Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits

We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 12
Hlavní autori: Song, Weichen, Shi, Yongyong, Lin, Guan Ning
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Sciences Publications Ltd 19.04.2024
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10 −8 . Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits. Scattered throughout the human genome are variations in the genetic code that make individuals more or less likely to develop certain traits. To identify these variants, scientists carry out Genome-wide association studies (GWAS) which compare the DNA variants of large groups of people with and without the trait of interest. This method has been able to find the underlying genes for many human diseases, but it has limitations. For instance, some variations are linked together due to where they are positioned within DNA, which can result in GWAS falsely reporting associations between genetic variants and traits. This phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which looks at the multiple ways a gene’s activity can be influenced by a variation. For instance, how the gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products are generated. Researchers can now use an artificial intelligence technique called deep learning to generate functional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep learning models to calculate the functional genomics of haplotypes, groups of genetic variants inherited from one parent. The approach was applied to DNA samples from over 350 thousand individuals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS for short), was calculated for at least two haplotypes per individual, and then compared to various complex traits like height or bone density. Song et al. found that the HFS framework was better at finding links between genes and specific traits than existing methods. It also provided more information on the biology that may be underpinning these outcomes. Although more work is needed to reduce the computer processing times required to calculate the HFS, Song et al. believe that their new method has the potential to improve the way researchers identify links between genes and human traits.
AbstractList We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10 −8 . Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits. Scattered throughout the human genome are variations in the genetic code that make individuals more or less likely to develop certain traits. To identify these variants, scientists carry out Genome-wide association studies (GWAS) which compare the DNA variants of large groups of people with and without the trait of interest. This method has been able to find the underlying genes for many human diseases, but it has limitations. For instance, some variations are linked together due to where they are positioned within DNA, which can result in GWAS falsely reporting associations between genetic variants and traits. This phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which looks at the multiple ways a gene’s activity can be influenced by a variation. For instance, how the gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products are generated. Researchers can now use an artificial intelligence technique called deep learning to generate functional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep learning models to calculate the functional genomics of haplotypes, groups of genetic variants inherited from one parent. The approach was applied to DNA samples from over 350 thousand individuals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS for short), was calculated for at least two haplotypes per individual, and then compared to various complex traits like height or bone density. Song et al. found that the HFS framework was better at finding links between genes and specific traits than existing methods. It also provided more information on the biology that may be underpinning these outcomes. Although more work is needed to reduce the computer processing times required to calculate the HFS, Song et al. believe that their new method has the potential to improve the way researchers identify links between genes and human traits.
We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10 . Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.
We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.
We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10-8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS-trait associations with a significance of p < 5 × 10-8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway-trait associations and 153 tissue-trait associations with strong biological interpretability, including 'circadian pathway-chronotype' and 'arachidonic acid-intelligence'. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1-39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.
Author Shi, Yongyong
Lin, Guan Ning
Song, Weichen
Author_xml – sequence: 1
  givenname: Weichen
  orcidid: 0000-0003-3197-6236
  surname: Song
  fullname: Song, Weichen
– sequence: 2
  givenname: Yongyong
  surname: Shi
  fullname: Shi, Yongyong
– sequence: 3
  givenname: Guan Ning
  surname: Lin
  fullname: Lin, Guan Ning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38639992$$D View this record in MEDLINE/PubMed
BookMark eNpdks1rFTEUxYNUbK1duZeAG0GmZpLJ11KK2sIDNwruQiZz88xjJhmTGfHhP286rxYxm5tcfhzuPTnP0VlMERB62ZJryXn3DnbBw7WmXHZP0AUlnDREdd_O_rmfo6tSDqQe2SnV6mfonCnBtNb0Av2-tfOYluMM2K_RLSFFXFzKgMM05_QTCu5DGtM-ODviEBfIc4bFbqCNA3Y5ldLY6KAs-YjnNB73EIPDFRvCSTB5_H2dbMQuTfMIv_CSbVjKC_TU27HA1UO9RF8_fvhyc9vsPn-6u3m_axyTamkckFb3WhBvGfdODNKxllvKeiel01RZP2iuyEBAcyG4Fp1WhCihOGtthS_R3Ul3SPZg5hwmm48m2WC2Rsp7Y_MS3AjGiqGrzgiwgneE-F7zwVFVn9Q7alXVenPSqub8WOvOZgrFwTjaCGkthpGOEckoERV9_R96SGuOddN7SktOpewq9eqBWvsJhsfx_n5RBd6egM3pDP4RaYm5z4DZMmC2DLA_nAallg
Cites_doi 10.1038/s41467-021-24485-y
10.1038/s41592-021-01252-x
10.3390/biology11101454
10.1038/s41588-022-01178-w
10.1038/s41588-020-00735-5
10.1086/519795
10.1371/journal.pcbi.1008050
10.1038/s41586-018-0579-z
10.1371/journal.pgen.1000471
10.1038/s41588-018-0177-x
10.1101/gr.3715005
10.1038/s41588-018-0322-6
10.1038/s41588-023-01574-w
10.1038/s42003-021-02642-9
10.1038/s41588-018-0081-4
10.1038/s41588-019-0481-0
10.1101/2023.03.16.532969
10.1038/ng.3404
10.1038/s41586-021-03819-2
10.1101/2022.03.04.483057
10.1038/s41588-020-00761-3
10.1038/s41586-020-03145-z
10.1016/j.cell.2021.10.024
10.1038/s41588-022-01036-9
10.3390/ijms222111898
10.1016/j.ajhg.2023.01.004
10.1038/s41586-021-03211-0
10.1038/s41467-021-21446-3
10.1038/75556
10.1038/s41467-022-33724-9
10.1016/j.cell.2023.02.018
10.1016/j.ajhg.2017.06.005
10.1093/bioinformatics/btq033
10.1073/pnas.0506580102
10.1038/s41467-019-13225-y
10.1016/j.ajhg.2022.02.009
10.1101/2022.10.12.510418
10.1038/nature16549
10.1038/s41467-020-19669-x
10.1093/gigascience/giab008
10.1038/s41588-018-0160-6
10.1038/s41588-020-0676-4
10.1038/s41588-022-01065-4
10.1038/s41588-021-00870-7
10.1165/rcmb.2009-0369OC
10.1126/science.aaz1776
10.1186/s13059-021-02591-w
10.1093/nar/gkn653
10.1038/s41588-022-01102-2
10.1016/j.ajhg.2022.03.007
10.1101/2022.09.06.506858
10.1038/s41467-018-03621-1
10.1542/peds.111.1.e39
10.1038/s41588-022-01168-y
10.1038/nmeth.1906
10.1055/s-0039-1678694
10.1038/s41586-022-05275-y
10.1093/nar/gkx1132
10.1038/s41588-022-01087-y
10.1038/nature09298
10.1093/bioinformatics/btt730
10.1111/rssb.12388
ContentType Journal Article
Copyright 2023, Song et al.
2023, Song et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023, Song et al.
– notice: 2023, Song et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.7554/eLife.92574
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_a6d43996ea65400fb95dc28ea62fc2a8
38639992
10_7554_eLife_92574
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Medical-Engineering Cross Foundation of Shanghai Jiao Tong University
  grantid: YG2022ZD026
– fundername: Ministry of Science and Technology
  grantid: 2030 Science and Technology Innovation Key Program 2022ZD020910001
– fundername: National Natural Science Foundation of China
  grantid: 81971292
– fundername: Natural Science Foundation of Shanghai
  grantid: 21ZR1428600
– fundername: National Natural Science Foundation of China
  grantid: 82150610506
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c378t-ce019b960fa35fc6d7c315a23bc77c928afd9580d0e956659649800868531a7c3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:48:38 EDT 2025
Sun Nov 09 14:09:57 EST 2025
Sat Nov 29 14:12:03 EST 2025
Mon Jul 21 06:01:20 EDT 2025
Sat Nov 29 06:59:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords computational biology
systems biology
deep learning
genetics
genome-wide association study
genomics
functional genomics
human
polygenic prediction
fine-mapping
Language English
License 2023, Song et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ce019b960fa35fc6d7c315a23bc77c928afd9580d0e956659649800868531a7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3197-6236
OpenAccessLink https://www.proquest.com/docview/3049752774?pq-origsite=%requestingapplication%
PMID 38639992
PQID 3049752774
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_a6d43996ea65400fb95dc28ea62fc2a8
proquest_miscellaneous_3043073206
proquest_journals_3049752774
pubmed_primary_38639992
crossref_primary_10_7554_eLife_92574
PublicationCentury 2000
PublicationDate 2024-04-19
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2024
Publisher eLife Sciences Publications Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
References Finucane (bib14) 2015; 47
Weissbrod (bib52) 2020; 52
Mbatchou (bib30) 2021; 53
Zeng (bib56) 2021; 12
Nowbandegani (bib35) 2022; 01
Grotzinger (bib18) 2022; 13
Avsec (bib4) 2021; 18
Visscher (bib49) 2017; 101
Wang (bib50) 2020; 82
Zhou (bib63) 2022; 54
Chen (bib9) 2022; 54
Barbeira (bib6) 2018; 9
Nawijn (bib34) 2011; 45
Jumper (bib23) 2021; 596
Park (bib38) 2021; 53
Purcell (bib40) 2007; 81
Kong (bib25) 2019; 119
Kelley (bib24) 2020; 16
Danecek (bib10) 2021; 10
Liang (bib27) 2022; 23
Aguet (bib1) 2020; 369
Rozowsky (bib42) 2023; 186
Zhang (bib58) 2021; 12
Zheng (bib60) 2022
Zhang (bib57) 2021; 184
Zhou (bib62) 2022; 54
Hu (bib20) 2022; 109
Fabregat (bib13) 2018; 46
Watanabe (bib51) 2019; 51
Mikaelsdottir (bib32) 2021; 4
Delaneau (bib11) 2019; 10
Ashburner (bib3) 2000; 25
Schaefer (bib44) 2009; 37
Siepel (bib46) 2005; 15
Quinlan (bib41) 2010; 26
McVicker (bib31) 2009; 5
Huang (bib21) 2023; 55
Iotchkova (bib22) 2019; 51
Weissbrod (bib53) 2022; 54
Zhao (bib59) 2014; 30
Helland (bib19) 2003; 111
Null (bib36) 2022; 109
Yengo (bib55) 2022; 610
Finucane (bib15) 2018; 50
Palamara (bib37) 2018; 50
Baca (bib5) 2022; 54
Momin (bib33) 2023; 110
Subramanian (bib48) 2005; 102
Sekar (bib45) 2016; 530
Song (bib47) 2024
Boix (bib7) 2021; 590
Galván Morales (bib16) 2021; 22
Liu (bib28) 2022; 11
Li (bib26) 2020; 52
MacDonald (bib29) 2022
Zhou (bib61) 2018; 50
Pejaver (bib39) 2020; 11
Gazal (bib17) 2022; 54
Altshuler (bib2) 2010; 467
Ernst (bib12) 2012; 9
Bycroft (bib8) 2018; 562
Sasse (bib43) 2023
Yan (bib54) 2021; 591
References_xml – volume: 12
  year: 2021
  ident: bib58
  article-title: Improved genetic prediction of complex traits from individual-level data or summary statistics
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-24485-y
– volume: 18
  start-page: 1196
  year: 2021
  ident: bib4
  article-title: Effective gene expression prediction from sequence by integrating long-range interactions
  publication-title: Nature Methods
  doi: 10.1038/s41592-021-01252-x
– volume: 11
  year: 2022
  ident: bib28
  article-title: Evaluation of the effectiveness of derived features of alphafold2 on single-sequence protein binding site prediction
  publication-title: Biology
  doi: 10.3390/biology11101454
– volume: 54
  start-page: 1466
  year: 2022
  ident: bib63
  article-title: SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01178-w
– volume: 52
  start-page: 1355
  year: 2020
  ident: bib52
  article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability
  publication-title: Nature Genetics
  doi: 10.1038/s41588-020-00735-5
– volume: 81
  start-page: 559
  year: 2007
  ident: bib40
  article-title: PLINK: A tool set for whole-genome association and population-based linkage analyses
  publication-title: American Journal of Human Genetics
  doi: 10.1086/519795
– volume: 16
  year: 2020
  ident: bib24
  article-title: Cross-species regulatory sequence activity prediction
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008050
– volume: 562
  start-page: 203
  year: 2018
  ident: bib8
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 5
  year: 2009
  ident: bib31
  article-title: Widespread genomic signatures of natural selection in hominid evolution
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1000471
– volume: 50
  start-page: 1311
  year: 2018
  ident: bib37
  article-title: High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0177-x
– volume: 15
  start-page: 1034
  year: 2005
  ident: bib46
  article-title: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
  publication-title: Genome Research
  doi: 10.1101/gr.3715005
– volume: 51
  start-page: 343
  year: 2019
  ident: bib22
  article-title: GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0322-6
– volume: 55
  start-page: 2056
  year: 2023
  ident: bib21
  article-title: Personal transcriptome variation is poorly explained by current genomic deep learning models
  publication-title: Nature Genetics
  doi: 10.1038/s41588-023-01574-w
– volume: 4
  year: 2021
  ident: bib32
  article-title: Genetic variants associated with platelet count are predictive of human disease and physiological markers
  publication-title: Communications Biology
  doi: 10.1038/s42003-021-02642-9
– volume: 50
  start-page: 621
  year: 2018
  ident: bib15
  article-title: Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0081-4
– volume: 51
  start-page: 1339
  year: 2019
  ident: bib51
  article-title: A global overview of pleiotropy and genetic architecture in complex traits
  publication-title: Nature Genetics
  doi: 10.1038/s41588-019-0481-0
– volume-title: bioRxiv
  year: 2023
  ident: bib43
  article-title: Benchmarking of deep neural networks for predicting personal gene expression from dna sequence highlights shortcomings
  doi: 10.1101/2023.03.16.532969
– volume: 47
  start-page: 1228
  year: 2015
  ident: bib14
  article-title: Partitioning heritability by functional annotation using genome-wide association summary statistics
  publication-title: Nature Genetics
  doi: 10.1038/ng.3404
– volume: 596
  start-page: 583
  year: 2021
  ident: bib23
  article-title: Highly accurate protein structure prediction with alphafold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume-title: bioRxiv
  year: 2022
  ident: bib29
  article-title: An updated map of grch38 linkage disequilibrium blocks based on european ancestry data
  doi: 10.1101/2022.03.04.483057
– volume: 53
  start-page: 166
  year: 2021
  ident: bib38
  article-title: Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk
  publication-title: Nature Genetics
  doi: 10.1038/s41588-020-00761-3
– volume: 590
  start-page: 300
  year: 2021
  ident: bib7
  article-title: Regulatory genomic circuitry of human disease loci by integrative epigenomics
  publication-title: Nature
  doi: 10.1038/s41586-020-03145-z
– volume: 184
  start-page: 5985
  year: 2021
  ident: bib57
  article-title: A single-cell atlas of chromatin accessibility in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.024
– volume: 54
  start-page: 450
  year: 2022
  ident: bib53
  article-title: Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01036-9
– volume: 22
  year: 2021
  ident: bib16
  article-title: New insights into the role of pd-1 and its ligands in allergic disease
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms222111898
– volume: 110
  start-page: 349
  year: 2023
  ident: bib33
  article-title: Significance tests for R2 of out-of-sample prediction using polygenic scores
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2023.01.004
– volume: 591
  start-page: 147
  year: 2021
  ident: bib54
  article-title: Systematic analysis of binding of transcription factors to noncoding variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03211-0
– volume: 12
  year: 2021
  ident: bib56
  article-title: Widespread signatures of natural selection across human complex traits and functional genomic categories
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21446-3
– volume: 25
  start-page: 25
  year: 2000
  ident: bib3
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nature Genetics
  doi: 10.1038/75556
– volume: 13
  year: 2022
  ident: bib18
  article-title: Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-33724-9
– volume: 186
  start-page: 1493
  year: 2023
  ident: bib42
  article-title: The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models
  publication-title: Cell
  doi: 10.1016/j.cell.2023.02.018
– volume: 101
  start-page: 5
  year: 2017
  ident: bib49
  article-title: 10 years of gwas discovery: biology, function, and translation
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2017.06.005
– volume: 26
  start-page: 841
  year: 2010
  ident: bib41
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 102
  start-page: 15545
  year: 2005
  ident: bib48
  article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: PNAS
  doi: 10.1073/pnas.0506580102
– volume: 10
  year: 2019
  ident: bib11
  article-title: Accurate, scalable and integrative haplotype estimation
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-13225-y
– volume: 109
  start-page: 680
  year: 2022
  ident: bib36
  article-title: RAREsim: A simulation method for very rare genetic variants
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2022.02.009
– volume-title: bioRxiv
  year: 2022
  ident: bib60
  article-title: Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries
  doi: 10.1101/2022.10.12.510418
– volume: 530
  start-page: 177
  year: 2016
  ident: bib45
  article-title: Schizophrenia risk from complex variation of complement component 4
  publication-title: Nature
  doi: 10.1038/nature16549
– volume: 11
  year: 2020
  ident: bib39
  article-title: Inferring the molecular and phenotypic impact of amino acid variants with MutPred2
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-19669-x
– volume: 10
  year: 2021
  ident: bib10
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: GigaScience
  doi: 10.1093/gigascience/giab008
– volume: 50
  start-page: 1171
  year: 2018
  ident: bib61
  article-title: Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0160-6
– volume: 52
  start-page: 969
  year: 2020
  ident: bib26
  article-title: Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale
  publication-title: Nature Genetics
  doi: 10.1038/s41588-020-0676-4
– volume-title: Software Heritage
  year: 2024
  ident: bib47
  article-title: Hfs
– volume: 54
  start-page: 725
  year: 2022
  ident: bib62
  article-title: Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01065-4
– volume: 53
  start-page: 1097
  year: 2021
  ident: bib30
  article-title: Computationally efficient whole-genome regression for quantitative and binary traits
  publication-title: Nature Genetics
  doi: 10.1038/s41588-021-00870-7
– volume: 45
  start-page: 295
  year: 2011
  ident: bib34
  article-title: Identification of the Mhc region as an asthma susceptibility locus in recombinant congenic mice
  publication-title: American Journal of Respiratory Cell and Molecular Biology
  doi: 10.1165/rcmb.2009-0369OC
– volume: 369
  start-page: 1318
  year: 2020
  ident: bib1
  article-title: The GTEx Consortium atlas of genetic regulatory effects across human tissues
  publication-title: Science
  doi: 10.1126/science.aaz1776
– volume: 23
  year: 2022
  ident: bib27
  article-title: Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries
  publication-title: Genome Biology
  doi: 10.1186/s13059-021-02591-w
– volume: 37
  start-page: D674
  year: 2009
  ident: bib44
  article-title: PID: the Pathway Interaction Database
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkn653
– volume: 54
  start-page: 940
  year: 2022
  ident: bib9
  article-title: A sequence-based global map of regulatory activity for deciphering human genetics
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01102-2
– volume: 109
  start-page: 857
  year: 2022
  ident: bib20
  article-title: Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program
  publication-title: American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2022.03.007
– volume: 01
  year: 2022
  ident: bib35
  article-title: Extremely sparse models of linkage disequilibrium in ancestrally diverse association studies
  publication-title: Genetics
  doi: 10.1101/2022.09.06.506858
– volume: 9
  year: 2018
  ident: bib6
  article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-03621-1
– volume: 111
  start-page: e39
  year: 2003
  ident: bib19
  article-title: Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age
  publication-title: Pediatrics
  doi: 10.1542/peds.111.1.e39
– volume: 54
  start-page: 1364
  year: 2022
  ident: bib5
  article-title: Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01168-y
– volume: 9
  start-page: 215
  year: 2012
  ident: bib12
  article-title: ChromHMM: automating chromatin-state discovery and characterization
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1906
– volume: 119
  start-page: 716
  year: 2019
  ident: bib25
  article-title: Identification of the regulatory elements and target genes of megakaryopoietic transcription factor mef2c
  publication-title: Thrombosis and Haemostasis
  doi: 10.1055/s-0039-1678694
– volume: 610
  start-page: 704
  year: 2022
  ident: bib55
  article-title: A saturated map of common genetic variants associated with human height
  publication-title: Nature
  doi: 10.1038/s41586-022-05275-y
– volume: 46
  start-page: D649
  year: 2018
  ident: bib13
  article-title: The reactome pathway knowledgebase
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx1132
– volume: 54
  start-page: 827
  year: 2022
  ident: bib17
  article-title: Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity
  publication-title: Nature Genetics
  doi: 10.1038/s41588-022-01087-y
– volume: 467
  start-page: 52
  year: 2010
  ident: bib2
  article-title: Integrating common and rare genetic variation in diverse human populations
  publication-title: Nature
  doi: 10.1038/nature09298
– volume: 30
  start-page: 1006
  year: 2014
  ident: bib59
  article-title: CrossMap: a versatile tool for coordinate conversion between genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt730
– volume: 82
  start-page: 1273
  year: 2020
  ident: bib50
  article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/rssb.12388
SSID ssj0000748819
Score 2.3807127
Snippet We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Arachidonic acid
Biobanks
Circadian rhythms
Deep learning
fine-mapping
functional genomics
Gene mapping
Gene polymorphism
Generalized linear models
Genome-Wide Association Study
Genomes
Genomics
Haplotypes
Humans
Multifactorial Inheritance - genetics
Phenotype
Polygenic inheritance
polygenic prediction
Polymorphism, Single Nucleotide
Predictions
Quantitative Trait Loci
Single-nucleotide polymorphism
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7Et6urRPBabdM2j6OK4kEWDwreSpoHFKRd7K64-OedSXYXPYgXj22nbZhvkpnJYz5CzguDJUhylYDvs0lRc6R5YTZJra0LkRZOeR_IJsRoJF9e1OM3qi_cExbLA0fFXWpuMWTmTnMILlJfq9IaJuGSecN0OOYLUc-3ZCqMwQIMM1PxQJ4Al3npHhrvLhRYaPHDBYVK_b-Hl8HN3G2RzXl8SK9iu7bJimt3yHpkjJztks97PX7tcN6UokdCrdIeK1HSJswOuJ7Gskqoe9r82FFIdWtpaFKCUCPLGx13rzMwocZQELNN_GDnaaDuo2G_ufugyCMx6ffI893t0819MudPSEwu5CQxDuK3GlIUr_PSG26FybNSs7w2QhjFpPZWlTK1qYMsiZeKF0pijgMuPNMgvE9W2651h4RmUupUc1kAooACvFYapYw2qWa8FnZAzhcqrcaxTEYF6QVqvgqar4LmB-Qa1b0UwdrW4QYgXs0Rr_5CfECGC7CqeYfrK1wtFCUT-I-z5WPoKrj-oVvXTYMMjmgs5QNyEEFetiSXGKopdvQfLTwmGwxiH1x0ytSQrE7epu6ErJn3SdO_nQZL_QJ7Y_Dm
  priority: 102
  providerName: Directory of Open Access Journals
Title Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits
URI https://www.ncbi.nlm.nih.gov/pubmed/38639992
https://www.proquest.com/docview/3049752774
https://www.proquest.com/docview/3043073206
https://doaj.org/article/a6d43996ea65400fb95dc28ea62fc2a8
Volume 12
WOSCitedRecordID wos001205876700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFH_YXQUv9VujdRmh19jsJJmPk9jSUsEuQRTWU5jMTCRQknWzFUv_ed-bZFd6qBcvA0kmw4Tfm3lfk_cDOMwslSBJdYy6z8VZJYjmhbs4ca7KZJJ5XdeBbEIuFmq51MUYcOvHY5XbPTFs1K6zFCM_onSQzDlaKx9WP2NijaLs6kihsQdTqlSWTWB6fLoovuyiLKggFeq84cc8iarzyH9uav9eo6Rmt1RRqNh_t5kZ1M3Zo_-d6GPYHw1N9nGQjCdwz7dP4cFAPXn9DG7OzeqyowAsI9VG8LCeSlqyJoQZfM-G-kwEImtuHU1kpnUsfFNMMkN0cWzVXV6jLDaWYTfXDAN2NQscgCwcXPe_GRFSbPrn8O3s9OvJeTwSMcQ2lWoTW4-GYIW-Tm3SvLbCSZvOc8PTykppNVemdjpXiUs8ulsi1yLTipwltAXmBju_gEnbtf4VsLlSJjFCZSgauH3ga7nV2hqbGC4q6SI43GJSroZ6GyX6KQRdGaArA3QRHBNeuy5UJDvc6NY_ynHNlUY48raENwLt0qSudO4sV3jJa8uNiuBgi2A5rty-_AtfBO92j3HNUSLFtL67Cn1oa-SJiODlICW7maSKbD7NX_978DfwkKN5RHmpuT6AyWZ95d_Cfftr0_TrGezJpQytmo0iPQvRAmwveEGtxHZafLoovv8BwKMGRg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHKMW3WSfw4IMSr2qrLikOR9hYc20GRqmS72QIr_hO_kRlns6gHuPXAMYljJc43M9_YznwAe5mlEiSpjjH2uTgrBcm8cBcnzpWZTDKvqyqITcjpVM1m-tMW_Br-haFtlYNPDI7atZbmyA9oOUjmHNnK6_lZTKpRtLo6SGj0sDj2q--YsnWvjt7j933J-eGHk3fjeK0qENtUqmVsPbKaEol7ZdK8ssJJm45yw9PSSmk1V6ZyOleJSzzmDiLXItOKmD8GtpHBxtjvFbiKflzSFjI5k5s5HQzHCiNs_xugxEB94Cd15fc12kV2IfAFfYC_k9oQ3A5v_2_DcgdurWk0e9Pj_i5s-eYeXO-FNVf34efYzE9bml5mFLgJfKyjgp2sDpMovmN99SmCKKsvbLxkpnEsjGFMFkFieGzenq7Q0mrLsJmr-w7bigWFQxa25fsfjOQ2lt0D-Hwpb_4Qtpu28Y-AjZQyiREqQ-Cjc8Tbcqu1NTYxXJTSRbA3YKCY99VECszCCCpFgEoRoBLBW8LHpgmVAA8n2sXXYu1RCiMc5ZLCG4GsO6lKnTvLFR7yynKjItgdEFOs_VJX_IFLBC82l9Gj0DKRaXx7HtqQ4-eJiGCnR-XmSVJFjFbzx__u_DncGJ98nBSTo-nxE7jJkQjSCtxI78L2cnHun8I1-21Zd4tnwYAYfLlsaP4GcHRZSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAhUXvimBAkYqx7BZJ3HsA0JAWbVqWe0BpN6C4w8UqUqWzRZY8c_4dcw42UU9wK0HjkkcK3HezJuxnXkA-5mhEiSpipH7bJxVgmReuI0Ta6usSDKnvA9iE8V0Kk9P1WwLfq3_haFtlWufGBy1bQ3NkY9oOajIOUYrIz9si5gdTF7Pv8akIEUrrWs5jR4ix271HdO37tXRAX7rF5xP3n98dxgPCgOxSQu5jI3DCKfCIN7rNPdG2MKk41zztDJFYRSX2luVy8QmDvMIkSuRKUlZAJLcWGNj7PcKXC2yPCfr-sBnm_kdpGaJbNv_ElggaY_cSe3dS4U2kl0gwaAV8PcANxDd5Nb_PES34eYQXrM3vT3cgS3X3IXrveDm6h78PNTzs5amnRkROoGSdVTIk9VhcsV1rK9KRdBl9YUNmUw3loXxjMlSSCSPzduzFVpgbRg2s3XfYetZUD5kYbu--8FIhmPZ3YdPl_LmD2C7aRv3ENhYSp1oITM0CHSaeFtulDLaJJqLqrAR7K_xUM77KiMlZmcEmzLApgywieAtYWXThEqDhxPt4ks5eJpSC0s5pnBaYDSe-Erl1nCJh9wbrmUEe2v0lIO_6so_0Ing-eYyehpaPtKNa89DGyIEnogIdnuEbp4klRTpKv7o350_gx1EZHlyND1-DDc4xoe0MDdWe7C9XJy7J3DNfFvW3eJpsCUGny8bmb8BERViFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haplotype+function+score+improves+biological+interpretation+and+cross-ancestry+polygenic+prediction+of+human+complex+traits&rft.jtitle=eLife&rft.au=Song%2C+Weichen&rft.au=Shi%2C+Yongyong&rft.au=Lin%2C+Guan+Ning&rft.date=2024-04-19&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.92574&rft_id=info%3Apmid%2F38639992&rft.externalDocID=38639992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon