A variant of Jensen-type inequality and related results for harmonic convex functions

In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions.

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 5; číslo 6; s. 6404 - 6418
Hlavní autoři: Abbas Baloch, Imran, Ahmad Mughal, Aqeel, Chu, Yu-Ming, Ul Haq, Absar, De La Sen, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2020
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions.
AbstractList In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic h-convex functions. Furthermore, we found a variant of Jensen-type inequality for harmonic h-convex functions.
Author Abbas Baloch, Imran
Ahmad Mughal, Aqeel
Chu, Yu-Ming
Ul Haq, Absar
De La Sen, Manuel
Author_xml – sequence: 1
  givenname: Imran
  surname: Abbas Baloch
  fullname: Abbas Baloch, Imran
– sequence: 2
  givenname: Aqeel
  surname: Ahmad Mughal
  fullname: Ahmad Mughal, Aqeel
– sequence: 3
  givenname: Yu-Ming
  surname: Chu
  fullname: Chu, Yu-Ming
– sequence: 4
  givenname: Absar
  surname: Ul Haq
  fullname: Ul Haq, Absar
– sequence: 5
  givenname: Manuel
  surname: De La Sen
  fullname: De La Sen, Manuel
BookMark eNptkE1OwzAQhS1UJKB0xwF8AAKO7STOskL8qhIbWFtTZ0yNUrvYLqK3J4EiIcRqRqN5b-Z9J2Tig0dCzkp2IVohL9eQVxeccSZLfkCOuWxEUbdKTX71R2SW0itjjJdc8kYek-c5fYfowGcaLH1An9AXebdB6jy-baF3eUfBdzRiDxnHmrZ9TtSGSFcQ18E7Q03w7_hB7dab7IJPp-TQQp9wtq9T8nxz_XR1Vyweb--v5ovCiEblAqwVlZLSqGVbI-O1YijU0nQCpehsU9m2qo2Ehkts2kqUIKwFUB0arBBqMSX3375dgFe9iW4NcacDOP01CPFFQ8zO9KgrNUS2la1KW8vhBthyWdcSjOwsdgPBKeHfXiaGlCJabVyGMU6O4HpdMj1y1iNnvec8iM7_iH6e-Hf9EwBFg3k
CitedBy_id crossref_primary_10_1371_journal_pone_0320192
crossref_primary_10_1155_2022_8575563
crossref_primary_10_1155_2021_5868326
crossref_primary_10_1186_s13662_020_03093_y
crossref_primary_10_1186_s13660_021_02735_3
crossref_primary_10_3390_math10162970
crossref_primary_10_3390_sym14020302
crossref_primary_10_1186_s13662_020_03036_7
crossref_primary_10_1186_s13662_020_02935_z
crossref_primary_10_1186_s13662_020_02955_9
crossref_primary_10_1186_s13662_020_03000_5
crossref_primary_10_3390_math11020278
crossref_primary_10_1002_mma_8998
crossref_primary_10_3390_math9121338
crossref_primary_10_3390_sym14102187
crossref_primary_10_1155_2022_7269033
crossref_primary_10_3390_math9202556
crossref_primary_10_1016_j_chaos_2024_114677
crossref_primary_10_1155_2021_5561611
crossref_primary_10_3390_math10122089
crossref_primary_10_46939_J_Sci_Arts_23_4_a05
crossref_primary_10_3390_sym14081585
Cites_doi 10.3934/math.2020171
10.1186/s13660-019-1955-4
10.18514/MMN.2019.2334
10.3934/math.2020386
10.1186/s13662-019-2438-0
10.3934/math.2020375
10.3934/math.2020315
10.1007/s13398-019-00732-2
10.3934/math.2020391
10.1007/s40315-020-00298-w
10.3934/math.2020390
10.30538/psrp-oma2019.0043
10.1016/j.jmaa.2006.02.086
10.3934/math.2020290
10.3934/math.2020392
10.22436/jnsa.010.04.37
10.3934/math.2020229
10.1186/s13660-019-2265-6
10.3934/math.2020322
10.3934/math.2020328
10.3934/math.2020407
10.1007/BF02418571
ContentType Journal Article
CorporateAuthor 6 Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore (Narowal Campus), Pakistan
5 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China
2 Higher Education Department, Government College for Boys Gulberg Lahore, Punjab, Pakistan
1 Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan
3 Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
4 Department of Mathematics, Huzhou University, Huzhou, 313000, P. R. China
7 Institute of Research and Development of Processors, University of the Basque, Country campus of Leioa (Bizkaia), 48940 Leioa, Spain
CorporateAuthor_xml – name: 1 Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan
– name: 5 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, P. R. China
– name: 7 Institute of Research and Development of Processors, University of the Basque, Country campus of Leioa (Bizkaia), 48940 Leioa, Spain
– name: 2 Higher Education Department, Government College for Boys Gulberg Lahore, Punjab, Pakistan
– name: 4 Department of Mathematics, Huzhou University, Huzhou, 313000, P. R. China
– name: 6 Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore (Narowal Campus), Pakistan
– name: 3 Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020412
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 6418
ExternalDocumentID oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39
10_3934_math_2020412
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-aff35844c8b96e02680e38bcd3e43df75f956c4a724e79531a3ffaa8dece5ea63
IEDL.DBID DOA
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564202100061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:43:33 EDT 2025
Tue Nov 18 22:17:30 EST 2025
Sat Nov 29 06:04:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-aff35844c8b96e02680e38bcd3e43df75f956c4a724e79531a3ffaa8dece5ea63
OpenAccessLink https://doaj.org/article/58124f5f51f648bcaf1b664ac4dfed39
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39
crossref_citationtrail_10_3934_math_2020412
crossref_primary_10_3934_math_2020412
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 45
46
A. Iqbal, M. A. Khan, N. Mohammad (31)
49
M. A. Latif, S. Rashid, S. S. Dragomir (17)
S. Rashid, M. A. Noor, K. I. Noor (39)
S. Hussain, J. Khalid, Y. M. Chu (24)
S. Rashid, F. Jarad, H. Kalsoom (44)
J. L. W. V. Jensen (37)
M. A. Khan, M. Hanif, Z. A. Khan (12)
50
M. B. Sun, Y. M. Chu (32)
M. A. Khan, J. Pečarić, Y. M. Chu (10)
T. H. Zhao, L. Shi, Y. M. Chu (43)
H. Ge-JiLe, S. Rashid, M. A. Noor (30)
18
M. K. Wang, Z. Y. He, Y. M. Chu (14)
T. Abdeljawad, S. Rashid, H. Khan (22)
2
M. U. Awan, N. Akhtar, S. Iftikhar (3)
4
5
6
7
9
Y. Khurshid, M. A. Khan, Y. M. Chu (16)
20
S. Z. Ullah, M. A. Khan, Y. M. Chu (15)
25
26
S. S. Zhou, S. Rashid, F. Jarad (23)
29
T. H. Zhao, M. K. Wang, Y. M. Chu (21)
I. A. Baloch, S. S. Dragomir (8)
X. Z. Yang, G. Farid, W. Nazeer (36)
33
34
35
38
S. Rashid, R. Ashraf, M. A. Noor (11)
S. Rashid, İ. İşcan, D. Baleanu (13)
S. Varošanec (47)
M. U. Awan, M. A. Noor, M. V. Mihai (48)
H. X. Qi, M. Yussouf, S. Mehmood (28)
J. M. Shen, S. Rashid, M. A. Noor (27)
Y. Khurshid, M. Adil Khan, Y. M. Chu (42)
W. M. Qian, W. Zhang, Y. M. Chu (19)
40
41
References_xml – ident: 2
  article-title: i>Petrović-type inequalities for harmonic h-convex functions</i
– ident: 6
  article-title: i>Some Hermite-Hadamard type integral inequalities for Harmonically (p</i
– ident: 26
  article-title: t al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus</i
– ident: 39
  article-title: t al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020171
– ident: 12
  article-title: t al. Association of Jensen's inequality for s-convex function with Csiszár divergence</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1955-4
– ident: 19
  article-title: i>Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means</i
  publication-title: Miskolc Math. Notes
  doi: 10.18514/MMN.2019.2334
– ident: 28
  article-title: t al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020386
– ident: 49
  article-title: i>Characterizations of classes of harmonic convex functions and applications</i
– ident: 50
  article-title: i>A note on characterization of h-convex functions via Hermite-Hadamard type inequality</i
– ident: 17
  article-title: t al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1955-4
– ident: 5
  article-title: i>Some Ostrowski type inequalities for harmonically (s</i
– ident: 22
  article-title: t al. On new fractional integral inequalities for p-convexity within interval-valued functions</i
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2438-0
– ident: 24
  article-title: i>Some generalized fractional integral Simpson's type inequalities with applications</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020375
– ident: 29
  article-title: t al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function</i
– ident: 10
  article-title: i>Refinements of Jensen's and McShane's inequalities with applications</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020315
– ident: 18
  article-title: i>On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications</i
– ident: 43
  article-title: i>Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means</i
  publication-title: RACSAM
  doi: 10.1007/s13398-019-00732-2
– ident: 35
  article-title: t al. Some new local fractional inequalities associated with generalized (s</i
– ident: 31
  article-title: t al. Revisiting the Hermite-Hadamard integral inequality via a Green function</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020391
– ident: 9
  article-title: i>On Harmonically (p</i
– ident: 14
  article-title: i>Sharp power mean inequalities for the generalized elliptic integral of the first kind</i
  publication-title: Comput. Meth. Funct. Th.
  doi: 10.1007/s40315-020-00298-w
– ident: 23
  article-title: t al. New estimates considering the generalized proportional Hadamard fractional integral operators</i
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2438-0
– ident: 32
  article-title: i>Inequalities for the generalized weighted mean values of g-convex functions with applications</i
  publication-title: RACSAM
  doi: 10.1007/s13398-019-00732-2
– ident: 40
  article-title: i>New ostrowski type inequalities for functions whose derivatives are p-preinvex</i
– ident: 15
  article-title: i>A note on generalized convex functions</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-1955-4
– ident: 27
  article-title: t al. Certain novel estimates within fractional calculus theory on time scales</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020390
– ident: 8
  article-title: i>New inequalities based on harmonic log-convex functions</i
  publication-title: Open J. Math. Anal.
  doi: 10.30538/psrp-oma2019.0043
– ident: 7
  article-title: i>Integral inequalities for differentiable harmonically (s</i
– ident: 47
  article-title: i>On h-convexity</i
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.02.086
– ident: 45
  article-title: t al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s</i
– ident: 20
  article-title: t al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind</i
– ident: 25
  article-title: t al. On new unified bounds for a family of functions with fractional q-calculus theory</i
– ident: 46
  article-title: i>Inequalities of Jensen type for HA-convex functions</i
– ident: 44
  article-title: t al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals</i
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2438-0
– ident: 21
  article-title: i>A sharp double inequality involving generalized complete elliptic integral of the first kind</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020290
– ident: 4
  article-title: i>Fejer's type inequalities for harmonically (s</i
– ident: 30
  article-title: t al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020392
– ident: 48
  article-title: t al. Some new bounds for Simpson's rule involving special functions via harmonic h-convexity</i
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.04.37
– ident: 41
  article-title: i>Petrovic-type inequalities for harmonic convex functions on coordinates</i
– ident: 11
  article-title: t al. New weighted generalizations for differentiable exponentially convex mapping with application</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020229
– ident: 3
  article-title: t al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions</i
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2265-6
– ident: 33
  article-title: t al. Sharp rational bounds for the gamma function</i
– ident: 34
  article-title: t al. Asymptotic expansion and bounds for complete elliptic integrals</i
– ident: 38
  article-title: i>A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function</i
– ident: 16
  article-title: i>Conformable fractional integral inequalities for GG-and GA-convex function</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020322
– ident: 42
  article-title: i>Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020328
– ident: 36
  article-title: t al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function</i
  publication-title: AIMS Math.
  doi: 10.3934/math.2020407
– ident: 37
  article-title: i>Sur les fonctions convexes et les inégalits entre les valeurs moyennes</i
  publication-title: Acta Math.
  doi: 10.1007/BF02418571
– ident: 13
  article-title: t al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications</i
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2438-0
SSID ssj0002124274
Score 2.300756
Snippet In this article, we present a variant of discrete Jensen-type inequality for harmonic convex functions and establish a Jensen-type inequality for harmonic...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 6404
SubjectTerms convex functions
discrete hölder inequality
harmonic convex functions
harmonic h-convex functions
hermite-hadamard-type inequality
jensen-type inequality
Title A variant of Jensen-type inequality and related results for harmonic convex functions
URI https://doaj.org/article/58124f5f51f648bcaf1b664ac4dfed39
Volume 5
WOSCitedRecordID wos000564202100061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sT5ixz0JGFrk_7IccqGCBseHOxW0jQPhNHJ2g29-Lf7XlrHPIgXLy2EUNIvad73pcn3GLtJQs8LrCAuKlQIVmiTaxEFsVEyNLkKwCebSMbjdDrVzxupvmhPWGMP3ADXjSgCQQRRALFKc2sgyONYGasKcIX0R_eQ9WyIKZqDcUJWqLeane5SS9VF_kf_HkLyl_oRgzas-n1MGR6w_ZYM8n7TiEO25cojtjdaO6lWx2zS5yuUs_j-fA78ydFSsKB1U470sDkR-cFNWXB_KMXRvVrO6oojGeVkS03Wt9zvLX_nFMT8ODthk-Hg5eFRtKkQhJVJWgsDIJEqKJvmOnaom9Kek4hGIZ2SBSQRoM6xyiShconG78pIAGPSwlkXORPLU7Zdzkt3xrjCskJZjPQovUIHOB0anefG9oxOFcgOu_sGJ7OtTzilq5hlqBcIyoygzFooO-x2Xfut8cf4pd494byuQ67WvgD7Omv7Ovurr8__4yEXbJfa1CyjXLLterF0V2zHrurXanHthxFeR5-DL9jx0U0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variant+of+Jensen-type+inequality+and+related+results+for+harmonic+convex+functions&rft.jtitle=AIMS+mathematics&rft.au=Imran+Abbas+Baloch&rft.au=Aqeel+Ahmad+Mughal&rft.au=Yu-Ming+Chu&rft.au=Absar+Ul+Haq&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=6404&rft.epage=6418&rft_id=info:doi/10.3934%2Fmath.2020412&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_58124f5f51f648bcaf1b664ac4dfed39
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon