A variant of Jensen-type inequality and related results for harmonic convex functions
In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions.
Uloženo v:
| Vydáno v: | AIMS mathematics Ročník 5; číslo 6; s. 6404 - 6418 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
AIMS Press
01.01.2020
|
| Témata: | |
| ISSN: | 2473-6988, 2473-6988 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions. |
|---|---|
| AbstractList | In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions. |
| Author | Abbas Baloch, Imran Ahmad Mughal, Aqeel Chu, Yu-Ming Ul Haq, Absar De La Sen, Manuel |
| Author_xml | – sequence: 1 givenname: Imran surname: Abbas Baloch fullname: Abbas Baloch, Imran – sequence: 2 givenname: Aqeel surname: Ahmad Mughal fullname: Ahmad Mughal, Aqeel – sequence: 3 givenname: Yu-Ming surname: Chu fullname: Chu, Yu-Ming – sequence: 4 givenname: Absar surname: Ul Haq fullname: Ul Haq, Absar – sequence: 5 givenname: Manuel surname: De La Sen fullname: De La Sen, Manuel |
| BookMark | eNptkE1OwzAQhS1UJKB0xwF8AAKO7STOskL8qhIbWFtTZ0yNUrvYLqK3J4EiIcRqRqN5b-Z9J2Tig0dCzkp2IVohL9eQVxeccSZLfkCOuWxEUbdKTX71R2SW0itjjJdc8kYek-c5fYfowGcaLH1An9AXebdB6jy-baF3eUfBdzRiDxnHmrZ9TtSGSFcQ18E7Q03w7_hB7dab7IJPp-TQQp9wtq9T8nxz_XR1Vyweb--v5ovCiEblAqwVlZLSqGVbI-O1YijU0nQCpehsU9m2qo2Ehkts2kqUIKwFUB0arBBqMSX3375dgFe9iW4NcacDOP01CPFFQ8zO9KgrNUS2la1KW8vhBthyWdcSjOwsdgPBKeHfXiaGlCJabVyGMU6O4HpdMj1y1iNnvec8iM7_iH6e-Hf9EwBFg3k |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0320192 crossref_primary_10_1155_2022_8575563 crossref_primary_10_1155_2021_5868326 crossref_primary_10_1186_s13662_020_03093_y crossref_primary_10_1186_s13660_021_02735_3 crossref_primary_10_3390_math10162970 crossref_primary_10_3390_sym14020302 crossref_primary_10_1186_s13662_020_03036_7 crossref_primary_10_1186_s13662_020_02935_z crossref_primary_10_1186_s13662_020_02955_9 crossref_primary_10_1186_s13662_020_03000_5 crossref_primary_10_3390_math11020278 crossref_primary_10_1002_mma_8998 crossref_primary_10_3390_math9121338 crossref_primary_10_3390_sym14102187 crossref_primary_10_1155_2022_7269033 crossref_primary_10_3390_math9202556 crossref_primary_10_1016_j_chaos_2024_114677 crossref_primary_10_1155_2021_5561611 crossref_primary_10_3390_math10122089 crossref_primary_10_46939_J_Sci_Arts_23_4_a05 crossref_primary_10_3390_sym14081585 |
| Cites_doi | 10.3934/math.2020171 10.1186/s13660-019-1955-4 10.18514/MMN.2019.2334 10.3934/math.2020386 10.1186/s13662-019-2438-0 10.3934/math.2020375 10.3934/math.2020315 10.1007/s13398-019-00732-2 10.3934/math.2020391 10.1007/s40315-020-00298-w 10.3934/math.2020390 10.30538/psrp-oma2019.0043 10.1016/j.jmaa.2006.02.086 10.3934/math.2020290 10.3934/math.2020392 10.22436/jnsa.010.04.37 10.3934/math.2020229 10.1186/s13660-019-2265-6 10.3934/math.2020322 10.3934/math.2020328 10.3934/math.2020407 10.1007/BF02418571 |
| ContentType | Journal Article |
| CorporateAuthor | 6 Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore (Narowal Campus), Pakistan 5 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China 2 Higher Education Department, Government College for Boys Gulberg Lahore, Punjab, Pakistan 1 Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan 3 Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan 4 Department of Mathematics, Huzhou University, Huzhou, 313000, P. R. China 7 Institute of Research and Development of Processors, University of the Basque, Country campus of Leioa (Bizkaia), 48940 Leioa, Spain |
| CorporateAuthor_xml | – name: 1 Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan – name: 5 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China – name: 7 Institute of Research and Development of Processors, University of the Basque, Country campus of Leioa (Bizkaia), 48940 Leioa, Spain – name: 2 Higher Education Department, Government College for Boys Gulberg Lahore, Punjab, Pakistan – name: 4 Department of Mathematics, Huzhou University, Huzhou, 313000, P. R. China – name: 6 Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore (Narowal Campus), Pakistan – name: 3 Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2020412 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 6418 |
| ExternalDocumentID | oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39 10_3934_math_2020412 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-c378t-aff35844c8b96e02680e38bcd3e43df75f956c4a724e79531a3ffaa8dece5ea63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564202100061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:43:33 EDT 2025 Tue Nov 18 22:17:30 EST 2025 Sat Nov 29 06:04:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-aff35844c8b96e02680e38bcd3e43df75f956c4a724e79531a3ffaa8dece5ea63 |
| OpenAccessLink | https://doaj.org/article/58124f5f51f648bcaf1b664ac4dfed39 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39 crossref_citationtrail_10_3934_math_2020412 crossref_primary_10_3934_math_2020412 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2020 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | 45 46 A. Iqbal, M. A. Khan, N. Mohammad (31) 49 M. A. Latif, S. Rashid, S. S. Dragomir (17) S. Rashid, M. A. Noor, K. I. Noor (39) S. Hussain, J. Khalid, Y. M. Chu (24) S. Rashid, F. Jarad, H. Kalsoom (44) J. L. W. V. Jensen (37) M. A. Khan, M. Hanif, Z. A. Khan (12) 50 M. B. Sun, Y. M. Chu (32) M. A. Khan, J. Pečarić, Y. M. Chu (10) T. H. Zhao, L. Shi, Y. M. Chu (43) H. Ge-JiLe, S. Rashid, M. A. Noor (30) 18 M. K. Wang, Z. Y. He, Y. M. Chu (14) T. Abdeljawad, S. Rashid, H. Khan (22) 2 M. U. Awan, N. Akhtar, S. Iftikhar (3) 4 5 6 7 9 Y. Khurshid, M. A. Khan, Y. M. Chu (16) 20 S. Z. Ullah, M. A. Khan, Y. M. Chu (15) 25 26 S. S. Zhou, S. Rashid, F. Jarad (23) 29 T. H. Zhao, M. K. Wang, Y. M. Chu (21) I. A. Baloch, S. S. Dragomir (8) X. Z. Yang, G. Farid, W. Nazeer (36) 33 34 35 38 S. Rashid, R. Ashraf, M. A. Noor (11) S. Rashid, İ. İşcan, D. Baleanu (13) S. Varošanec (47) M. U. Awan, M. A. Noor, M. V. Mihai (48) H. X. Qi, M. Yussouf, S. Mehmood (28) J. M. Shen, S. Rashid, M. A. Noor (27) Y. Khurshid, M. Adil Khan, Y. M. Chu (42) W. M. Qian, W. Zhang, Y. M. Chu (19) 40 41 |
| References_xml | – ident: 2 article-title: i>Petrović-type inequalities for harmonic h-convex functions</i – ident: 6 article-title: i>Some Hermite-Hadamard type integral inequalities for Harmonically (p</i – ident: 26 article-title: t al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus</i – ident: 39 article-title: t al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions</i publication-title: AIMS Math. doi: 10.3934/math.2020171 – ident: 12 article-title: t al. Association of Jensen's inequality for s-convex function with Csiszár divergence</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-1955-4 – ident: 19 article-title: i>Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means</i publication-title: Miskolc Math. Notes doi: 10.18514/MMN.2019.2334 – ident: 28 article-title: t al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity</i publication-title: AIMS Math. doi: 10.3934/math.2020386 – ident: 49 article-title: i>Characterizations of classes of harmonic convex functions and applications</i – ident: 50 article-title: i>A note on characterization of h-convex functions via Hermite-Hadamard type inequality</i – ident: 17 article-title: t al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-1955-4 – ident: 5 article-title: i>Some Ostrowski type inequalities for harmonically (s</i – ident: 22 article-title: t al. On new fractional integral inequalities for p-convexity within interval-valued functions</i publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2438-0 – ident: 24 article-title: i>Some generalized fractional integral Simpson's type inequalities with applications</i publication-title: AIMS Math. doi: 10.3934/math.2020375 – ident: 29 article-title: t al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function</i – ident: 10 article-title: i>Refinements of Jensen's and McShane's inequalities with applications</i publication-title: AIMS Math. doi: 10.3934/math.2020315 – ident: 18 article-title: i>On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications</i – ident: 43 article-title: i>Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means</i publication-title: RACSAM doi: 10.1007/s13398-019-00732-2 – ident: 35 article-title: t al. Some new local fractional inequalities associated with generalized (s</i – ident: 31 article-title: t al. Revisiting the Hermite-Hadamard integral inequality via a Green function</i publication-title: AIMS Math. doi: 10.3934/math.2020391 – ident: 9 article-title: i>On Harmonically (p</i – ident: 14 article-title: i>Sharp power mean inequalities for the generalized elliptic integral of the first kind</i publication-title: Comput. Meth. Funct. Th. doi: 10.1007/s40315-020-00298-w – ident: 23 article-title: t al. New estimates considering the generalized proportional Hadamard fractional integral operators</i publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2438-0 – ident: 32 article-title: i>Inequalities for the generalized weighted mean values of g-convex functions with applications</i publication-title: RACSAM doi: 10.1007/s13398-019-00732-2 – ident: 40 article-title: i>New ostrowski type inequalities for functions whose derivatives are p-preinvex</i – ident: 15 article-title: i>A note on generalized convex functions</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-1955-4 – ident: 27 article-title: t al. Certain novel estimates within fractional calculus theory on time scales</i publication-title: AIMS Math. doi: 10.3934/math.2020390 – ident: 8 article-title: i>New inequalities based on harmonic log-convex functions</i publication-title: Open J. Math. Anal. doi: 10.30538/psrp-oma2019.0043 – ident: 7 article-title: i>Integral inequalities for differentiable harmonically (s</i – ident: 47 article-title: i>On h-convexity</i publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.02.086 – ident: 45 article-title: t al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s</i – ident: 20 article-title: t al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind</i – ident: 25 article-title: t al. On new unified bounds for a family of functions with fractional q-calculus theory</i – ident: 46 article-title: i>Inequalities of Jensen type for HA-convex functions</i – ident: 44 article-title: t al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals</i publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2438-0 – ident: 21 article-title: i>A sharp double inequality involving generalized complete elliptic integral of the first kind</i publication-title: AIMS Math. doi: 10.3934/math.2020290 – ident: 4 article-title: i>Fejer's type inequalities for harmonically (s</i – ident: 30 article-title: t al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators</i publication-title: AIMS Math. doi: 10.3934/math.2020392 – ident: 48 article-title: t al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity</i publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.04.37 – ident: 41 article-title: i>Petrovic-type inequalities for harmonic convex functions on coordinates</i – ident: 11 article-title: t al. New weighted generalizations for differentiable exponentially convex mapping with application</i publication-title: AIMS Math. doi: 10.3934/math.2020229 – ident: 3 article-title: t al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions</i publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2265-6 – ident: 33 article-title: t al. Sharp rational bounds for the gamma function</i – ident: 34 article-title: t al. Asymptotic expansion and bounds for complete elliptic integrals</i – ident: 38 article-title: i>A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function</i – ident: 16 article-title: i>Conformable fractional integral inequalities for GG-and GA-convex function</i publication-title: AIMS Math. doi: 10.3934/math.2020322 – ident: 42 article-title: i>Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions</i publication-title: AIMS Math. doi: 10.3934/math.2020328 – ident: 36 article-title: t al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function</i publication-title: AIMS Math. doi: 10.3934/math.2020407 – ident: 37 article-title: i>Sur les fonctions convexes et les inégalits entre les valeurs moyennes</i publication-title: Acta Math. doi: 10.1007/BF02418571 – ident: 13 article-title: t al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications</i publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2438-0 |
| SSID | ssj0002124274 |
| Score | 2.300756 |
| Snippet | In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 6404 |
| SubjectTerms | convex functions discrete hölder inequality harmonic convex functions harmonic h-convex functions hermite-hadamard-type inequality jensen-type inequality |
| Title | A variant of Jensen-type inequality and related results for harmonic convex functions |
| URI | https://doaj.org/article/58124f5f51f648bcaf1b664ac4dfed39 |
| Volume | 5 |
| WOSCitedRecordID | wos000564202100061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sT5ixz0JGFrk_7IccqGCBseHOxW0jQPhNHJ2g29-Lf7XlrHPIgXLy2EUNIvad73pcn3GLtJQs8LrCAuKlQIVmiTaxEFsVEyNLkKwCebSMbjdDrVzxupvmhPWGMP3ADXjSgCQQRRALFKc2sgyONYGasKcIX0R_eQ9WyIKZqDcUJWqLeane5SS9VF_kf_HkLyl_oRgzas-n1MGR6w_ZYM8n7TiEO25cojtjdaO6lWx2zS5yuUs_j-fA78ydFSsKB1U470sDkR-cFNWXB_KMXRvVrO6oojGeVkS03Wt9zvLX_nFMT8ODthk-Hg5eFRtKkQhJVJWgsDIJEqKJvmOnaom9Kek4hGIZ2SBSQRoM6xyiShconG78pIAGPSwlkXORPLU7Zdzkt3xrjCskJZjPQovUIHOB0anefG9oxOFcgOu_sGJ7OtTzilq5hlqBcIyoygzFooO-x2Xfut8cf4pd494byuQ67WvgD7Omv7Ovurr8__4yEXbJfa1CyjXLLterF0V2zHrurXanHthxFeR5-DL9jx0U0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variant+of+Jensen-type+inequality+and+related+results+for+harmonic+convex+functions&rft.jtitle=AIMS+mathematics&rft.au=Imran+Abbas+Baloch&rft.au=Aqeel+Ahmad+Mughal&rft.au=Yu-Ming+Chu&rft.au=Absar+Ul+Haq&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=6404&rft.epage=6418&rft_id=info:doi/10.3934%2Fmath.2020412&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |