10.1016/j.ress.2023.109123_bib0032
  article-title: Proton exchange membrane fuel cells prognostic strategy based on navigation sequence driven long short-term memory networks
– volume: 175
  start-page: 66
  year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0041
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.059
– volume: 12
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0033
  article-title: A fusion prognostics strategy for fuel cells operating under dynamic conditions
  publication-title: eTransportation
  doi: 10.1016/j.etran.2022.100166
– volume: 177
  start-page: 87
  year: 2016
  ident: 10.1016/j.ress.2023.109123_bib0047
  article-title: Estimating the end-of-life of PEM fuel cells: guidelines and metrics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.05.076
– volume: 299
  start-page: 596
  year: 2015
  ident: 10.1016/j.ress.2023.109123_bib0030
  article-title: Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.09.041
– year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0006
– ident: 10.1016/j.ress.2023.109123_bib0036
  doi: 10.3115/v1/D14-1179
– volume: 55
  start-page: 4321
  issue: 4
  year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0049
  article-title: Data-fusion prognostics of proton exchange membrane fuel cell degradation
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2019.2911846
– year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0004
– ident: 10.1016/j.ress.2023.109123_bib0048
– volume: 63
  start-page: 2569
  issue: 4
  year: 2016
  ident: 10.1016/j.ress.2023.109123_bib0012
  article-title: Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2519328
– volume: 67
  start-page: 379
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2023.109123_bib0014
  article-title: Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2893827
– volume: 281
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0020
  article-title: Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115937
– ident: 10.1016/j.ress.2023.109123_bib0037
– volume: 211
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0010
  article-title: Machine learning for reliability engineering and safety applications: review of current status and future opportunities
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107530
– volume: 47
  start-page: 10395
  issue: 18
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0021
  article-title: A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2022.01.121
– volume: 120
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0024
  article-title: A survey on hilbert-huang transform: evolution, challenges and solutions
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2021.103292
– volume: 185
  start-page: 372
  year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0038
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.01.006
– volume: 118
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0015
  article-title: Degradation identification and prognostics of proton exchange membrane fuel cell under dynamic load
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2021.104959
– volume: 123
  year: 2020
  ident: 10.1016/j.ress.2023.109123_bib0002
  article-title: Prognostics methods and degradation indexes of proton exchange membrane fuel cells: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109721
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0027
  article-title: A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108082
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.ress.2023.109123_bib0023
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc R Soc A Math Phys Eng Sci
  doi: 10.1098/rspa.1998.0193
– volume: 305
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0016
  article-title: Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117918
– volume: 50
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0026
  article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101405
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0034
  article-title: Deep residual LSTM with domain-invariance for remaining useful life prediction across domains
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108012
– volume: 218
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0007
  article-title: Prognostics and Health Management (PHM): where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108119
– volume: 283
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0028
  article-title: Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116346
– volume: 179
  start-page: 2277
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0001
  article-title: Proton exchange membrane fuel cell system prognostics and decision-making: current status and perspectives
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.08.045
– volume: 206
  start-page: 1564
  year: 2017
  ident: 10.1016/j.ress.2023.109123_bib0025
  article-title: A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.106
– volume: 66
  start-page: 529
  issue: 1
  year: 2019
  ident: 10.1016/j.ress.2023.109123_bib0029
  article-title: Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2811366
– volume: 231
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0017
  article-title: Remaining useful life prediction of pemfc systems under dynamic operating conditions
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113825
– volume: 46
  start-page: 18511
  issue: 35
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0031
  article-title: Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.01.126
– volume: 529
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0003
  article-title: A review on lifetime prediction of proton exchange membrane fuel cells system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2022.231256
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0008
  article-title: Prognostics and health management: a review from the perspectives of design, development and decision
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108063
– volume: 221
  year: 2022
  ident: 10.1016/j.ress.2023.109123_bib0039
  article-title: Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108297
– volume: 212
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0005
  article-title: Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applications
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107369
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2023.109123_bib0035
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
SSID ssj0004957
Score 2.565678
Snippet •HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term...
Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109123
SubjectTerms Automatic
Dynamic load
Electric power
Empirical mode decomposition
Engineering Sciences
Proton exchange membrane fuel cell
Remaining useful life
Symbolic representation gated recurrent unit
Time-frequency-energy spectrum
Title Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load
URI https://dx.doi.org/10.1016/j.ress.2023.109123
https://hal.science/hal-03956056
Volume 233
WOSCitedRecordID wos000964267300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK7auMlCvEWZmquTx2oXdTDKBEOqeIkcO1Y7dcmUptX2xn_kD-Hj47QpiGk88GJFTtKkPV_tc46_85mQ9x6PChWGkAKLfB2gBIGbsoFwWQxrpTHPBxw3m2DjcTKZpGe93s-2FmY1Z2WZXF-nV__V1LpPGxtKZ__B3OsP1R36WBtdt9rsur2T4Q95w11Zwyhm2FdlhVLMMF9JszYwuyxcVSOHGuSXrCyJSaHfXOagFOzUkIc3yk2geKntWCJf3NAS1bKYO5DyX5htdGtH4r72zrziWxt_AuEZhcBvnGKjfGjwhhrSzoIrK0WCeX0cew6my7WLXS2xqKhUhZ1mgUBkWAjfpxWUIfNN_-dlk8_MGtMXoInKblbD73AIMdVm_YKtfKXn6uEHF3EKHK0Tlhp57e5w7qOwhsXtJ6Qi_TFRYM7iYh9yGvvwAqCr5WHp87Yq92j4NTs7PM5OT8Yft892qIyj4alup3zuDgKIOKN4pUPyHZ9FadInO8OTo8mHTbluigK07TeytVxIO_z9hf7mL92btpl_4wmdPyaPbAhDhwi9J6RXlE_Jw46w5TPyowNC2gEhNSCkVUm3QUhbEOoDSVsQ0jUIKYKQWhBSDUIKIKQGhNSAkFoQUgDhc_Lt-Oj8YOTavT5cEbCkcaUSA6ZSwWLGhWI580LhpYnHi4Ln0o99wSVTIYtz7V7pM0Gs8mjAo5zJVAVSBC9Iv6zKYpdQoUQY-FwKPxEQbugIJQyF4mGQ55GXyD3itb9oJqwQPuzHMs9axuNFBlbIwAoZWmGPOOt7rlAG5taro9ZQmXVk0UHNNPxuve-dtur6AaD8roGVQd8GVi_vctEr8mDzr3pN-k29LN6Q-2LVzBb1WwvIX-v4ztc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prognostics+based+on+time-frequency+analysis+and+symbolic+recurrent+neural+network+for+fuel+cells+under+dynamic+load&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wang%2C+Chu&rft.au=Dou%2C+Manfeng&rft.au=Li%2C+Zhongliang&rft.au=Outbib%2C+Rachid&rft.date=2023-05-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=233&rft.issue=May&rft_id=info:doi/10.1016%2Fj.ress.2023.109123&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03956056v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon