Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: Α-Sn films

We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters Jg. 116; H. 9; S. 096602
Hauptverfasser: Rojas-Sánchez, J.-C., Oyarzún, S., Fu, Y., Marty, A., Vergnaud, C., Gambarelli, S., Vila, L., Jamet, M., Ohtsubo, Y., Taleb-Ibrahimi, A., Le Fèvre, P., Bertran, F., Reyren, N., George, J.-M., Fert, A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Physical Society 01.03.2016
Schlagworte:
ISSN:0031-9007, 1079-7114, 1079-7114
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.
AbstractList We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) αSn1-3. By angle-resolved photoelectron spectroscopy (ARPES) we first confirm that the Dirac cone at the surface of α-Sn (0 0 1) layers subsists after covering with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the Inverse Edelstein Effect4-5. Our observation of an Inverse Edelstein Effect length5-6 much longer than for Rashba interfaces5-10 demonstrates the potential of the TI for conversion between spin andcharge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of TI for spin to charge conversion and the conditions to reach it.
We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) alpha -Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the alpha -Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into alpha -Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.
We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.
We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.
ArticleNumber 096602
Author Fu, Y.
Ohtsubo, Y.
Fert, A.
George, J.-M.
Le Fèvre, P.
Jamet, M.
Rojas-Sánchez, J.-C.
Vila, L.
Oyarzún, S.
Taleb-Ibrahimi, A.
Bertran, F.
Gambarelli, S.
Marty, A.
Vergnaud, C.
Reyren, N.
Author_xml – sequence: 1
  givenname: J.-C.
  surname: Rojas-Sánchez
  fullname: Rojas-Sánchez, J.-C.
– sequence: 2
  givenname: S.
  surname: Oyarzún
  fullname: Oyarzún, S.
– sequence: 3
  givenname: Y.
  surname: Fu
  fullname: Fu, Y.
– sequence: 4
  givenname: A.
  surname: Marty
  fullname: Marty, A.
– sequence: 5
  givenname: C.
  surname: Vergnaud
  fullname: Vergnaud, C.
– sequence: 6
  givenname: S.
  surname: Gambarelli
  fullname: Gambarelli, S.
– sequence: 7
  givenname: L.
  surname: Vila
  fullname: Vila, L.
– sequence: 8
  givenname: M.
  surname: Jamet
  fullname: Jamet, M.
– sequence: 9
  givenname: Y.
  surname: Ohtsubo
  fullname: Ohtsubo, Y.
– sequence: 10
  givenname: A.
  surname: Taleb-Ibrahimi
  fullname: Taleb-Ibrahimi, A.
– sequence: 11
  givenname: P.
  surname: Le Fèvre
  fullname: Le Fèvre, P.
– sequence: 12
  givenname: F.
  surname: Bertran
  fullname: Bertran, F.
– sequence: 13
  givenname: N.
  surname: Reyren
  fullname: Reyren, N.
– sequence: 14
  givenname: J.-M.
  surname: George
  fullname: George, J.-M.
– sequence: 15
  givenname: A.
  surname: Fert
  fullname: Fert, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26991190$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01614026$$DView record in HAL
BookMark eNqFkcFu1DAQhi1URLeFV6h8hEPK2EnsGHGpKkqRVqJq4Wx5ncmuURIH21m0j9EX6zPVq20R4tLTSP98_8xo_hNyNPoRCTljcM4YlB9vNrt4i9slppQFcQ5KCOCvyIKBVIVkrDoiC4CSFQpAHpOTGH8BAOOieUOOuVCKMQULEu8mN9Lkqd2YsEZq_bjFEJ0fqUk0eD_QhMOEwaQ5IF3taNwbpnnIZU3dmK2GjviHpt2E1Hd51uR7v3bW9Lkd594kHz7Rh_vibqSd64f4lrzuTB_x3VM9JT-vvvy4vC6W379-u7xYFraUTSqUUrLsZNVVXalq1mGLaoWS18KUhqOqVkxyy1teSyaFRGaVwtYYq1q0UlblKflwmLsxvZ6CG0zYaW-cvr5Y6r0GTLAKuNiyzL4_sFPwv2eMSQ8uWux7M6Kfo2YNNFA1tYSX0by7LjmvZEbPntB5NWD794jn_2fg8wGwwccYsNPWJZPy-1MwrtcM9D5u_U_cWRD6EHe2i__szxteMD4CZUCzcQ
CitedBy_id crossref_primary_10_1088_1361_6463_aa7d77
crossref_primary_10_1103_RevModPhys_96_015005
crossref_primary_10_1063_5_0030368
crossref_primary_10_1039_D3NR01719B
crossref_primary_10_1038_s41565_023_01492_2
crossref_primary_10_1103_PhysRevB_111_075104
crossref_primary_10_1016_j_physleta_2022_128238
crossref_primary_10_1063_5_0251598
crossref_primary_10_1063_9_0000311
crossref_primary_10_1038_nphys3833
crossref_primary_10_1038_s41535_018_0100_9
crossref_primary_10_1002_adfm_202307474
crossref_primary_10_1103_PhysRevApplied_10_014029
crossref_primary_10_1103_PhysRevResearch_2_012014
crossref_primary_10_1007_s11467_019_0893_4
crossref_primary_10_1103_PhysRevB_111_085430
crossref_primary_10_1002_adfm_202109361
crossref_primary_10_1002_adfm_202008411
crossref_primary_10_1002_adma_202005909
crossref_primary_10_1016_j_physe_2022_115355
crossref_primary_10_1103_PhysRevApplied_11_054049
crossref_primary_10_1088_1367_2630_acacbe
crossref_primary_10_1063_1_4967391
crossref_primary_10_1103_PhysRevApplied_10_064003
crossref_primary_10_1063_5_0052301
crossref_primary_10_1103_PhysRevResearch_1_012014
crossref_primary_10_1002_adfm_202111555
crossref_primary_10_1063_1_4963073
crossref_primary_10_1088_1361_648X_ac7994
crossref_primary_10_1063_5_0080357
crossref_primary_10_1103_PhysRevApplied_17_014015
crossref_primary_10_1002_smtd_202400550
crossref_primary_10_1088_1361_648X_ab46c6
crossref_primary_10_1038_s41467_017_02743_2
crossref_primary_10_1038_srep35658
crossref_primary_10_1016_j_mattod_2024_04_014
crossref_primary_10_1016_j_scib_2018_04_007
crossref_primary_10_1038_s41928_020_0395_y
crossref_primary_10_1063_5_0027987
crossref_primary_10_1103_PhysRevB_111_094410
crossref_primary_10_1103_PhysRevB_104_L220407
crossref_primary_10_1038_s41467_024_53884_0
crossref_primary_10_1038_s41598_023_29169_9
crossref_primary_10_1002_adma_202002117
crossref_primary_10_1038_s41467_020_17481_1
crossref_primary_10_1063_5_0247001
crossref_primary_10_1063_1_5030643
crossref_primary_10_1103_PhysRevB_111_L161301
crossref_primary_10_1016_j_apsusc_2020_146224
crossref_primary_10_1063_5_0125699
crossref_primary_10_1002_adfm_202314427
crossref_primary_10_1088_1361_6528_acc663
crossref_primary_10_1088_1402_4896_ad48c4
crossref_primary_10_1063_5_0280905
crossref_primary_10_3390_electronics6010019
crossref_primary_10_1063_1_5054806
crossref_primary_10_1063_5_0033259
crossref_primary_10_1038_s41699_023_00410_3
crossref_primary_10_1103_PhysRevB_108_155103
crossref_primary_10_1038_s41563_023_01550_z
crossref_primary_10_1038_s41563_019_0575_1
crossref_primary_10_1103_PhysRevApplied_9_064032
crossref_primary_10_1002_pssr_202100137
crossref_primary_10_1103_dsxt_phyk
crossref_primary_10_1016_j_physrep_2016_10_002
crossref_primary_10_1063_5_0281343
crossref_primary_10_1088_1361_648X_aa752d
crossref_primary_10_1002_adem_201900410
crossref_primary_10_1116_6_0002273
crossref_primary_10_1038_s41563_022_01211_7
crossref_primary_10_1063_5_0107655
crossref_primary_10_1088_1361_6463_aae553
crossref_primary_10_1002_adts_202300092
crossref_primary_10_1063_5_0054865
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1038_s41586_018_0770_2
crossref_primary_10_1002_qute_202000024
crossref_primary_10_1038_nmat4726
crossref_primary_10_1088_1674_1056_ab425e
crossref_primary_10_3390_nano12203687
crossref_primary_10_1088_1361_6528_ad0dca
crossref_primary_10_1088_1361_6528_ad079e
crossref_primary_10_1002_pssr_202100247
crossref_primary_10_1063_1_4976691
crossref_primary_10_1016_j_jallcom_2025_183397
crossref_primary_10_1103_PhysRevMaterials_6_074203
crossref_primary_10_1103_PhysRevApplied_13_054014
crossref_primary_10_1002_wcms_1313
crossref_primary_10_1063_5_0022948
crossref_primary_10_1038_s41598_018_28547_y
crossref_primary_10_1038_s41567_018_0112_1
crossref_primary_10_1002_adfm_202303878
crossref_primary_10_1002_adfm_202501880
crossref_primary_10_1002_pssr_201700149
crossref_primary_10_1088_2515_7639_aad02a
crossref_primary_10_3390_electronics13204085
crossref_primary_10_1063_1_5040546
crossref_primary_10_1002_aelm_202300730
crossref_primary_10_1016_j_cossms_2024_101145
crossref_primary_10_1039_D3NR01288C
crossref_primary_10_1088_1361_648X_ad5e2b
crossref_primary_10_1016_j_mtelec_2023_100060
crossref_primary_10_1038_s41563_018_0136_z
crossref_primary_10_1002_adma_202005315
crossref_primary_10_1103_PhysRevResearch_2_023195
crossref_primary_10_1063_1_4973479
crossref_primary_10_1063_5_0023992
crossref_primary_10_1016_j_newton_2025_100026
crossref_primary_10_1038_s42005_023_01327_5
crossref_primary_10_1002_qute_202400041
crossref_primary_10_1109_JXCDC_2018_2874805
crossref_primary_10_1063_5_0097931
crossref_primary_10_1073_pnas_1812822116
crossref_primary_10_1002_adma_202000818
crossref_primary_10_1088_1402_4896_acf0fc
crossref_primary_10_1088_1674_1056_acc3fb
crossref_primary_10_1186_s40580_017_0100_7
crossref_primary_10_1002_advs_202400893
crossref_primary_10_1139_cjp_2021_0107
crossref_primary_10_7566_JPSJ_90_063703
crossref_primary_10_1002_adma_201802439
crossref_primary_10_1063_1_5099985
crossref_primary_10_1088_1361_6463_abfce8
crossref_primary_10_1103_PhysRevApplied_23_014071
crossref_primary_10_1088_2515_7639_ab69b0
crossref_primary_10_1002_adma_202203038
crossref_primary_10_1016_j_physleta_2024_130194
crossref_primary_10_1038_s41467_020_20840_7
crossref_primary_10_1038_s41467_023_42987_9
crossref_primary_10_1063_1_5010973
crossref_primary_10_1016_j_apsusc_2021_151347
crossref_primary_10_1002_adma_202418663
crossref_primary_10_1063_5_0154149
crossref_primary_10_1002_adma_202418541
crossref_primary_10_1038_s41563_019_0467_4
crossref_primary_10_1103_PhysRevResearch_3_013275
crossref_primary_10_1016_j_jmmm_2022_169974
crossref_primary_10_1038_ncomms13485
crossref_primary_10_1103_PhysRevResearch_2_033204
crossref_primary_10_1038_s41467_017_01583_4
crossref_primary_10_1038_s41928_018_0085_1
crossref_primary_10_1073_pnas_2305541120
crossref_primary_10_1002_pssr_202200161
crossref_primary_10_1209_0295_5075_130_58001
crossref_primary_10_7566_JPSJ_86_011001
crossref_primary_10_1038_s41467_024_46405_6
crossref_primary_10_1103_PhysRevResearch_2_023055
crossref_primary_10_1002_pssb_201800513
crossref_primary_10_1038_s42005_024_01801_8
crossref_primary_10_1103_PhysRevApplied_19_034012
crossref_primary_10_1103_PhysRevMaterials_5_124410
crossref_primary_10_1007_s40820_020_00424_2
crossref_primary_10_1088_1367_2630_adac88
crossref_primary_10_1063_5_0077431
crossref_primary_10_1063_5_0192717
crossref_primary_10_1038_s41567_017_0031_6
crossref_primary_10_1007_s40766_020_0002_0
crossref_primary_10_1088_1361_6528_acaf34
crossref_primary_10_1088_2515_7639_ac9f6e
crossref_primary_10_1002_adom_202102061
crossref_primary_10_1063_5_0059171
crossref_primary_10_1038_s41467_024_52080_4
crossref_primary_10_1016_j_jmmm_2021_168698
crossref_primary_10_1002_adma_202007795
crossref_primary_10_1038_s41467_017_02491_3
crossref_primary_10_1038_nphys4192
crossref_primary_10_1063_1_5127882
crossref_primary_10_1002_adfm_202407968
crossref_primary_10_1209_0295_5075_133_17001
crossref_primary_10_1063_5_0032538
crossref_primary_10_1038_s41467_023_39529_8
crossref_primary_10_1063_5_0098585
crossref_primary_10_1038_s44306_024_00054_z
crossref_primary_10_1063_5_0107903
crossref_primary_10_1002_admi_202101244
crossref_primary_10_1103_PhysRevResearch_6_023074
crossref_primary_10_1038_nature19820
crossref_primary_10_1002_adma_202102102
crossref_primary_10_1002_admi_202201452
crossref_primary_10_1038_s41467_025_62516_0
crossref_primary_10_1002_adma_202104645
crossref_primary_10_1063_5_0223869
Cites_doi 10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.98.186807
10.1063/1.4863407
10.1103/PhysRevB.76.045302
10.1103/PhysRevB.85.144408
10.1103/PhysRevB.93.014420
10.1103/PhysRevB.90.094403
10.1038/ncomms4003
10.1063/1.4921765
10.1038/nmat3301
10.1103/PhysRevLett.111.136804
10.1038/nature13534
10.1063/1.4753947
10.1038/ncomms3944
10.1103/PhysRevLett.98.106803
10.1103/PhysRevB.82.214403
10.1103/PhysRevLett.113.196601
10.1021/nl5026198
10.1103/PhysRevLett.112.096601
10.1038/nnano.2014.16
10.1103/PhysRevB.91.235437
10.1021/acs.nanolett.5b03274
10.1038/nature04937
10.1016/j.physe.2011.11.003
10.1103/PhysRevLett.111.157205
10.1063/1.4915479
10.1103/PhysRevLett.112.106602
10.1016/0038-1098(90)90963-C
10.1103/PhysRevLett.114.166602
10.1063/1.4919129
10.1103/PhysRevLett.111.216401
10.1209/0295-5075/93/67004
10.1103/RevModPhys.82.3045
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
H8D
L7M
1XC
VOOES
DOI 10.1103/PhysRevLett.116.096602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID oai:HAL:hal-01614026v1
26991190
10_1103_PhysRevLett_116_096602
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
H8D
L7M
1XC
VOOES
XJT
ID FETCH-LOGICAL-c378t-99973f74f4f3951fede9be7256a3a2e94b172c2d2571767e1c99edaac9dec7743
IEDL.DBID 3MX
ISICitedReferencesCount 326
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371418100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Tue Oct 14 20:52:23 EDT 2025
Fri Jul 11 10:41:53 EDT 2025
Wed Oct 01 14:48:30 EDT 2025
Mon Jul 21 06:04:15 EDT 2025
Tue Nov 18 22:00:44 EST 2025
Sat Nov 29 01:46:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://link.aps.org/licenses/aps-default-license
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-99973f74f4f3951fede9be7256a3a2e94b172c2d2571767e1c99edaac9dec7743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2728-4149
0000-0001-5709-6945
0000-0001-7044-2785
0000-0001-9800-8059
0000-0002-1171-2391
0000-0002-7745-7282
0000-0002-7204-7022
0000-0003-0670-8539
0000-0002-2416-0514
0000-0001-7422-0418
0000-0002-3873-2456
OpenAccessLink https://hal.science/hal-01614026
PMID 26991190
PQID 1774532247
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_01614026v1
proquest_miscellaneous_1808048570
proquest_miscellaneous_1774532247
pubmed_primary_26991190
crossref_citationtrail_10_1103_PhysRevLett_116_096602
crossref_primary_10_1103_PhysRevLett_116_096602
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2016
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.116.096602Cc18R1
PhysRevLett.116.096602Cc17R1
PhysRevLett.116.096602Cc19R1
PhysRevLett.116.096602Cc14R1
PhysRevLett.116.096602Cc13R1
PhysRevLett.116.096602Cc16R1
PhysRevLett.116.096602Cc35R1
PhysRevLett.116.096602Cc15R1
PhysRevLett.116.096602Cc36R1
PhysRevLett.116.096602Cc10R1
PhysRevLett.116.096602Cc34R1
PhysRevLett.116.096602Cc12R1
PhysRevLett.116.096602Cc31R1
PhysRevLett.116.096602Cc11R1
PhysRevLett.116.096602Cc32R1
PhysRevLett.116.096602Cc30R1
(PhysRevLett.116.096602Cc1R1) 2011
PhysRevLett.116.096602Cc28R1
PhysRevLett.116.096602Cc29R1
PhysRevLett.116.096602Cc26R1
PhysRevLett.116.096602Cc27R1
PhysRevLett.116.096602Cc25R1
PhysRevLett.116.096602Cc2R1
PhysRevLett.116.096602Cc22R1
PhysRevLett.116.096602Cc3R1
PhysRevLett.116.096602Cc23R1
PhysRevLett.116.096602Cc20R1
PhysRevLett.116.096602Cc21R1
PhysRevLett.116.096602Cc6R1
PhysRevLett.116.096602Cc7R1
PhysRevLett.116.096602Cc4R1
PhysRevLett.116.096602Cc5R1
PhysRevLett.116.096602Cc8R1
PhysRevLett.116.096602Cc9R1
References_xml – ident: PhysRevLett.116.096602Cc7R1
  doi: 10.1103/RevModPhys.83.1057
– ident: PhysRevLett.116.096602Cc4R1
  doi: 10.1103/PhysRevLett.98.186807
– ident: PhysRevLett.116.096602Cc3R1
  doi: 10.1063/1.4863407
– ident: PhysRevLett.116.096602Cc8R1
  doi: 10.1103/PhysRevB.76.045302
– ident: PhysRevLett.116.096602Cc26R1
  doi: 10.1103/PhysRevB.85.144408
– ident: PhysRevLett.116.096602Cc23R1
  doi: 10.1103/PhysRevB.93.014420
– ident: PhysRevLett.116.096602Cc28R1
  doi: 10.1103/PhysRevB.90.094403
– ident: PhysRevLett.116.096602Cc35R1
  doi: 10.1038/ncomms4003
– ident: PhysRevLett.116.096602Cc20R1
  doi: 10.1063/1.4921765
– volume-title: Handbook of Spin Transport, and Magnetism
  year: 2011
  ident: PhysRevLett.116.096602Cc1R1
– ident: PhysRevLett.116.096602Cc36R1
  doi: 10.1038/nmat3301
– ident: PhysRevLett.116.096602Cc9R1
  doi: 10.1103/PhysRevLett.111.136804
– ident: PhysRevLett.116.096602Cc15R1
  doi: 10.1038/nature13534
– ident: PhysRevLett.116.096602Cc34R1
  doi: 10.1063/1.4753947
– ident: PhysRevLett.116.096602Cc18R1
  doi: 10.1038/ncomms3944
– ident: PhysRevLett.116.096602Cc5R1
  doi: 10.1103/PhysRevLett.98.106803
– ident: PhysRevLett.116.096602Cc30R1
  doi: 10.1103/PhysRevB.82.214403
– ident: PhysRevLett.116.096602Cc27R1
  doi: 10.1103/PhysRevLett.113.196601
– ident: PhysRevLett.116.096602Cc17R1
  doi: 10.1021/nl5026198
– ident: PhysRevLett.116.096602Cc19R1
  doi: 10.1103/PhysRevLett.112.096601
– ident: PhysRevLett.116.096602Cc16R1
  doi: 10.1038/nnano.2014.16
– ident: PhysRevLett.116.096602Cc29R1
  doi: 10.1103/PhysRevB.91.235437
– ident: PhysRevLett.116.096602Cc32R1
  doi: 10.1021/acs.nanolett.5b03274
– ident: PhysRevLett.116.096602Cc2R1
  doi: 10.1038/nature04937
– ident: PhysRevLett.116.096602Cc25R1
  doi: 10.1016/j.physe.2011.11.003
– ident: PhysRevLett.116.096602Cc10R1
  doi: 10.1103/PhysRevLett.111.157205
– ident: PhysRevLett.116.096602Cc22R1
  doi: 10.1063/1.4915479
– ident: PhysRevLett.116.096602Cc31R1
  doi: 10.1103/PhysRevLett.112.106602
– ident: PhysRevLett.116.096602Cc12R1
  doi: 10.1016/0038-1098(90)90963-C
– ident: PhysRevLett.116.096602Cc14R1
  doi: 10.1103/PhysRevLett.114.166602
– ident: PhysRevLett.116.096602Cc21R1
  doi: 10.1063/1.4919129
– ident: PhysRevLett.116.096602Cc11R1
  doi: 10.1103/PhysRevLett.111.216401
– ident: PhysRevLett.116.096602Cc13R1
  doi: 10.1209/0295-5075/93/67004
– ident: PhysRevLett.116.096602Cc6R1
  doi: 10.1103/RevModPhys.82.3045
SSID ssj0001268
Score 2.6492558
Snippet We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the...
We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 096602
SubjectTerms Charge
Condensed Matter
Conversion
Direct current
Helical
Insulators
Inverse
Iron - chemistry
Materials Science
Models, Theoretical
Photoelectron Spectroscopy - methods
Physics
Pumping
Silver - chemistry
Temperature
Tin - chemistry
Topology
Title Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: Α-Sn films
URI https://www.ncbi.nlm.nih.gov/pubmed/26991190
https://www.proquest.com/docview/1774532247
https://www.proquest.com/docview/1808048570
https://hal.science/hal-01614026
Volume 116
WOSCitedRecordID wos000371418100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCiQulDdbHhoQ19A4duyktwpR9QAVoiDtLfI6E7FSm1016Ur8jP6x_qbOONkVSBTUSw6Wx0n8GH-2P38D8D43tbF50IkPpBMTlE0Kq3xCZuZssKmnvInBJtzxcTGdll-3IP37Cb5K9Z4wIb_RSm63cIL9kIqeZHS6hRGxfP1lunG9KrOD69XCO0jdeCX45mL-mI3u_BQu5E1AM044hzu3_9SH8GAEl3gw9IZHsEXtY7gXSZ6hewLdyXLeYr_AKI9EGBnncbsMfY8CoVGUqkaZZZz9wk4MltziPMHhvGVTj4zDUTZucdFwWcu188TIapcl_D5eXSYnLTbz07PuKfw4_PT941EyBl1IgnZFnzBgdLpxpjGNZvTVUE3ljBwjI699RqWZMeQJWc1DXTnrSIWypNr7UNYUGEvqZ7DdLlp6Aag4b-ZEPkiXRhODu6wOhdO1caEm1UwgX1d-FUZFcgmMcVrFlUmqq98qlBNsNVToBPY2dstBk-O_Fu-4bTeZRVL76OBzJWkCeXkNbVdqAm_XTV_xGJODE9_S4qKrFP9Xzp7PuH_kEYFOI-ECJvB86Deb92WWUTgjr91bf_hLuM8IzQ6kt1ew3Z9f0Gu4G1b9vDt_Ezs_P920uAbxQwOc
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+to+charge+conversion+at+room+temperature+by+spin+pumping+into+a+new+type+of+topological+insulator%3A+%CE%B1+-Sn+films&rft.jtitle=Physical+review+letters&rft.au=Rojas-S%C3%A1nchez%2C+J.C.&rft.au=Oyarz%C3%BAn%2C+S.&rft.au=Fu%2C+Y.&rft.au=Marty%2C+A.&rft.date=2016-03-01&rft.pub=American+Physical+Society&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=116&rft.issue=9&rft_id=info:doi/10.1103%2FPhysRevLett.116.096602&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01614026v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon