Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: Α-Sn films
We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-...
Gespeichert in:
| Veröffentlicht in: | Physical review letters Jg. 116; H. 9; S. 096602 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Physical Society
01.03.2016
|
| Schlagworte: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it. |
|---|---|
| AbstractList | We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) αSn1-3. By angle-resolved photoelectron spectroscopy (ARPES) we first confirm that the Dirac cone at the surface of α-Sn (0 0 1) layers subsists after covering with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the Inverse Edelstein Effect4-5. Our observation of an Inverse Edelstein Effect length5-6 much longer than for Rashba interfaces5-10 demonstrates the potential of the TI for conversion between spin andcharge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of TI for spin to charge conversion and the conditions to reach it. We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) alpha -Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the alpha -Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into alpha -Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it. We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it. We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it. |
| ArticleNumber | 096602 |
| Author | Fu, Y. Ohtsubo, Y. Fert, A. George, J.-M. Le Fèvre, P. Jamet, M. Rojas-Sánchez, J.-C. Vila, L. Oyarzún, S. Taleb-Ibrahimi, A. Bertran, F. Gambarelli, S. Marty, A. Vergnaud, C. Reyren, N. |
| Author_xml | – sequence: 1 givenname: J.-C. surname: Rojas-Sánchez fullname: Rojas-Sánchez, J.-C. – sequence: 2 givenname: S. surname: Oyarzún fullname: Oyarzún, S. – sequence: 3 givenname: Y. surname: Fu fullname: Fu, Y. – sequence: 4 givenname: A. surname: Marty fullname: Marty, A. – sequence: 5 givenname: C. surname: Vergnaud fullname: Vergnaud, C. – sequence: 6 givenname: S. surname: Gambarelli fullname: Gambarelli, S. – sequence: 7 givenname: L. surname: Vila fullname: Vila, L. – sequence: 8 givenname: M. surname: Jamet fullname: Jamet, M. – sequence: 9 givenname: Y. surname: Ohtsubo fullname: Ohtsubo, Y. – sequence: 10 givenname: A. surname: Taleb-Ibrahimi fullname: Taleb-Ibrahimi, A. – sequence: 11 givenname: P. surname: Le Fèvre fullname: Le Fèvre, P. – sequence: 12 givenname: F. surname: Bertran fullname: Bertran, F. – sequence: 13 givenname: N. surname: Reyren fullname: Reyren, N. – sequence: 14 givenname: J.-M. surname: George fullname: George, J.-M. – sequence: 15 givenname: A. surname: Fert fullname: Fert, A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26991190$$D View this record in MEDLINE/PubMed https://hal.science/hal-01614026$$DView record in HAL |
| BookMark | eNqFkcFu1DAQhi1URLeFV6h8hEPK2EnsGHGpKkqRVqJq4Wx5ncmuURIH21m0j9EX6zPVq20R4tLTSP98_8xo_hNyNPoRCTljcM4YlB9vNrt4i9slppQFcQ5KCOCvyIKBVIVkrDoiC4CSFQpAHpOTGH8BAOOieUOOuVCKMQULEu8mN9Lkqd2YsEZq_bjFEJ0fqUk0eD_QhMOEwaQ5IF3taNwbpnnIZU3dmK2GjviHpt2E1Hd51uR7v3bW9Lkd594kHz7Rh_vibqSd64f4lrzuTB_x3VM9JT-vvvy4vC6W379-u7xYFraUTSqUUrLsZNVVXalq1mGLaoWS18KUhqOqVkxyy1teSyaFRGaVwtYYq1q0UlblKflwmLsxvZ6CG0zYaW-cvr5Y6r0GTLAKuNiyzL4_sFPwv2eMSQ8uWux7M6Kfo2YNNFA1tYSX0by7LjmvZEbPntB5NWD794jn_2fg8wGwwccYsNPWJZPy-1MwrtcM9D5u_U_cWRD6EHe2i__szxteMD4CZUCzcQ |
| CitedBy_id | crossref_primary_10_1088_1361_6463_aa7d77 crossref_primary_10_1103_RevModPhys_96_015005 crossref_primary_10_1063_5_0030368 crossref_primary_10_1039_D3NR01719B crossref_primary_10_1038_s41565_023_01492_2 crossref_primary_10_1103_PhysRevB_111_075104 crossref_primary_10_1016_j_physleta_2022_128238 crossref_primary_10_1063_5_0251598 crossref_primary_10_1063_9_0000311 crossref_primary_10_1038_nphys3833 crossref_primary_10_1038_s41535_018_0100_9 crossref_primary_10_1002_adfm_202307474 crossref_primary_10_1103_PhysRevApplied_10_014029 crossref_primary_10_1103_PhysRevResearch_2_012014 crossref_primary_10_1007_s11467_019_0893_4 crossref_primary_10_1103_PhysRevB_111_085430 crossref_primary_10_1002_adfm_202109361 crossref_primary_10_1002_adfm_202008411 crossref_primary_10_1002_adma_202005909 crossref_primary_10_1016_j_physe_2022_115355 crossref_primary_10_1103_PhysRevApplied_11_054049 crossref_primary_10_1088_1367_2630_acacbe crossref_primary_10_1063_1_4967391 crossref_primary_10_1103_PhysRevApplied_10_064003 crossref_primary_10_1063_5_0052301 crossref_primary_10_1103_PhysRevResearch_1_012014 crossref_primary_10_1002_adfm_202111555 crossref_primary_10_1063_1_4963073 crossref_primary_10_1088_1361_648X_ac7994 crossref_primary_10_1063_5_0080357 crossref_primary_10_1103_PhysRevApplied_17_014015 crossref_primary_10_1002_smtd_202400550 crossref_primary_10_1088_1361_648X_ab46c6 crossref_primary_10_1038_s41467_017_02743_2 crossref_primary_10_1038_srep35658 crossref_primary_10_1016_j_mattod_2024_04_014 crossref_primary_10_1016_j_scib_2018_04_007 crossref_primary_10_1038_s41928_020_0395_y crossref_primary_10_1063_5_0027987 crossref_primary_10_1103_PhysRevB_111_094410 crossref_primary_10_1103_PhysRevB_104_L220407 crossref_primary_10_1038_s41467_024_53884_0 crossref_primary_10_1038_s41598_023_29169_9 crossref_primary_10_1002_adma_202002117 crossref_primary_10_1038_s41467_020_17481_1 crossref_primary_10_1063_5_0247001 crossref_primary_10_1063_1_5030643 crossref_primary_10_1103_PhysRevB_111_L161301 crossref_primary_10_1016_j_apsusc_2020_146224 crossref_primary_10_1063_5_0125699 crossref_primary_10_1002_adfm_202314427 crossref_primary_10_1088_1361_6528_acc663 crossref_primary_10_1088_1402_4896_ad48c4 crossref_primary_10_1063_5_0280905 crossref_primary_10_3390_electronics6010019 crossref_primary_10_1063_1_5054806 crossref_primary_10_1063_5_0033259 crossref_primary_10_1038_s41699_023_00410_3 crossref_primary_10_1103_PhysRevB_108_155103 crossref_primary_10_1038_s41563_023_01550_z crossref_primary_10_1038_s41563_019_0575_1 crossref_primary_10_1103_PhysRevApplied_9_064032 crossref_primary_10_1002_pssr_202100137 crossref_primary_10_1103_dsxt_phyk crossref_primary_10_1016_j_physrep_2016_10_002 crossref_primary_10_1063_5_0281343 crossref_primary_10_1088_1361_648X_aa752d crossref_primary_10_1002_adem_201900410 crossref_primary_10_1116_6_0002273 crossref_primary_10_1038_s41563_022_01211_7 crossref_primary_10_1063_5_0107655 crossref_primary_10_1088_1361_6463_aae553 crossref_primary_10_1002_adts_202300092 crossref_primary_10_1063_5_0054865 crossref_primary_10_1109_TMAG_2021_3078583 crossref_primary_10_1038_s41586_018_0770_2 crossref_primary_10_1002_qute_202000024 crossref_primary_10_1038_nmat4726 crossref_primary_10_1088_1674_1056_ab425e crossref_primary_10_3390_nano12203687 crossref_primary_10_1088_1361_6528_ad0dca crossref_primary_10_1088_1361_6528_ad079e crossref_primary_10_1002_pssr_202100247 crossref_primary_10_1063_1_4976691 crossref_primary_10_1016_j_jallcom_2025_183397 crossref_primary_10_1103_PhysRevMaterials_6_074203 crossref_primary_10_1103_PhysRevApplied_13_054014 crossref_primary_10_1002_wcms_1313 crossref_primary_10_1063_5_0022948 crossref_primary_10_1038_s41598_018_28547_y crossref_primary_10_1038_s41567_018_0112_1 crossref_primary_10_1002_adfm_202303878 crossref_primary_10_1002_adfm_202501880 crossref_primary_10_1002_pssr_201700149 crossref_primary_10_1088_2515_7639_aad02a crossref_primary_10_3390_electronics13204085 crossref_primary_10_1063_1_5040546 crossref_primary_10_1002_aelm_202300730 crossref_primary_10_1016_j_cossms_2024_101145 crossref_primary_10_1039_D3NR01288C crossref_primary_10_1088_1361_648X_ad5e2b crossref_primary_10_1016_j_mtelec_2023_100060 crossref_primary_10_1038_s41563_018_0136_z crossref_primary_10_1002_adma_202005315 crossref_primary_10_1103_PhysRevResearch_2_023195 crossref_primary_10_1063_1_4973479 crossref_primary_10_1063_5_0023992 crossref_primary_10_1016_j_newton_2025_100026 crossref_primary_10_1038_s42005_023_01327_5 crossref_primary_10_1002_qute_202400041 crossref_primary_10_1109_JXCDC_2018_2874805 crossref_primary_10_1063_5_0097931 crossref_primary_10_1073_pnas_1812822116 crossref_primary_10_1002_adma_202000818 crossref_primary_10_1088_1402_4896_acf0fc crossref_primary_10_1088_1674_1056_acc3fb crossref_primary_10_1186_s40580_017_0100_7 crossref_primary_10_1002_advs_202400893 crossref_primary_10_1139_cjp_2021_0107 crossref_primary_10_7566_JPSJ_90_063703 crossref_primary_10_1002_adma_201802439 crossref_primary_10_1063_1_5099985 crossref_primary_10_1088_1361_6463_abfce8 crossref_primary_10_1103_PhysRevApplied_23_014071 crossref_primary_10_1088_2515_7639_ab69b0 crossref_primary_10_1002_adma_202203038 crossref_primary_10_1016_j_physleta_2024_130194 crossref_primary_10_1038_s41467_020_20840_7 crossref_primary_10_1038_s41467_023_42987_9 crossref_primary_10_1063_1_5010973 crossref_primary_10_1016_j_apsusc_2021_151347 crossref_primary_10_1002_adma_202418663 crossref_primary_10_1063_5_0154149 crossref_primary_10_1002_adma_202418541 crossref_primary_10_1038_s41563_019_0467_4 crossref_primary_10_1103_PhysRevResearch_3_013275 crossref_primary_10_1016_j_jmmm_2022_169974 crossref_primary_10_1038_ncomms13485 crossref_primary_10_1103_PhysRevResearch_2_033204 crossref_primary_10_1038_s41467_017_01583_4 crossref_primary_10_1038_s41928_018_0085_1 crossref_primary_10_1073_pnas_2305541120 crossref_primary_10_1002_pssr_202200161 crossref_primary_10_1209_0295_5075_130_58001 crossref_primary_10_7566_JPSJ_86_011001 crossref_primary_10_1038_s41467_024_46405_6 crossref_primary_10_1103_PhysRevResearch_2_023055 crossref_primary_10_1002_pssb_201800513 crossref_primary_10_1038_s42005_024_01801_8 crossref_primary_10_1103_PhysRevApplied_19_034012 crossref_primary_10_1103_PhysRevMaterials_5_124410 crossref_primary_10_1007_s40820_020_00424_2 crossref_primary_10_1088_1367_2630_adac88 crossref_primary_10_1063_5_0077431 crossref_primary_10_1063_5_0192717 crossref_primary_10_1038_s41567_017_0031_6 crossref_primary_10_1007_s40766_020_0002_0 crossref_primary_10_1088_1361_6528_acaf34 crossref_primary_10_1088_2515_7639_ac9f6e crossref_primary_10_1002_adom_202102061 crossref_primary_10_1063_5_0059171 crossref_primary_10_1038_s41467_024_52080_4 crossref_primary_10_1016_j_jmmm_2021_168698 crossref_primary_10_1002_adma_202007795 crossref_primary_10_1038_s41467_017_02491_3 crossref_primary_10_1038_nphys4192 crossref_primary_10_1063_1_5127882 crossref_primary_10_1002_adfm_202407968 crossref_primary_10_1209_0295_5075_133_17001 crossref_primary_10_1063_5_0032538 crossref_primary_10_1038_s41467_023_39529_8 crossref_primary_10_1063_5_0098585 crossref_primary_10_1038_s44306_024_00054_z crossref_primary_10_1063_5_0107903 crossref_primary_10_1002_admi_202101244 crossref_primary_10_1103_PhysRevResearch_6_023074 crossref_primary_10_1038_nature19820 crossref_primary_10_1002_adma_202102102 crossref_primary_10_1002_admi_202201452 crossref_primary_10_1038_s41467_025_62516_0 crossref_primary_10_1002_adma_202104645 crossref_primary_10_1063_5_0223869 |
| Cites_doi | 10.1103/RevModPhys.83.1057 10.1103/PhysRevLett.98.186807 10.1063/1.4863407 10.1103/PhysRevB.76.045302 10.1103/PhysRevB.85.144408 10.1103/PhysRevB.93.014420 10.1103/PhysRevB.90.094403 10.1038/ncomms4003 10.1063/1.4921765 10.1038/nmat3301 10.1103/PhysRevLett.111.136804 10.1038/nature13534 10.1063/1.4753947 10.1038/ncomms3944 10.1103/PhysRevLett.98.106803 10.1103/PhysRevB.82.214403 10.1103/PhysRevLett.113.196601 10.1021/nl5026198 10.1103/PhysRevLett.112.096601 10.1038/nnano.2014.16 10.1103/PhysRevB.91.235437 10.1021/acs.nanolett.5b03274 10.1038/nature04937 10.1016/j.physe.2011.11.003 10.1103/PhysRevLett.111.157205 10.1063/1.4915479 10.1103/PhysRevLett.112.106602 10.1016/0038-1098(90)90963-C 10.1103/PhysRevLett.114.166602 10.1063/1.4919129 10.1103/PhysRevLett.111.216401 10.1209/0295-5075/93/67004 10.1103/RevModPhys.82.3045 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD H8D L7M 1XC VOOES |
| DOI | 10.1103/PhysRevLett.116.096602 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | oai:HAL:hal-01614026v1 26991190 10_1103_PhysRevLett_116_096602 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD H8D L7M 1XC VOOES XJT |
| ID | FETCH-LOGICAL-c378t-99973f74f4f3951fede9be7256a3a2e94b172c2d2571767e1c99edaac9dec7743 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 326 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371418100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Tue Oct 14 20:52:23 EDT 2025 Fri Jul 11 10:41:53 EDT 2025 Wed Oct 01 14:48:30 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Tue Nov 18 22:00:44 EST 2025 Sat Nov 29 01:46:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://link.aps.org/licenses/aps-default-license Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-99973f74f4f3951fede9be7256a3a2e94b172c2d2571767e1c99edaac9dec7743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2728-4149 0000-0001-5709-6945 0000-0001-7044-2785 0000-0001-9800-8059 0000-0002-1171-2391 0000-0002-7745-7282 0000-0002-7204-7022 0000-0003-0670-8539 0000-0002-2416-0514 0000-0001-7422-0418 0000-0002-3873-2456 |
| OpenAccessLink | https://hal.science/hal-01614026 |
| PMID | 26991190 |
| PQID | 1774532247 |
| PQPubID | 23479 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01614026v1 proquest_miscellaneous_1808048570 proquest_miscellaneous_1774532247 pubmed_primary_26991190 crossref_citationtrail_10_1103_PhysRevLett_116_096602 crossref_primary_10_1103_PhysRevLett_116_096602 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2016 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.116.096602Cc18R1 PhysRevLett.116.096602Cc17R1 PhysRevLett.116.096602Cc19R1 PhysRevLett.116.096602Cc14R1 PhysRevLett.116.096602Cc13R1 PhysRevLett.116.096602Cc16R1 PhysRevLett.116.096602Cc35R1 PhysRevLett.116.096602Cc15R1 PhysRevLett.116.096602Cc36R1 PhysRevLett.116.096602Cc10R1 PhysRevLett.116.096602Cc34R1 PhysRevLett.116.096602Cc12R1 PhysRevLett.116.096602Cc31R1 PhysRevLett.116.096602Cc11R1 PhysRevLett.116.096602Cc32R1 PhysRevLett.116.096602Cc30R1 (PhysRevLett.116.096602Cc1R1) 2011 PhysRevLett.116.096602Cc28R1 PhysRevLett.116.096602Cc29R1 PhysRevLett.116.096602Cc26R1 PhysRevLett.116.096602Cc27R1 PhysRevLett.116.096602Cc25R1 PhysRevLett.116.096602Cc2R1 PhysRevLett.116.096602Cc22R1 PhysRevLett.116.096602Cc3R1 PhysRevLett.116.096602Cc23R1 PhysRevLett.116.096602Cc20R1 PhysRevLett.116.096602Cc21R1 PhysRevLett.116.096602Cc6R1 PhysRevLett.116.096602Cc7R1 PhysRevLett.116.096602Cc4R1 PhysRevLett.116.096602Cc5R1 PhysRevLett.116.096602Cc8R1 PhysRevLett.116.096602Cc9R1 |
| References_xml | – ident: PhysRevLett.116.096602Cc7R1 doi: 10.1103/RevModPhys.83.1057 – ident: PhysRevLett.116.096602Cc4R1 doi: 10.1103/PhysRevLett.98.186807 – ident: PhysRevLett.116.096602Cc3R1 doi: 10.1063/1.4863407 – ident: PhysRevLett.116.096602Cc8R1 doi: 10.1103/PhysRevB.76.045302 – ident: PhysRevLett.116.096602Cc26R1 doi: 10.1103/PhysRevB.85.144408 – ident: PhysRevLett.116.096602Cc23R1 doi: 10.1103/PhysRevB.93.014420 – ident: PhysRevLett.116.096602Cc28R1 doi: 10.1103/PhysRevB.90.094403 – ident: PhysRevLett.116.096602Cc35R1 doi: 10.1038/ncomms4003 – ident: PhysRevLett.116.096602Cc20R1 doi: 10.1063/1.4921765 – volume-title: Handbook of Spin Transport, and Magnetism year: 2011 ident: PhysRevLett.116.096602Cc1R1 – ident: PhysRevLett.116.096602Cc36R1 doi: 10.1038/nmat3301 – ident: PhysRevLett.116.096602Cc9R1 doi: 10.1103/PhysRevLett.111.136804 – ident: PhysRevLett.116.096602Cc15R1 doi: 10.1038/nature13534 – ident: PhysRevLett.116.096602Cc34R1 doi: 10.1063/1.4753947 – ident: PhysRevLett.116.096602Cc18R1 doi: 10.1038/ncomms3944 – ident: PhysRevLett.116.096602Cc5R1 doi: 10.1103/PhysRevLett.98.106803 – ident: PhysRevLett.116.096602Cc30R1 doi: 10.1103/PhysRevB.82.214403 – ident: PhysRevLett.116.096602Cc27R1 doi: 10.1103/PhysRevLett.113.196601 – ident: PhysRevLett.116.096602Cc17R1 doi: 10.1021/nl5026198 – ident: PhysRevLett.116.096602Cc19R1 doi: 10.1103/PhysRevLett.112.096601 – ident: PhysRevLett.116.096602Cc16R1 doi: 10.1038/nnano.2014.16 – ident: PhysRevLett.116.096602Cc29R1 doi: 10.1103/PhysRevB.91.235437 – ident: PhysRevLett.116.096602Cc32R1 doi: 10.1021/acs.nanolett.5b03274 – ident: PhysRevLett.116.096602Cc2R1 doi: 10.1038/nature04937 – ident: PhysRevLett.116.096602Cc25R1 doi: 10.1016/j.physe.2011.11.003 – ident: PhysRevLett.116.096602Cc10R1 doi: 10.1103/PhysRevLett.111.157205 – ident: PhysRevLett.116.096602Cc22R1 doi: 10.1063/1.4915479 – ident: PhysRevLett.116.096602Cc31R1 doi: 10.1103/PhysRevLett.112.106602 – ident: PhysRevLett.116.096602Cc12R1 doi: 10.1016/0038-1098(90)90963-C – ident: PhysRevLett.116.096602Cc14R1 doi: 10.1103/PhysRevLett.114.166602 – ident: PhysRevLett.116.096602Cc21R1 doi: 10.1063/1.4919129 – ident: PhysRevLett.116.096602Cc11R1 doi: 10.1103/PhysRevLett.111.216401 – ident: PhysRevLett.116.096602Cc13R1 doi: 10.1209/0295-5075/93/67004 – ident: PhysRevLett.116.096602Cc6R1 doi: 10.1103/RevModPhys.82.3045 |
| SSID | ssj0001268 |
| Score | 2.6492558 |
| Snippet | We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the... We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of... |
| SourceID | hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 096602 |
| SubjectTerms | Charge Condensed Matter Conversion Direct current Helical Insulators Inverse Iron - chemistry Materials Science Models, Theoretical Photoelectron Spectroscopy - methods Physics Pumping Silver - chemistry Temperature Tin - chemistry Topology |
| Title | Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: Α-Sn films |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26991190 https://www.proquest.com/docview/1774532247 https://www.proquest.com/docview/1808048570 https://hal.science/hal-01614026 |
| Volume | 116 |
| WOSCitedRecordID | wos000371418100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCiQulDdbHhoQ19A4duyktwpR9QAVoiDtLfI6E7FSm1016Ur8jP6x_qbOONkVSBTUSw6Wx0n8GH-2P38D8D43tbF50IkPpBMTlE0Kq3xCZuZssKmnvInBJtzxcTGdll-3IP37Cb5K9Z4wIb_RSm63cIL9kIqeZHS6hRGxfP1lunG9KrOD69XCO0jdeCX45mL-mI3u_BQu5E1AM044hzu3_9SH8GAEl3gw9IZHsEXtY7gXSZ6hewLdyXLeYr_AKI9EGBnncbsMfY8CoVGUqkaZZZz9wk4MltziPMHhvGVTj4zDUTZucdFwWcu188TIapcl_D5eXSYnLTbz07PuKfw4_PT941EyBl1IgnZFnzBgdLpxpjGNZvTVUE3ljBwjI699RqWZMeQJWc1DXTnrSIWypNr7UNYUGEvqZ7DdLlp6Aag4b-ZEPkiXRhODu6wOhdO1caEm1UwgX1d-FUZFcgmMcVrFlUmqq98qlBNsNVToBPY2dstBk-O_Fu-4bTeZRVL76OBzJWkCeXkNbVdqAm_XTV_xGJODE9_S4qKrFP9Xzp7PuH_kEYFOI-ECJvB86Deb92WWUTgjr91bf_hLuM8IzQ6kt1ew3Z9f0Gu4G1b9vDt_Ezs_P920uAbxQwOc |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+to+charge+conversion+at+room+temperature+by+spin+pumping+into+a+new+type+of+topological+insulator%3A+%CE%B1+-Sn+films&rft.jtitle=Physical+review+letters&rft.au=Rojas-S%C3%A1nchez%2C+J.C.&rft.au=Oyarz%C3%BAn%2C+S.&rft.au=Fu%2C+Y.&rft.au=Marty%2C+A.&rft.date=2016-03-01&rft.pub=American+Physical+Society&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=116&rft.issue=9&rft_id=info:doi/10.1103%2FPhysRevLett.116.096602&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01614026v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |