Contrast sensitivity functions in autoencoders
Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal images. Here we reassess the relevance of low-level vision tasks in the explanation of the contrast sensitivity functions (CSFs) in light of 1)...
Saved in:
| Published in: | Journal of vision (Charlottesville, Va.) Vol. 22; no. 6; p. 8 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
The Association for Research in Vision and Ophthalmology
19.05.2022
|
| ISSN: | 1534-7362, 1534-7362 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal images. Here we reassess the relevance of low-level vision tasks in the explanation of the contrast sensitivity functions (CSFs) in light of 1) the current trend of using artificial neural networks for studying vision, and 2) the current knowledge of retinal image representations. As a first contribution, we show that a very popular type of convolutional neural networks (CNNs), called autoencoders, may develop human-like CSFs in the spatiotemporal and chromatic dimensions when trained to perform some basic low-level vision tasks (like retinal noise and optical blur removal), but not others (like chromatic) adaptation or pure reconstruction after simple bottlenecks). As an illustrative example, the best CNN (in the considered set of simple architectures for enhancement of the retinal signal) reproduces the CSFs with a root mean square error of 11% of the maximum sensitivity. As a second contribution, we provide experimental evidence of the fact that, for some functional goals (at low abstraction level), deeper CNNs that are better in reaching the quantitative goal are actually worse in replicating human-like phenomena (such as the CSFs). This low-level result (for the explored networks) is not necessarily in contradiction with other works that report advantages of deeper nets in modeling higher level vision goals. However, in line with a growing body of literature, our results suggests another word of caution about CNNs in vision science because the use of simplified units or unrealistic architectures in goal optimization may be a limitation for the modeling and understanding of human vision. |
|---|---|
| AbstractList | Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal images. Here we reassess the relevance of low-level vision tasks in the explanation of the contrast sensitivity functions (CSFs) in light of 1) the current trend of using artificial neural networks for studying vision, and 2) the current knowledge of retinal image representations. As a first contribution, we show that a very popular type of convolutional neural networks (CNNs), called autoencoders, may develop human-like CSFs in the spatiotemporal and chromatic dimensions when trained to perform some basic low-level vision tasks (like retinal noise and optical blur removal), but not others (like chromatic) adaptation or pure reconstruction after simple bottlenecks). As an illustrative example, the best CNN (in the considered set of simple architectures for enhancement of the retinal signal) reproduces the CSFs with a root mean square error of 11% of the maximum sensitivity. As a second contribution, we provide experimental evidence of the fact that, for some functional goals (at low abstraction level), deeper CNNs that are better in reaching the quantitative goal are actually worse in replicating human-like phenomena (such as the CSFs). This low-level result (for the explored networks) is not necessarily in contradiction with other works that report advantages of deeper nets in modeling higher level vision goals. However, in line with a growing body of literature, our results suggests another word of caution about CNNs in vision science because the use of simplified units or unrealistic architectures in goal optimization may be a limitation for the modeling and understanding of human vision. Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal images. Here we reassess the relevance of low-level vision tasks in the explanation of the contrast sensitivity functions (CSFs) in light of 1) the current trend of using artificial neural networks for studying vision, and 2) the current knowledge of retinal image representations. As a first contribution, we show that a very popular type of convolutional neural networks (CNNs), called autoencoders, may develop human-like CSFs in the spatiotemporal and chromatic dimensions when trained to perform some basic low-level vision tasks (like retinal noise and optical blur removal), but not others (like chromatic) adaptation or pure reconstruction after simple bottlenecks). As an illustrative example, the best CNN (in the considered set of simple architectures for enhancement of the retinal signal) reproduces the CSFs with a root mean square error of 11% of the maximum sensitivity. As a second contribution, we provide experimental evidence of the fact that, for some functional goals (at low abstraction level), deeper CNNs that are better in reaching the quantitative goal are actually worse in replicating human-like phenomena (such as the CSFs). This low-level result (for the explored networks) is not necessarily in contradiction with other works that report advantages of deeper nets in modeling higher level vision goals. However, in line with a growing body of literature, our results suggests another word of caution about CNNs in vision science because the use of simplified units or unrealistic architectures in goal optimization may be a limitation for the modeling and understanding of human vision.Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal images. Here we reassess the relevance of low-level vision tasks in the explanation of the contrast sensitivity functions (CSFs) in light of 1) the current trend of using artificial neural networks for studying vision, and 2) the current knowledge of retinal image representations. As a first contribution, we show that a very popular type of convolutional neural networks (CNNs), called autoencoders, may develop human-like CSFs in the spatiotemporal and chromatic dimensions when trained to perform some basic low-level vision tasks (like retinal noise and optical blur removal), but not others (like chromatic) adaptation or pure reconstruction after simple bottlenecks). As an illustrative example, the best CNN (in the considered set of simple architectures for enhancement of the retinal signal) reproduces the CSFs with a root mean square error of 11% of the maximum sensitivity. As a second contribution, we provide experimental evidence of the fact that, for some functional goals (at low abstraction level), deeper CNNs that are better in reaching the quantitative goal are actually worse in replicating human-like phenomena (such as the CSFs). This low-level result (for the explored networks) is not necessarily in contradiction with other works that report advantages of deeper nets in modeling higher level vision goals. However, in line with a growing body of literature, our results suggests another word of caution about CNNs in vision science because the use of simplified units or unrealistic architectures in goal optimization may be a limitation for the modeling and understanding of human vision. |
| Author | Malo, Jesús Li, Qiang Bertalmío, Marcelo Gomez-Villa, Alex |
| Author_xml | – sequence: 1 givenname: Qiang surname: Li fullname: Li, Qiang organization: Image Processing Lab, Parc Cientific, Universitat de Valéncia, Spain, qiang.li@uv.es – sequence: 2 givenname: Alex surname: Gomez-Villa fullname: Gomez-Villa, Alex organization: Computer Vision Center, Universitat Autónoma de Barcelona, Spain, agomezvi@cvc.uab.cat – sequence: 3 givenname: Marcelo surname: Bertalmío fullname: Bertalmío, Marcelo organization: Instituto de Óptica, Spanish National Research Council (CSIC), Spain, marcelo.bertalmio@csic.es – sequence: 4 givenname: Jesús surname: Malo fullname: Malo, Jesús organization: Image Processing Lab, Parc Cientific, Universitat de Valéncia, Spain, jesus.malo@uv.eshttp://isp.uv.es |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35587354$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkV1LwzAUhoNM3Ife-AOklyK05rNJbwQZfsHAG70ObZJqRpfMJh3s39uyTaZ4dQ6c97zP4T1TMHLeGQAuEcwQyvnt0m8yjLM8EydgghihKSc5Hh31YzANYQkhhgyiMzAmjAlOGJ2AbO5dbMsQk2BcsNFubNwmdedUtN6FxLqk7KI3Tnlt2nAOTuuyCeZiX2fg_fHhbf6cLl6fXub3i1QRLmKqtOYK4poXAmolKqEqRWuWFwoXFVZI1BRSUxWVZoQpUZuC1ZqVjHJRUU0JmYG7ne-6q1ZGKzMc2ch1a1dlu5W-tPL3xNlP-eE3skCUISJ6g-u9Qeu_OhOiXNmgTNOUzvguSJzneQEFZ6yXXh2zfiCHkHoB3AlU60NoTS2VjeWQT4-2jURQDn-Q_R8kxjKXA_7mz8rB9R_xN3JOi1o |
| CitedBy_id | crossref_primary_10_3389_fnins_2023_1208882 crossref_primary_10_3389_fcomp_2023_1275026 crossref_primary_10_1016_j_neunet_2023_04_032 crossref_primary_10_3389_fpsyg_2024_1415958 crossref_primary_10_3758_s13423_023_02281_7 crossref_primary_10_3390_e24101442 crossref_primary_10_1007_s11571_024_10184_z crossref_primary_10_1016_j_neunet_2025_107189 crossref_primary_10_1016_j_neucom_2023_127143 |
| Cites_doi | 10.1152/jn.1997.78.2.1045 10.2352/ISSN.2470-1173.2017.14.HVEI-113 10.1167/5.9.6 10.1371/journal.pcbi.1006897 10.1016/S0031-3203(02)00325-4 10.1167/jov.20.4.23 10.1016/S0042-6989(97)00183-1 10.1007/s11263-015-0816-y 10.1080/09500340.2011.606374 10.1113/jphysiol.1985.sp015591 10.1113/jphysiol.1966.sp008107 10.1016/0042-6989(81)90092-4 10.1523/JNEUROSCI.5023-14.2015 10.1109/ICIP.2002.1038898 10.1146/neuro.2001.24.issue-1 10.1167/jov.20.7.17 10.1126/science.171.3972.694 10.1109/30.125072 10.1371/journal.pcbi.1004927 10.1038/nn.4244 10.3109/0954898X.2011.638888 10.1364/JOSAA.3.000300 10.1364/JOSAA.27.000852 10.1016/0042-6989(83)90161-X 10.5594/j18266XY 10.1109/MSP.2008.930649 10.1016/j.neuron.2013.12.014 10.1162/neco.1992.4.4.559 10.1016/j.visres.2020.07.010 10.1109/TIP.2005.860345 10.1073/pnas.1905334117 10.1371/journal.pone.0086481 10.1049/ip-f-1.1981.0061 10.1038/s41583-020-0277-3 10.1167/jov.21.9.1996 10.1038/nrn3136 10.1037/h0041403 10.1007/BF00288786 10.1109/TIP.83 10.1109/PROC.1975.9801 10.1007/978-1-84882-491-1 10.1364/JOSA.70.001458 10.1038/s41598-020-73113-0 10.1016/S0042-6989(00)00021-3 10.1371/journal.pcbi.1009028 10.1162/neco.1992.4.2.196 10.1523/JNEUROSCI.22-14-06158.2002 10.1364/JOSA.69.001340 10.1038/356716a0 10.1109/TIT.1974.1055250 10.1146/vision.2015.1.issue-1 10.1080/09500349708232904 10.1016/j.neunet.2004.03.008 10.1371/journal.pcbi.1003963 10.1167/19.4.8 10.1113/jphysiol.1968.sp008574 10.1073/pnas.1403112111 10.1038/srep27755 10.1364/JOSAA.15.002036 10.1016/j.visres.2006.01.019 |
| ContentType | Journal Article |
| Copyright | Copyright 2022 The Authors 2022 |
| Copyright_xml | – notice: Copyright 2022 The Authors 2022 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1167/jov.22.6.8 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1534-7362 |
| ExternalDocumentID | PMC9145138 35587354 10_1167_jov_22_6_8 |
| Genre | Journal Article |
| GroupedDBID | --- 29L 2WC 53G 5GY 5VS AAFWJ AAYXX ABIVO ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GROUPED_DOAJ GX1 KQ8 M~E OK1 OVT P2P RNS RPM TR2 TRV W2D W8F XSB NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c378t-cdd7c02f7980dc8b8cbc4f569c29b2c18f404eb9bd535c8fe95fd5a5478b4d433 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001008200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-7362 |
| IngestDate | Thu Aug 21 17:21:38 EDT 2025 Thu Jul 10 22:49:28 EDT 2025 Mon Jul 21 06:00:23 EDT 2025 Tue Nov 18 20:52:14 EST 2025 Sat Nov 29 03:46:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-cdd7c02f7980dc8b8cbc4f569c29b2c18f404eb9bd535c8fe95fd5a5478b4d433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1167/jov.22.6.8 |
| PMID | 35587354 |
| PQID | 2666908755 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9145138 proquest_miscellaneous_2666908755 pubmed_primary_35587354 crossref_citationtrail_10_1167_jov_22_6_8 crossref_primary_10_1167_jov_22_6_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20220519 |
| PublicationDateYYYYMMDD | 2022-05-19 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220519 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of vision (Charlottesville, Va.) |
| PublicationTitleAlternate | J Vis |
| PublicationYear | 2022 |
| Publisher | The Association for Research in Vision and Ophthalmology |
| Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
| References | Kubilius (bib49) 2019 Wallace (bib85) 1992; 38 Ingling (bib44) 1983; 23 Simoncelli (bib79) 2001; 24 Cottaris (bib21) 2019; 19 Simoncelli (bib77) 1998; 38 Cadieu (bib15) 2014; 10 Firestone (bib28) 2020; 117 Antolík (bib3) 2016; 12 Gutmann (bib38) 2014; 9 Cottaris (bib22) 2020; 20 Taubman (bib83) 2001 Kelly (bib46) 1979; 69 Atick (bib4) 1992; 4 Hurvich (bib42) 1957; 64 Gomez-Villa (bib34) 2020; 176 Prenger (bib72) 2004; 17 Gutiérrez (bib37) 2006; 15 van den Oord (bib70) 2014; 15 Watson (bib88) 2005; 5 Geirhos (bib32) 2019 Malo (bib57) 2022 Malo (bib58) 2002 Hyvärinen (bib43) 2009 Welles (bib92) 1946 Güçlü (bib36) 2015; 35 Legge (bib51) 1981; 21 Wuerger (bib95) 2020; 20 Martinez-Uriegas (bib66) 1994 Soh (bib80) 2021 Watson (bib89) 2016 Akbarinia (bib2) 2021; 21 Martinez-Otero (bib65) 2014; 81 Carandini (bib18) 2012; 13 Hepburn (bib39) 2020 Bertalmío (bib12) 2020; 10 Cadena (bib14) 2019; 15 Wilson (bib94) 1973; 13 Martinez-Uriegas (bib67) 1997 Geirhos (bib31) 2020 Atick (bib5) 1992; 4 Cai (bib16) 1997; 78 Abadi (bib1) 2016 Berardino (bib11) 2017 Mullen (bib69) 1985; 359 Mannos (bib60) 1974; 20 Díez-Ajenjo (bib24) 2011; 58 Wichmann (bib93) 2017; 10 LeRoy (bib53) 1959 Reid (bib74) 2002; 22 Batty (bib9) 2017 Goodfellow (bib35) 2016 Marr (bib61) 1982 Campbell (bib17) 1968; 197 Reid (bib73) 1992; 356 Tao (bib82) 2018 Kriegeskorte (bib48) 2015; 1 Zhang (bib98) 2017; 26 Lillicrap (bib54) 2020; 21 Karklin (bib45) 2011 Malo (bib56) 2020; 10 Gomez-Villa (bib33) 2019 Enroth-Cugell (bib25) 1966; 187 Cichy (bib19) 2016; 6 Burg (bib13) 2021; 17 Poggio (bib71) 2021 Russakovsky (bib76) 2015; 115 Atick (bib6) 2011; 22 Valois (bib84) 1971; 171 Laparra (bib50) 2010; 27 Legge (bib52) 1980; 70 Freleng (bib30) 1963 Malo (bib59) 1997; 44 Martinez (bib63) 2019 Ballé (bib7) 2017 Wang (bib86) 2009; 26 Marr (bib62) 1976 Epifanio (bib26) 2003; 36 Morgan (bib68) 2006; 46 Stockman (bib81) 2000; 40 Yamins (bib96) 2016; 19 Watson (bib90) 1986; 3 Baydin (bib10) 2018; 18 Hunt (bib41) 1975; 63 Lindsey (bib55) 2019 Clarke (bib20) 1981; 128 Flachot (bib29) 2020 Ruderman (bib75) 1998; 15 Watson (bib87) 2013; 122 Martinez (bib64) 2018; 13 Kingma (bib47) 2017 Barlow (bib8) 1961; 1 Donen (bib23) 1963 Watson (bib91) 2002 Esteve (bib27) 2020 Yamins (bib97) 2014; 111 Hepburn (bib40) 2022 |
| References_xml | – volume: 78 start-page: 1045 issue: 2 year: 1997 ident: bib16 article-title: Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens publication-title: Journal of Neurophysiology, doi: 10.1152/jn.1997.78.2.1045 – volume: 10 start-page: 36 year: 2017 ident: bib93 article-title: Methods and measurements to compare men against machines publication-title: Electronic Imaging, doi: 10.2352/ISSN.2470-1173.2017.14.HVEI-113 – start-page: 12309 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 19) year: 2019 ident: bib33 article-title: Convolutional neural networks can be deceived by visual illusions – volume: 15 start-page: 2061 issue: 60 year: 2014 ident: bib70 article-title: The student-t mixture as a natural image patch prior with application to image compression publication-title: Journal of Machine Learning Research, – start-page: 1 volume-title: ArXiV: Computer Vision and Pattern Recognition, year: 2022 ident: bib57 article-title: Paraphrasing Magritte's observation – year: 1963 ident: bib23 – volume: 5 start-page: 717 issue: 9 year: 2005 ident: bib88 article-title: A standard model for foveal detection of spatial contrast publication-title: Journal of Vision, doi: 10.1167/5.9.6 – volume: 15 start-page: e1006897 issue: 4 year: 2019 ident: bib14 article-title: Deep convolutional models improve predictions of macaque V1 responses to natural images publication-title: PLoS Computational Biology, doi: 10.1371/journal.pcbi.1006897 – volume: 36 start-page: 1799 issue: 8 year: 2003 ident: bib26 article-title: Linear transform for simultaneous diagonalization of covariance and perceptual metric matrix in image coding publication-title: Pattern Recognition, doi: 10.1016/S0031-3203(02)00325-4 – volume: 20 start-page: 23 year: 2020 ident: bib95 article-title: Spatio-chromatic contrast sensitivity under mesopic and photopic light levels publication-title: Journal of Vision, doi: 10.1167/jov.20.4.23 – volume: 38 start-page: 743 issue: 5 year: 1998 ident: bib77 article-title: A model of neuronal reponses in visual area MT publication-title: Vision Research, doi: 10.1016/S0042-6989(97)00183-1 – volume: 115 start-page: 211 year: 2015 ident: bib76 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision, doi: 10.1007/s11263-015-0816-y – volume: 58 start-page: 1 year: 2011 ident: bib24 article-title: Red-green vs. blue-yellow spatio-temporal contrast sensitivity across the visual field publication-title: Journal of Modern Optics, doi: 10.1080/09500340.2011.606374 – volume: 359 start-page: 381 year: 1985 ident: bib69 article-title: The CSF of human colour vision to red–green and yellow–blue chromatic gratings publication-title: Journal of Physiology, doi: 10.1113/jphysiol.1985.sp015591 – volume: 187 start-page: 516 year: 1966 ident: bib25 article-title: The contrast sensitivity of retinal ganglion cells on the cat publication-title: Journal of Physiology (London), doi: 10.1113/jphysiol.1966.sp008107 – volume-title: International Conference on Learning Representations, ICLR year: 2019 ident: bib55 article-title: The effects of neural resource constraints on early visual representations – start-page: 1 volume-title: Arxiv: Quantitative Biology, year: 2020 ident: bib27 article-title: Psychophysical estimation of early and late noise – volume: 21 start-page: 457 issue: 4 year: 1981 ident: bib51 article-title: A power law for contrast discrimination publication-title: Vision Research, doi: 10.1016/0042-6989(81)90092-4 – volume: 35 start-page: 10005 issue: 27 year: 2015 ident: bib36 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: Journal of Neuroscience, doi: 10.1523/JNEUROSCI.5023-14.2015 – start-page: 41 volume-title: Proceedings of the IEEE International Conference on Image Processing year: 2002 ident: bib91 article-title: Video quality measures based on the standard spatial observer doi: 10.1109/ICIP.2002.1038898 – volume: 24 start-page: 1193 issue: 1 year: 2001 ident: bib79 article-title: Natural image statistics and neural representation publication-title: Annual Review of Neuroscience, doi: 10.1146/neuro.2001.24.issue-1 – volume: 1 start-page: 217 year: 1961 ident: bib8 article-title: Possible principles underlying the transformation of sensory messages publication-title: Sensory Communication, – start-page: 121 volume-title: Proceedings of the IEEE International Conference on Image Processing (ICIP) year: 2020 ident: bib39 article-title: Perceptnet: A human visual system inspired neural network for estimating perceptual distance – volume-title: Proceedings of the Advances in Neural Information Processing Systems, year: 2011 ident: bib45 article-title: Efficient coding of natural images with a population of noisy linear-nonlinear neurons – volume-title: Servei de Publicacions de la Universitat de Valencia year: 2002 ident: bib58 article-title: ColorLab: A Matlab Toolbox for color science and calibrated color image processing – volume-title: Jpeg 2000: Image compression fundamentals, standards and practice year: 2001 ident: bib83 – volume: 20 start-page: 17 year: 2020 ident: bib22 article-title: A computational observer model of spatial contrast sensitivity: Effects of photocurrent encoding, fixational eye movements, and inference engine publication-title: Journal of Vision, doi: 10.1167/jov.20.7.17 – volume: 171 start-page: 694 year: 1971 ident: bib84 article-title: Contours and contrast: Responses of monkey lateral geniculate nucleus cells to luminance and color figures publication-title: Science, doi: 10.1126/science.171.3972.694 – volume-title: The Pink Panther Show year: 1963 ident: bib30 – volume: 38 start-page: xviii issue: 1 year: 1992 ident: bib85 article-title: The JPEG still picture compression standard publication-title: IEEE Transactions on Consumer Electronics, doi: 10.1109/30.125072 – volume: 12 start-page: e1004927 issue: 6 year: 2016 ident: bib3 article-title: Model constrained by visual hierarchy improves prediction of neural responses to natural scenes publication-title: PLoS Computational Biology, doi: 10.1371/journal.pcbi.1004927 – volume: 19 start-page: 356 year: 2016 ident: bib96 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nature Neuroscience, doi: 10.1038/nn.4244 – volume: 22 start-page: 4 year: 2011 ident: bib6 article-title: Could information theory provide an ecological theory of sensory processing? publication-title: Network: Computation in Neural Systems, doi: 10.3109/0954898X.2011.638888 – volume-title: The FBI story year: 1959 ident: bib53 – volume: 3 start-page: 300 year: 1986 ident: bib90 article-title: Window of visibility: A psychophysical theory of fidelity in time-sampled visual motion displays publication-title: Journal of The Optical Society of America A-optics Image Science and Vision, doi: 10.1364/JOSAA.3.000300 – year: 2017 ident: bib47 article-title: Adam: A method for stochastic optimization – volume: 27 start-page: 852 issue: 4 year: 2010 ident: bib50 article-title: Divisive normalization image quality metric revisited publication-title: Journal of the Optical Society of America A, doi: 10.1364/JOSAA.27.000852 – volume: 23 start-page: 1495 year: 1983 ident: bib44 article-title: The relationship between spectral sensitivity and spatial sensitivity for the primate r-g x-channel publication-title: Vision Research, doi: 10.1016/0042-6989(83)90161-X – volume: 122 start-page: 18 issue: 2 year: 2013 ident: bib87 article-title: High frame rates and human vision: A view through the window of visibility publication-title: SMPTE Motion Imaging Journal, doi: 10.5594/j18266XY – year: 2020 ident: bib31 article-title: Beyond accuracy: Quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency – volume: 26 start-page: 98 issue: 1 year: 2009 ident: bib86 article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures publication-title: IEEE Signal Processing Magazine, doi: 10.1109/MSP.2008.930649 – volume: 81 start-page: 943 issue: 4 year: 2014 ident: bib65 article-title: Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image publication-title: Neuron, doi: 10.1016/j.neuron.2013.12.014 – volume: 4 start-page: 559 issue: 4 year: 1992 ident: bib4 article-title: Understanding retinal color coding from first principles publication-title: Neural Computation, doi: 10.1162/neco.1992.4.4.559 – volume: 176 start-page: 156 year: 2020 ident: bib34 article-title: Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications publication-title: Vision Research, doi: 10.1016/j.visres.2020.07.010 – start-page: 3533 volume-title: Proceedings of the Neural Information Processing Systems, 30 year: 2017 ident: bib11 article-title: Eigen-distortions of hierarchical representations – volume: 15 start-page: 189 issue: 1 year: 2006 ident: bib37 article-title: Regularization operators for natural images based on nonlinear perception models publication-title: IEEE Transactions on Image Processing, doi: 10.1109/TIP.2005.860345 – volume: 117 start-page: 26562 issue: 43 year: 2020 ident: bib28 article-title: Performance vs. competence in human–machine comparisons publication-title: Proceedings of the National Academy of Sciences of the United States of America, doi: 10.1073/pnas.1905334117 – volume-title: Deep Learning year: 2016 ident: bib35 – volume: 9 start-page: e86481 issue: 2 year: 2014 ident: bib38 article-title: Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images publication-title: PloS One, doi: 10.1371/journal.pone.0086481 – volume-title: Vision: A computational approach year: 1982 ident: bib61 – volume: 128 start-page: 359 year: 1981 ident: bib20 article-title: Relation between the Karhunen Loève and cosine transforms publication-title: IEE Proceedings F Communications, Radar and Signal Processing, doi: 10.1049/ip-f-1.1981.0061 – volume: 21 start-page: 335 issue: 6 year: 2020 ident: bib54 article-title: Backpropagation and the brain publication-title: Nature Reviews Neuroscience, doi: 10.1038/s41583-020-0277-3 – volume-title: Proceedings Advances in Neural Information Processing Systems, year: 2019 ident: bib49 article-title: Brain-like object recognition with high-performing shallow recurrent ANNs – start-page: 117 year: 1994 ident: bib66 article-title: Chromatic-achromatic multiplexing in human color vision – volume-title: 5th International Conference on Learning Representations (ICLR) year: 2017 ident: bib9 article-title: Multilayer recurrent network models of primate retinal ganglion cell responses – volume-title: arxiv Comp. Sci year: 2016 ident: bib1 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems – volume: 21 start-page: 1996 issue: 9 year: 2021 ident: bib2 article-title: Contrast sensitivity is formed by visual experience and task demands publication-title: Journal of Vision doi: 10.1167/jov.21.9.1996 – volume: 13 start-page: 51 issue: 1 year: 2012 ident: bib18 article-title: Normalization as a canonical neural computation publication-title: Nature Reviews Neuroscience, doi: 10.1038/nrn3136 – volume: 64 start-page: 384 issue: 6 year: 1957 ident: bib42 article-title: An opponent-process theory of color vision publication-title: Psychological Review, doi: 10.1037/h0041403 – volume: 13 start-page: 55 issue: 2 year: 1973 ident: bib94 article-title: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue publication-title: Kybernetik, doi: 10.1007/BF00288786 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: bib98 article-title: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising publication-title: IEEE Transactions on Image Processing, doi: 10.1109/TIP.83 – volume: 63 start-page: 693 year: 1975 ident: bib41 article-title: Digital image processing publication-title: Proceedings of the IEEE, doi: 10.1109/PROC.1975.9801 – year: 2009 ident: bib43 publication-title: Natural image statistics: A probabilistic approach to early computational vision doi: 10.1007/978-1-84882-491-1 – volume: 70 start-page: 1458 issue: 12 year: 1980 ident: bib52 article-title: Contrast masking in human vision publication-title: Journal of the Optical Society of America, doi: 10.1364/JOSA.70.001458 – year: 2019 ident: bib63 article-title: In praise of artifice reloaded: Caution with natural image databases in modeling vision publication-title: Frontiers in Neuroscience – volume: 10 start-page: 16277 year: 2020 ident: bib12 article-title: Evidence for the intrinsically nonlinear nature of receptive fields in vision publication-title: Scientific Reports, doi: 10.1038/s41598-020-73113-0 – volume: 40 start-page: 1711 issue: 13 year: 2000 ident: bib81 article-title: The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype publication-title: Vision Research, doi: 10.1016/S0042-6989(00)00021-3 – volume: 17 start-page: e1009028 issue: 6 year: 2021 ident: bib13 article-title: Learning divisive normalization in primary visual cortex publication-title: PLoS Computational Biology, doi: 10.1371/journal.pcbi.1009028 – volume: 4 start-page: 196 issue: 2 year: 1992 ident: bib5 article-title: What does the retina know about natural scenes? publication-title: Neural Computation, doi: 10.1162/neco.1992.4.2.196 – volume-title: International Conference on Learning Representations, ICLR year: 2022 ident: bib40 article-title: On the relation between statistical learning and perceptual distances – volume: 22 start-page: 6158 year: 2002 ident: bib74 article-title: Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus publication-title: Journal of Neuroscience, doi: 10.1523/JNEUROSCI.22-14-06158.2002 – volume: 69 start-page: 1340 issue: 10 year: 1979 ident: bib46 article-title: Motion and vision. ii. stabilized spatio-temporal threshold surface publication-title: Journal of the Optical Society of America, doi: 10.1364/JOSA.69.001340 – volume: 356 start-page: 716 year: 1992 ident: bib73 article-title: Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus publication-title: Nature, doi: 10.1038/356716a0 – start-page: 747 volume-title: Proceedings International Conference on Pattern Recognition (ICPR) year: 2021 ident: bib80 article-title: Deep universal blind image denoising – volume: 10 issue: 18 year: 2020 ident: bib56 article-title: Spatio-chromatic information available from different neural layers via gaussianization publication-title: Journal of Mathematical Neuroscience, – volume: 20 start-page: 525 year: 1974 ident: bib60 article-title: The effects of a visual fidelity criterion of the encoding of images publication-title: IEEE Transactions on Information Theory, doi: 10.1109/TIT.1974.1055250 – volume: 1 start-page: 417 issue: 1 year: 2015 ident: bib48 article-title: Deep neural networks: A new framework for modeling biological vision and brain information processing publication-title: Annual Review of Vision Science, doi: 10.1146/vision.2015.1.issue-1 – start-page: 8174 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2018 ident: bib82 article-title: Scale-recurrent network for deep image deblurring – volume-title: International Conference on Learning Representations (ICLR) year: 2019 ident: bib32 article-title: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness – volume: 44 start-page: 127 issue: 1 year: 1997 ident: bib59 article-title: Characterization of the human visual system threshold performance by a weighting function in the gabor domain publication-title: Journal of Modern Optics, doi: 10.1080/09500349708232904 – volume: 13 issue: 10 year: 2018 ident: bib64 article-title: Derivatives and inverse of cascaded linear+nonlinear neural models publication-title: PLoS One, – year: 2020 ident: bib29 article-title: Deep neural models for color discrimination and color constancy – volume: 17 start-page: 663 issue: 5-6 year: 2004 ident: bib72 article-title: Nonlinear v1 responses to natural scenes revealed by neural network analysis publication-title: Neural Networks, doi: 10.1016/j.neunet.2004.03.008 – volume-title: From Marr's Vision to the problem of human intelligence (CBMM Memo No. 118) year: 2021 ident: bib71 – volume-title: International Conference on Learning Representations (ICLR year: 2017 ident: bib7 article-title: End-to-end optimized image compression – volume-title: The stranger year: 1946 ident: bib92 – volume: 10 start-page: e1003963 issue: 12 year: 2014 ident: bib15 article-title: Deep neural networks rival the representation of primate it cortex for core visual object recognition publication-title: PLoS Computational Biology, doi: 10.1371/journal.pcbi.1003963 – volume-title: From understanding computation to understanding neural circuitry (AI Memo No. AIM-357) year: 1976 ident: bib62 – start-page: 81 year: 1997 ident: bib67 article-title: Color detection and color contrast discrimination thresholds publication-title: In Proceedings of the OSA Annual Meeting ILS-XIII – volume: 18 start-page: 1 issue: 153 year: 2018 ident: bib10 article-title: Automatic differentiation in machine learning: A survey publication-title: Journal of Machine Learning Research, – volume: 19 start-page: 8 issue: 4 year: 2019 ident: bib21 article-title: A computational-observer model of spatial contrast sensitivity: Effects of wave-front-based optics, cone-mosaic structure, and inference engine publication-title: Journal of Vision, doi: 10.1167/19.4.8 – volume: 197 start-page: 551 year: 1968 ident: bib17 article-title: Application of Fourier analysis to the visibility of gratings publication-title: Journal of Physiology, doi: 10.1113/jphysiol.1968.sp008574 – volume: 111 start-page: 8619 year: 2014 ident: bib97 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proceedings of the National Academy of Sciences of the United State of America, doi: 10.1073/pnas.1403112111 – start-page: 1 volume-title: Proceedings Human Vision and Electronic Imaging HVEI16, year: 2016 ident: bib89 article-title: The pyramid of visibility – volume: 6 start-page: 27755 year: 2016 ident: bib19 article-title: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence publication-title: Scientific Reports, doi: 10.1038/srep27755 – volume: 15 start-page: 2036 issue: 8 year: 1998 ident: bib75 article-title: Statistics of cone responses to natural images: Implications for visual coding publication-title: Journal of the Optical Society of America A, doi: 10.1364/JOSAA.15.002036 – volume: 46 start-page: 2412 issue: 15 year: 2006 ident: bib68 article-title: Predicting the motion after-effect from sensitivity loss publication-title: Vision Research, doi: 10.1016/j.visres.2006.01.019 |
| SSID | ssj0020501 |
| Score | 2.4716845 |
| Snippet | Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal... Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 8 |
| Title | Contrast sensitivity functions in autoencoders |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35587354 https://www.proquest.com/docview/2666908755 https://pubmed.ncbi.nlm.nih.gov/PMC9145138 |
| Volume | 22 |
| WOSCitedRecordID | wos001001008200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1534-7362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020501 issn: 1534-7362 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1534-7362 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020501 issn: 1534-7362 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYBSEuiDflUQWBkBBKyDpxbB8X6IpDt4DURb1FieNAUTcpbVqtOPDbmXGcNIEelgOXJHKtuPKMJjOeme8j5IUCr5hrLl2dJQiqzaibZMqHmCfMAxlAxKJNo_CYTyZiNpOfbFnR2tAJ8KIQFxdy-V9FDWMgbGyd_Qdxty-FAXgGocMVxA7XSwke8aZWybp6vcbadEsOgZ-vtmo82VQl4ldmtvp9j3Nat5ybFC_m48sKPNIttg2autjE6xwgjE09wGdQs69tMU95rn-6X5DQqGmiacN-TP4vzk1-_n1pu4WUXpS7o3GbDAL7BZPeHvcOJiCmRUxT2bOlocsDa2z1njFrgCntKFrXmor9Nj7CLPP3cutR6kWe2H3Jmuz95GN8cjYex9PRbPpy-cNFjjHMxVvClQNylXIm0Qae_hq14bnPfIuuW_9FC2YLy73ZLdZ3X_6KSf4sre34KtNb5KaVo3NcK8dtckUXd8j1U1tGcZd4jY44HR1xWh1x5oXT1ZF75OxkNH33wbXEGa4KuKhclWVc-TTnUviZEqlQqQpzFklFZUrVkchDP9SpTDMWMCVyLVmesQSh3dIwC4PgPjksykI_JE5EkyzSgvOU6vAIblpxcClzhb66YGpAXjX7ESuLKo_kJovYRJcRj2HvYkrjKBYD8rydu6yxVPbOetZsawymDvNXSaHLzToGXzKSyMDABuRBvc3te5AlgAcsHBDeE0A7AWHU-78U828GTl0iWXUgHl1i3cfkxk7Tn5DDarXRT8k1ta3m69WQHPCZGJpTnaFRrd-EiJZs |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrast+sensitivity+functions+in+autoencoders&rft.jtitle=Journal+of+vision+%28Charlottesville%2C+Va.%29&rft.au=Li%2C+Qiang&rft.au=Gomez-Villa%2C+Alex&rft.au=Bertalm%C3%ADo%2C+Marcelo&rft.au=Malo%2C+Jes%C3%BAs&rft.date=2022-05-19&rft.issn=1534-7362&rft.eissn=1534-7362&rft.volume=22&rft.issue=6&rft.spage=8&rft_id=info:doi/10.1167%2Fjov.22.6.8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-7362&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-7362&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-7362&client=summon |