ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)

This paper provides a new way of developing the "Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)" [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ regularizer. In particular, this paper shows that FISTA corresponds to an optimize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 28; číslo 1; s. 223
Hlavní autoři: Kim, Donghwan, Fessler, Jeffrey A
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 2018
ISSN:1052-6234
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper provides a new way of developing the "Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)" [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11].
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1052-6234
DOI:10.1137/16M108940X