Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits
We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original g...
Uložené v:
| Vydané v: | eLife Ročník 12 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
eLife Sciences Publications Ltd
19.04.2024
|
| Predmet: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10
−8
. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.
Scattered throughout the human genome are variations in the genetic code that make individuals more or less likely to develop certain traits. To identify these variants, scientists carry out Genome-wide association studies (GWAS) which compare the DNA variants of large groups of people with and without the trait of interest.
This method has been able to find the underlying genes for many human diseases, but it has limitations. For instance, some variations are linked together due to where they are positioned within DNA, which can result in GWAS falsely reporting associations between genetic variants and traits. This phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which looks at the multiple ways a gene’s activity can be influenced by a variation. For instance, how the gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products are generated.
Researchers can now use an artificial intelligence technique called deep learning to generate functional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep learning models to calculate the functional genomics of haplotypes, groups of genetic variants inherited from one parent. The approach was applied to DNA samples from over 350 thousand individuals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS for short), was calculated for at least two haplotypes per individual, and then compared to various complex traits like height or bone density.
Song et al. found that the HFS framework was better at finding links between genes and specific traits than existing methods. It also provided more information on the biology that may be underpinning these outcomes. Although more work is needed to reduce the computer processing times required to calculate the HFS, Song et al. believe that their new method has the potential to improve the way researchers identify links between genes and human traits. |
|---|---|
| AbstractList | We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10
−8
. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.
Scattered throughout the human genome are variations in the genetic code that make individuals more or less likely to develop certain traits. To identify these variants, scientists carry out Genome-wide association studies (GWAS) which compare the DNA variants of large groups of people with and without the trait of interest.
This method has been able to find the underlying genes for many human diseases, but it has limitations. For instance, some variations are linked together due to where they are positioned within DNA, which can result in GWAS falsely reporting associations between genetic variants and traits. This phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which looks at the multiple ways a gene’s activity can be influenced by a variation. For instance, how the gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products are generated.
Researchers can now use an artificial intelligence technique called deep learning to generate functional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep learning models to calculate the functional genomics of haplotypes, groups of genetic variants inherited from one parent. The approach was applied to DNA samples from over 350 thousand individuals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS for short), was calculated for at least two haplotypes per individual, and then compared to various complex traits like height or bone density.
Song et al. found that the HFS framework was better at finding links between genes and specific traits than existing methods. It also provided more information on the biology that may be underpinning these outcomes. Although more work is needed to reduce the computer processing times required to calculate the HFS, Song et al. believe that their new method has the potential to improve the way researchers identify links between genes and human traits. We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10 . Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits. We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits. We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10-8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10-8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits. |
| Author | Shi, Yongyong Lin, Guan Ning Song, Weichen |
| Author_xml | – sequence: 1 givenname: Weichen orcidid: 0000-0003-3197-6236 surname: Song fullname: Song, Weichen – sequence: 2 givenname: Yongyong surname: Shi fullname: Shi, Yongyong – sequence: 3 givenname: Guan Ning surname: Lin fullname: Lin, Guan Ning |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38639992$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdks1rFTEUxYNUbK1duZeAG0GmZpLJ11KK2sIDNwruQiZz88xjJhmTGfHhP286rxYxm5tcfhzuPTnP0VlMERB62ZJryXn3DnbBw7WmXHZP0AUlnDREdd_O_rmfo6tSDqQe2SnV6mfonCnBtNb0Av2-tfOYluMM2K_RLSFFXFzKgMM05_QTCu5DGtM-ODviEBfIc4bFbqCNA3Y5ldLY6KAs-YjnNB73EIPDFRvCSTB5_H2dbMQuTfMIv_CSbVjKC_TU27HA1UO9RF8_fvhyc9vsPn-6u3m_axyTamkckFb3WhBvGfdODNKxllvKeiel01RZP2iuyEBAcyG4Fp1WhCihOGtthS_R3Ul3SPZg5hwmm48m2WC2Rsp7Y_MS3AjGiqGrzgiwgneE-F7zwVFVn9Q7alXVenPSqub8WOvOZgrFwTjaCGkthpGOEckoERV9_R96SGuOddN7SktOpewq9eqBWvsJhsfx_n5RBd6egM3pDP4RaYm5z4DZMmC2DLA_nAallg |
| Cites_doi | 10.1038/s41467-021-24485-y 10.1038/s41592-021-01252-x 10.3390/biology11101454 10.1038/s41588-022-01178-w 10.1038/s41588-020-00735-5 10.1086/519795 10.1371/journal.pcbi.1008050 10.1038/s41586-018-0579-z 10.1371/journal.pgen.1000471 10.1038/s41588-018-0177-x 10.1101/gr.3715005 10.1038/s41588-018-0322-6 10.1038/s41588-023-01574-w 10.1038/s42003-021-02642-9 10.1038/s41588-018-0081-4 10.1038/s41588-019-0481-0 10.1101/2023.03.16.532969 10.1038/ng.3404 10.1038/s41586-021-03819-2 10.1101/2022.03.04.483057 10.1038/s41588-020-00761-3 10.1038/s41586-020-03145-z 10.1016/j.cell.2021.10.024 10.1038/s41588-022-01036-9 10.3390/ijms222111898 10.1016/j.ajhg.2023.01.004 10.1038/s41586-021-03211-0 10.1038/s41467-021-21446-3 10.1038/75556 10.1038/s41467-022-33724-9 10.1016/j.cell.2023.02.018 10.1016/j.ajhg.2017.06.005 10.1093/bioinformatics/btq033 10.1073/pnas.0506580102 10.1038/s41467-019-13225-y 10.1016/j.ajhg.2022.02.009 10.1101/2022.10.12.510418 10.1038/nature16549 10.1038/s41467-020-19669-x 10.1093/gigascience/giab008 10.1038/s41588-018-0160-6 10.1038/s41588-020-0676-4 10.1038/s41588-022-01065-4 10.1038/s41588-021-00870-7 10.1165/rcmb.2009-0369OC 10.1126/science.aaz1776 10.1186/s13059-021-02591-w 10.1093/nar/gkn653 10.1038/s41588-022-01102-2 10.1016/j.ajhg.2022.03.007 10.1101/2022.09.06.506858 10.1038/s41467-018-03621-1 10.1542/peds.111.1.e39 10.1038/s41588-022-01168-y 10.1038/nmeth.1906 10.1055/s-0039-1678694 10.1038/s41586-022-05275-y 10.1093/nar/gkx1132 10.1038/s41588-022-01087-y 10.1038/nature09298 10.1093/bioinformatics/btt730 10.1111/rssb.12388 |
| ContentType | Journal Article |
| Copyright | 2023, Song et al. 2023, Song et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023, Song et al. – notice: 2023, Song et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.7554/eLife.92574 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (via ProQuest SciTech Premium Collection) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_a6d43996ea65400fb95dc28ea62fc2a8 38639992 10_7554_eLife_92574 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom--UK |
| GeographicLocations_xml | – name: United Kingdom--UK |
| GrantInformation_xml | – fundername: Medical-Engineering Cross Foundation of Shanghai Jiao Tong University grantid: YG2022ZD026 – fundername: Ministry of Science and Technology grantid: 2030 Science and Technology Innovation Key Program 2022ZD020910001 – fundername: National Natural Science Foundation of China grantid: 81971292 – fundername: Natural Science Foundation of Shanghai grantid: 21ZR1428600 – fundername: National Natural Science Foundation of China grantid: 82150610506 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c378t-ce019b960fa35fc6d7c315a23bc77c928afd9580d0e956659649800868531a7c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:48:38 EDT 2025 Sun Nov 09 14:09:57 EST 2025 Sat Nov 29 14:12:03 EST 2025 Mon Jul 21 06:01:20 EDT 2025 Sat Nov 29 06:59:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | computational biology systems biology deep learning genetics genome-wide association study genomics functional genomics human polygenic prediction fine-mapping |
| Language | English |
| License | 2023, Song et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-ce019b960fa35fc6d7c315a23bc77c928afd9580d0e956659649800868531a7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3197-6236 |
| OpenAccessLink | https://www.proquest.com/docview/3049752774?pq-origsite=%requestingapplication% |
| PMID | 38639992 |
| PQID | 3049752774 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a6d43996ea65400fb95dc28ea62fc2a8 proquest_miscellaneous_3043073206 proquest_journals_3049752774 pubmed_primary_38639992 crossref_primary_10_7554_eLife_92574 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-19 |
| PublicationDateYYYYMMDD | 2024-04-19 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2024 |
| Publisher | eLife Sciences Publications Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd |
| References | Finucane (bib14) 2015; 47 Weissbrod (bib52) 2020; 52 Mbatchou (bib30) 2021; 53 Zeng (bib56) 2021; 12 Nowbandegani (bib35) 2022; 01 Grotzinger (bib18) 2022; 13 Avsec (bib4) 2021; 18 Visscher (bib49) 2017; 101 Wang (bib50) 2020; 82 Zhou (bib63) 2022; 54 Chen (bib9) 2022; 54 Barbeira (bib6) 2018; 9 Nawijn (bib34) 2011; 45 Jumper (bib23) 2021; 596 Park (bib38) 2021; 53 Purcell (bib40) 2007; 81 Kong (bib25) 2019; 119 Kelley (bib24) 2020; 16 Danecek (bib10) 2021; 10 Liang (bib27) 2022; 23 Aguet (bib1) 2020; 369 Rozowsky (bib42) 2023; 186 Zhang (bib58) 2021; 12 Zheng (bib60) 2022 Zhang (bib57) 2021; 184 Zhou (bib62) 2022; 54 Hu (bib20) 2022; 109 Fabregat (bib13) 2018; 46 Watanabe (bib51) 2019; 51 Mikaelsdottir (bib32) 2021; 4 Delaneau (bib11) 2019; 10 Ashburner (bib3) 2000; 25 Schaefer (bib44) 2009; 37 Siepel (bib46) 2005; 15 Quinlan (bib41) 2010; 26 McVicker (bib31) 2009; 5 Huang (bib21) 2023; 55 Iotchkova (bib22) 2019; 51 Weissbrod (bib53) 2022; 54 Zhao (bib59) 2014; 30 Helland (bib19) 2003; 111 Null (bib36) 2022; 109 Yengo (bib55) 2022; 610 Finucane (bib15) 2018; 50 Palamara (bib37) 2018; 50 Baca (bib5) 2022; 54 Momin (bib33) 2023; 110 Subramanian (bib48) 2005; 102 Sekar (bib45) 2016; 530 Song (bib47) 2024 Boix (bib7) 2021; 590 Galván Morales (bib16) 2021; 22 Liu (bib28) 2022; 11 Li (bib26) 2020; 52 MacDonald (bib29) 2022 Zhou (bib61) 2018; 50 Pejaver (bib39) 2020; 11 Gazal (bib17) 2022; 54 Altshuler (bib2) 2010; 467 Ernst (bib12) 2012; 9 Bycroft (bib8) 2018; 562 Sasse (bib43) 2023 Yan (bib54) 2021; 591 |
| References_xml | – volume: 12 year: 2021 ident: bib58 article-title: Improved genetic prediction of complex traits from individual-level data or summary statistics publication-title: Nature Communications doi: 10.1038/s41467-021-24485-y – volume: 18 start-page: 1196 year: 2021 ident: bib4 article-title: Effective gene expression prediction from sequence by integrating long-range interactions publication-title: Nature Methods doi: 10.1038/s41592-021-01252-x – volume: 11 year: 2022 ident: bib28 article-title: Evaluation of the effectiveness of derived features of alphafold2 on single-sequence protein binding site prediction publication-title: Biology doi: 10.3390/biology11101454 – volume: 54 start-page: 1466 year: 2022 ident: bib63 article-title: SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests publication-title: Nature Genetics doi: 10.1038/s41588-022-01178-w – volume: 52 start-page: 1355 year: 2020 ident: bib52 article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability publication-title: Nature Genetics doi: 10.1038/s41588-020-00735-5 – volume: 81 start-page: 559 year: 2007 ident: bib40 article-title: PLINK: A tool set for whole-genome association and population-based linkage analyses publication-title: American Journal of Human Genetics doi: 10.1086/519795 – volume: 16 year: 2020 ident: bib24 article-title: Cross-species regulatory sequence activity prediction publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1008050 – volume: 562 start-page: 203 year: 2018 ident: bib8 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 5 year: 2009 ident: bib31 article-title: Widespread genomic signatures of natural selection in hominid evolution publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1000471 – volume: 50 start-page: 1311 year: 2018 ident: bib37 article-title: High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability publication-title: Nature Genetics doi: 10.1038/s41588-018-0177-x – volume: 15 start-page: 1034 year: 2005 ident: bib46 article-title: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes publication-title: Genome Research doi: 10.1101/gr.3715005 – volume: 51 start-page: 343 year: 2019 ident: bib22 article-title: GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals publication-title: Nature Genetics doi: 10.1038/s41588-018-0322-6 – volume: 55 start-page: 2056 year: 2023 ident: bib21 article-title: Personal transcriptome variation is poorly explained by current genomic deep learning models publication-title: Nature Genetics doi: 10.1038/s41588-023-01574-w – volume: 4 year: 2021 ident: bib32 article-title: Genetic variants associated with platelet count are predictive of human disease and physiological markers publication-title: Communications Biology doi: 10.1038/s42003-021-02642-9 – volume: 50 start-page: 621 year: 2018 ident: bib15 article-title: Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types publication-title: Nature Genetics doi: 10.1038/s41588-018-0081-4 – volume: 51 start-page: 1339 year: 2019 ident: bib51 article-title: A global overview of pleiotropy and genetic architecture in complex traits publication-title: Nature Genetics doi: 10.1038/s41588-019-0481-0 – volume-title: bioRxiv year: 2023 ident: bib43 article-title: Benchmarking of deep neural networks for predicting personal gene expression from dna sequence highlights shortcomings doi: 10.1101/2023.03.16.532969 – volume: 47 start-page: 1228 year: 2015 ident: bib14 article-title: Partitioning heritability by functional annotation using genome-wide association summary statistics publication-title: Nature Genetics doi: 10.1038/ng.3404 – volume: 596 start-page: 583 year: 2021 ident: bib23 article-title: Highly accurate protein structure prediction with alphafold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume-title: bioRxiv year: 2022 ident: bib29 article-title: An updated map of grch38 linkage disequilibrium blocks based on european ancestry data doi: 10.1101/2022.03.04.483057 – volume: 53 start-page: 166 year: 2021 ident: bib38 article-title: Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk publication-title: Nature Genetics doi: 10.1038/s41588-020-00761-3 – volume: 590 start-page: 300 year: 2021 ident: bib7 article-title: Regulatory genomic circuitry of human disease loci by integrative epigenomics publication-title: Nature doi: 10.1038/s41586-020-03145-z – volume: 184 start-page: 5985 year: 2021 ident: bib57 article-title: A single-cell atlas of chromatin accessibility in the human genome publication-title: Cell doi: 10.1016/j.cell.2021.10.024 – volume: 54 start-page: 450 year: 2022 ident: bib53 article-title: Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores publication-title: Nature Genetics doi: 10.1038/s41588-022-01036-9 – volume: 22 year: 2021 ident: bib16 article-title: New insights into the role of pd-1 and its ligands in allergic disease publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms222111898 – volume: 110 start-page: 349 year: 2023 ident: bib33 article-title: Significance tests for R2 of out-of-sample prediction using polygenic scores publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2023.01.004 – volume: 591 start-page: 147 year: 2021 ident: bib54 article-title: Systematic analysis of binding of transcription factors to noncoding variants publication-title: Nature doi: 10.1038/s41586-021-03211-0 – volume: 12 year: 2021 ident: bib56 article-title: Widespread signatures of natural selection across human complex traits and functional genomic categories publication-title: Nature Communications doi: 10.1038/s41467-021-21446-3 – volume: 25 start-page: 25 year: 2000 ident: bib3 article-title: Gene Ontology: tool for the unification of biology publication-title: Nature Genetics doi: 10.1038/75556 – volume: 13 year: 2022 ident: bib18 article-title: Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits publication-title: Nature Communications doi: 10.1038/s41467-022-33724-9 – volume: 186 start-page: 1493 year: 2023 ident: bib42 article-title: The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models publication-title: Cell doi: 10.1016/j.cell.2023.02.018 – volume: 101 start-page: 5 year: 2017 ident: bib49 article-title: 10 years of gwas discovery: biology, function, and translation publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2017.06.005 – volume: 26 start-page: 841 year: 2010 ident: bib41 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 102 start-page: 15545 year: 2005 ident: bib48 article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles publication-title: PNAS doi: 10.1073/pnas.0506580102 – volume: 10 year: 2019 ident: bib11 article-title: Accurate, scalable and integrative haplotype estimation publication-title: Nature Communications doi: 10.1038/s41467-019-13225-y – volume: 109 start-page: 680 year: 2022 ident: bib36 article-title: RAREsim: A simulation method for very rare genetic variants publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2022.02.009 – volume-title: bioRxiv year: 2022 ident: bib60 article-title: Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries doi: 10.1101/2022.10.12.510418 – volume: 530 start-page: 177 year: 2016 ident: bib45 article-title: Schizophrenia risk from complex variation of complement component 4 publication-title: Nature doi: 10.1038/nature16549 – volume: 11 year: 2020 ident: bib39 article-title: Inferring the molecular and phenotypic impact of amino acid variants with MutPred2 publication-title: Nature Communications doi: 10.1038/s41467-020-19669-x – volume: 10 year: 2021 ident: bib10 article-title: Twelve years of SAMtools and BCFtools publication-title: GigaScience doi: 10.1093/gigascience/giab008 – volume: 50 start-page: 1171 year: 2018 ident: bib61 article-title: Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk publication-title: Nature Genetics doi: 10.1038/s41588-018-0160-6 – volume: 52 start-page: 969 year: 2020 ident: bib26 article-title: Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale publication-title: Nature Genetics doi: 10.1038/s41588-020-0676-4 – volume-title: Software Heritage year: 2024 ident: bib47 article-title: Hfs – volume: 54 start-page: 725 year: 2022 ident: bib62 article-title: Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale publication-title: Nature Genetics doi: 10.1038/s41588-022-01065-4 – volume: 53 start-page: 1097 year: 2021 ident: bib30 article-title: Computationally efficient whole-genome regression for quantitative and binary traits publication-title: Nature Genetics doi: 10.1038/s41588-021-00870-7 – volume: 45 start-page: 295 year: 2011 ident: bib34 article-title: Identification of the Mhc region as an asthma susceptibility locus in recombinant congenic mice publication-title: American Journal of Respiratory Cell and Molecular Biology doi: 10.1165/rcmb.2009-0369OC – volume: 369 start-page: 1318 year: 2020 ident: bib1 article-title: The GTEx Consortium atlas of genetic regulatory effects across human tissues publication-title: Science doi: 10.1126/science.aaz1776 – volume: 23 year: 2022 ident: bib27 article-title: Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries publication-title: Genome Biology doi: 10.1186/s13059-021-02591-w – volume: 37 start-page: D674 year: 2009 ident: bib44 article-title: PID: the Pathway Interaction Database publication-title: Nucleic Acids Research doi: 10.1093/nar/gkn653 – volume: 54 start-page: 940 year: 2022 ident: bib9 article-title: A sequence-based global map of regulatory activity for deciphering human genetics publication-title: Nature Genetics doi: 10.1038/s41588-022-01102-2 – volume: 109 start-page: 857 year: 2022 ident: bib20 article-title: Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2022.03.007 – volume: 01 year: 2022 ident: bib35 article-title: Extremely sparse models of linkage disequilibrium in ancestrally diverse association studies publication-title: Genetics doi: 10.1101/2022.09.06.506858 – volume: 9 year: 2018 ident: bib6 article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics publication-title: Nature Communications doi: 10.1038/s41467-018-03621-1 – volume: 111 start-page: e39 year: 2003 ident: bib19 article-title: Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age publication-title: Pediatrics doi: 10.1542/peds.111.1.e39 – volume: 54 start-page: 1364 year: 2022 ident: bib5 article-title: Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation publication-title: Nature Genetics doi: 10.1038/s41588-022-01168-y – volume: 9 start-page: 215 year: 2012 ident: bib12 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nature Methods doi: 10.1038/nmeth.1906 – volume: 119 start-page: 716 year: 2019 ident: bib25 article-title: Identification of the regulatory elements and target genes of megakaryopoietic transcription factor mef2c publication-title: Thrombosis and Haemostasis doi: 10.1055/s-0039-1678694 – volume: 610 start-page: 704 year: 2022 ident: bib55 article-title: A saturated map of common genetic variants associated with human height publication-title: Nature doi: 10.1038/s41586-022-05275-y – volume: 46 start-page: D649 year: 2018 ident: bib13 article-title: The reactome pathway knowledgebase publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx1132 – volume: 54 start-page: 827 year: 2022 ident: bib17 article-title: Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity publication-title: Nature Genetics doi: 10.1038/s41588-022-01087-y – volume: 467 start-page: 52 year: 2010 ident: bib2 article-title: Integrating common and rare genetic variation in diverse human populations publication-title: Nature doi: 10.1038/nature09298 – volume: 30 start-page: 1006 year: 2014 ident: bib59 article-title: CrossMap: a versatile tool for coordinate conversion between genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt730 – volume: 82 start-page: 1273 year: 2020 ident: bib50 article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping publication-title: Journal of the Royal Statistical Society Series B doi: 10.1111/rssb.12388 |
| SSID | ssj0000748819 |
| Score | 2.3807127 |
| Snippet | We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| SubjectTerms | Arachidonic acid Biobanks Circadian rhythms Deep learning fine-mapping functional genomics Gene mapping Gene polymorphism Generalized linear models Genome-Wide Association Study Genomes Genomics Haplotypes Humans Multifactorial Inheritance - genetics Phenotype Polygenic inheritance polygenic prediction Polymorphism, Single Nucleotide Predictions Quantitative Trait Loci Single-nucleotide polymorphism |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7Et6urRPBabdM2j6OK4kEWDwreSpoHFKRd7K64-OedSXYXPYgXj22nbZhvkpnJYz5CzguDJUhylYDvs0lRc6R5YTZJra0LkRZOeR_IJsRoJF9e1OM3qi_cExbLA0fFXWpuMWTmTnMILlJfq9IaJuGSecN0OOYLUc-3ZCqMwQIMM1PxQJ4Al3npHhrvLhRYaPHDBYVK_b-Hl8HN3G2RzXl8SK9iu7bJimt3yHpkjJztks97PX7tcN6UokdCrdIeK1HSJswOuJ7Gskqoe9r82FFIdWtpaFKCUCPLGx13rzMwocZQELNN_GDnaaDuo2G_ufugyCMx6ffI893t0819MudPSEwu5CQxDuK3GlIUr_PSG26FybNSs7w2QhjFpPZWlTK1qYMsiZeKF0pijgMuPNMgvE9W2651h4RmUupUc1kAooACvFYapYw2qWa8FnZAzhcqrcaxTEYF6QVqvgqar4LmB-Qa1b0UwdrW4QYgXs0Rr_5CfECGC7CqeYfrK1wtFCUT-I-z5WPoKrj-oVvXTYMMjmgs5QNyEEFetiSXGKopdvQfLTwmGwxiH1x0ytSQrE7epu6ErJn3SdO_nQZL_QJ7Y_Dm priority: 102 providerName: Directory of Open Access Journals |
| Title | Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38639992 https://www.proquest.com/docview/3049752774 https://www.proquest.com/docview/3043073206 https://doaj.org/article/a6d43996ea65400fb95dc28ea62fc2a8 |
| Volume | 12 |
| WOSCitedRecordID | wos001205876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFH_YXQUv9VujdRmh19jsJJmPk9jSUsEuQRTWU5jMTCRQknWzFUv_ed-bZFd6qBcvA0kmw4Tfm3lfk_cDOMwslSBJdYy6z8VZJYjmhbs4ca7KZJJ5XdeBbEIuFmq51MUYcOvHY5XbPTFs1K6zFCM_onSQzDlaKx9WP2NijaLs6kihsQdTqlSWTWB6fLoovuyiLKggFeq84cc8iarzyH9uav9eo6Rmt1RRqNh_t5kZ1M3Zo_-d6GPYHw1N9nGQjCdwz7dP4cFAPXn9DG7OzeqyowAsI9VG8LCeSlqyJoQZfM-G-kwEImtuHU1kpnUsfFNMMkN0cWzVXV6jLDaWYTfXDAN2NQscgCwcXPe_GRFSbPrn8O3s9OvJeTwSMcQ2lWoTW4-GYIW-Tm3SvLbCSZvOc8PTykppNVemdjpXiUs8ulsi1yLTipwltAXmBju_gEnbtf4VsLlSJjFCZSgauH3ga7nV2hqbGC4q6SI43GJSroZ6GyX6KQRdGaArA3QRHBNeuy5UJDvc6NY_ynHNlUY48raENwLt0qSudO4sV3jJa8uNiuBgi2A5rty-_AtfBO92j3HNUSLFtL67Cn1oa-SJiODlICW7maSKbD7NX_978DfwkKN5RHmpuT6AyWZ95d_Cfftr0_TrGezJpQytmo0iPQvRAmwveEGtxHZafLoovv8BwKMGRg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHKMW3WSfw4IMSr2qrLikOR9hYc20GRqmS72QIr_hO_kRlns6gHuPXAMYljJc43M9_YznwAe5mlEiSpjjH2uTgrBcm8cBcnzpWZTDKvqyqITcjpVM1m-tMW_Br-haFtlYNPDI7atZbmyA9oOUjmHNnK6_lZTKpRtLo6SGj0sDj2q--YsnWvjt7j933J-eGHk3fjeK0qENtUqmVsPbKaEol7ZdK8ssJJm45yw9PSSmk1V6ZyOleJSzzmDiLXItOKmD8GtpHBxtjvFbiKflzSFjI5k5s5HQzHCiNs_xugxEB94Cd15fc12kV2IfAFfYC_k9oQ3A5v_2_DcgdurWk0e9Pj_i5s-eYeXO-FNVf34efYzE9bml5mFLgJfKyjgp2sDpMovmN99SmCKKsvbLxkpnEsjGFMFkFieGzenq7Q0mrLsJmr-w7bigWFQxa25fsfjOQ2lt0D-Hwpb_4Qtpu28Y-AjZQyiREqQ-Cjc8Tbcqu1NTYxXJTSRbA3YKCY99VECszCCCpFgEoRoBLBW8LHpgmVAA8n2sXXYu1RCiMc5ZLCG4GsO6lKnTvLFR7yynKjItgdEFOs_VJX_IFLBC82l9Gj0DKRaXx7HtqQ4-eJiGCnR-XmSVJFjFbzx__u_DncGJ98nBSTo-nxE7jJkQjSCtxI78L2cnHun8I1-21Zd4tnwYAYfLlsaP4GcHRZSA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAhUXvimBAkYqx7BZJ3HsA0JAWbVqWe0BpN6C4w8UqUqWzRZY8c_4dcw42UU9wK0HjkkcK3HezJuxnXkA-5mhEiSpipH7bJxVgmReuI0Ta6usSDKnvA9iE8V0Kk9P1WwLfq3_haFtlWufGBy1bQ3NkY9oOajIOUYrIz9si5gdTF7Pv8akIEUrrWs5jR4ix271HdO37tXRAX7rF5xP3n98dxgPCgOxSQu5jI3DCKfCIN7rNPdG2MKk41zztDJFYRSX2luVy8QmDvMIkSuRKUlZAJLcWGNj7PcKXC2yPCfr-sBnm_kdpGaJbNv_ElggaY_cSe3dS4U2kl0gwaAV8PcANxDd5Nb_PES34eYQXrM3vT3cgS3X3IXrveDm6h78PNTzs5amnRkROoGSdVTIk9VhcsV1rK9KRdBl9YUNmUw3loXxjMlSSCSPzduzFVpgbRg2s3XfYetZUD5kYbu--8FIhmPZ3YdPl_LmD2C7aRv3ENhYSp1oITM0CHSaeFtulDLaJJqLqrAR7K_xUM77KiMlZmcEmzLApgywieAtYWXThEqDhxPt4ks5eJpSC0s5pnBaYDSe-Erl1nCJh9wbrmUEe2v0lIO_6so_0Ing-eYyehpaPtKNa89DGyIEnogIdnuEbp4klRTpKv7o350_gx1EZHlyND1-DDc4xoe0MDdWe7C9XJy7J3DNfFvW3eJpsCUGny8bmb8BERViFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haplotype+function+score+improves+biological+interpretation+and+cross-ancestry+polygenic+prediction+of+human+complex+traits&rft.jtitle=eLife&rft.au=Song%2C+Weichen&rft.au=Shi%2C+Yongyong&rft.au=Lin%2C+Guan+Ning&rft.date=2024-04-19&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.92574&rft_id=info%3Apmid%2F38639992&rft.externalDocID=38639992 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |