Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies

Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology Jg. 186; H. 9; S. 1084
Hauptverfasser: Würtz, Peter, Kangas, Antti J, Soininen, Pasi, Lawlor, Debbie A, Davey Smith, George, Ala-Korpela, Mika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.11.2017
Schlagworte:
ISSN:1476-6256, 1476-6256
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings.
AbstractList Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings.
Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings.Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings.
Author Kangas, Antti J
Soininen, Pasi
Ala-Korpela, Mika
Würtz, Peter
Davey Smith, George
Lawlor, Debbie A
Author_xml – sequence: 1
  givenname: Peter
  surname: Würtz
  fullname: Würtz, Peter
– sequence: 2
  givenname: Antti J
  surname: Kangas
  fullname: Kangas, Antti J
– sequence: 3
  givenname: Pasi
  surname: Soininen
  fullname: Soininen, Pasi
– sequence: 4
  givenname: Debbie A
  surname: Lawlor
  fullname: Lawlor, Debbie A
– sequence: 5
  givenname: George
  surname: Davey Smith
  fullname: Davey Smith, George
– sequence: 6
  givenname: Mika
  surname: Ala-Korpela
  fullname: Ala-Korpela, Mika
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29106475$$D View this record in MEDLINE/PubMed
BookMark eNpNkMlOwzAURS1URAfY8AHISzahnmIn7KqqDFJLgZZ15DgvxSVxSpwU-vcEARKrd6VzdHX1hqjnKgcInVNyRUnMx3oL47ePT0LlERpQoWQgWSh7_3IfDb3fEkJpHJIT1GcxJVKocID2T612jW10Y_eAV1C3JX5oTQG6xgu9cdBYg5_BV047A3gBjU6roiqt8dg6PNf1BoKV0QXg2c5mUNqObg7XeIIfa1tCjSuHg2Xn4zWYV_dNLfhTdJzrwsPZ7x2hl5vZenoXzJe399PJPDBcRU0QaW14LowiscrzMBKCEIgZyZQSiikmTIcVMzzSmVBRyBRVKQsF8Jym3FA2Qpc_vbu6em_BN0lpvYGi0A6q1ic0lpRwSWPeqRe_apuWkCW7br6uD8nfr9gXEKptFw
CitedBy_id crossref_primary_10_1002_anie_201804736
crossref_primary_10_1111_sms_14261
crossref_primary_10_1016_j_ebiom_2021_103764
crossref_primary_10_1186_s13148_020_00957_8
crossref_primary_10_1161_ATVBAHA_123_320175
crossref_primary_10_1007_s11695_023_06905_8
crossref_primary_10_1038_s41591_022_01992_z
crossref_primary_10_1186_s12933_022_01726_y
crossref_primary_10_1371_journal_pone_0282433
crossref_primary_10_1093_ije_dyaf065
crossref_primary_10_1111_dom_15084
crossref_primary_10_1111_acel_14125
crossref_primary_10_1016_j_ebiom_2018_05_011
crossref_primary_10_1038_s41591_022_01686_6
crossref_primary_10_1017_S0007114520002524
crossref_primary_10_1161_JAHA_119_013131
crossref_primary_10_1055_a_1827_7896
crossref_primary_10_1002_advs_202406670
crossref_primary_10_1073_pnas_2500001122
crossref_primary_10_1016_j_atherosclerosis_2022_03_019
crossref_primary_10_1093_ajcn_nqz100
crossref_primary_10_1038_s43856_024_00669_7
crossref_primary_10_1186_s12877_024_05144_5
crossref_primary_10_1038_s41591_022_01980_3
crossref_primary_10_1161_ATVBAHA_121_316341
crossref_primary_10_1186_s12263_025_00763_y
crossref_primary_10_1038_s41598_018_26441_1
crossref_primary_10_1053_j_ajkd_2023_05_014
crossref_primary_10_1038_s41366_025_01895_2
crossref_primary_10_1007_s00125_024_06282_6
crossref_primary_10_1017_S0007114519001429
crossref_primary_10_1038_s41598_025_07711_1
crossref_primary_10_1111_aogs_15176
crossref_primary_10_1186_s12916_025_04107_w
crossref_primary_10_1371_journal_pone_0223692
crossref_primary_10_1016_j_nut_2021_111440
crossref_primary_10_1186_s12916_023_03115_y
crossref_primary_10_1373_clinchem_2018_299222
crossref_primary_10_1016_j_jdiacomp_2022_108203
crossref_primary_10_1016_j_foodhyd_2024_109839
crossref_primary_10_1111_cen_14119
crossref_primary_10_1371_journal_pbio_3000572
crossref_primary_10_1016_j_atherosclerosis_2019_12_009
crossref_primary_10_1111_joim_20105
crossref_primary_10_7554_eLife_87894
crossref_primary_10_3390_ijms23169266
crossref_primary_10_1161_JAHA_121_021995
crossref_primary_10_1016_j_jlr_2025_100778
crossref_primary_10_1093_cei_uxae127
crossref_primary_10_1007_s11306_022_01917_4
crossref_primary_10_1177_00220345241298219
crossref_primary_10_1186_s12933_025_02899_y
crossref_primary_10_1002_mnfr_202300338
crossref_primary_10_1007_s11306_025_02259_7
crossref_primary_10_1016_j_diabres_2020_108583
crossref_primary_10_12688_wellcomeopenres_16341_1
crossref_primary_10_1186_s12916_025_03993_4
crossref_primary_10_1111_cpf_12594
crossref_primary_10_12688_wellcomeopenres_16341_2
crossref_primary_10_1038_s42003_024_05977_1
crossref_primary_10_1038_s41598_025_06683_6
crossref_primary_10_1007_s00125_024_06108_5
crossref_primary_10_1093_ije_dyy287
crossref_primary_10_1038_s41591_019_0722_x
crossref_primary_10_3233_JAD_190132
crossref_primary_10_3389_fimmu_2020_01527
crossref_primary_10_1016_j_atherosclerosis_2025_120457
crossref_primary_10_1002_ppul_24558
crossref_primary_10_1093_cvr_cvaf076
crossref_primary_10_1007_s12020_020_02235_2
crossref_primary_10_1136_bjophthalmol_2021_320584
crossref_primary_10_1186_s13073_022_01135_6
crossref_primary_10_1016_j_jri_2024_104397
crossref_primary_10_1111_vcp_12954
crossref_primary_10_1186_s12916_021_01929_2
crossref_primary_10_1038_s41576_023_00674_x
crossref_primary_10_1136_openhrt_2020_001554
crossref_primary_10_1186_s12986_024_00882_0
crossref_primary_10_1210_clinem_dgaa729
crossref_primary_10_3390_nu17010008
crossref_primary_10_1093_ajcn_nqaa413
crossref_primary_10_1186_s12872_023_03394_6
crossref_primary_10_3390_metabo9010004
crossref_primary_10_1016_j_heliyon_2021_e07114
crossref_primary_10_1249_MSS_0000000000002003
crossref_primary_10_1007_s11306_025_02334_z
crossref_primary_10_1111_liv_14174
crossref_primary_10_3390_jcm9040970
crossref_primary_10_7554_eLife_98709_3
crossref_primary_10_1002_ange_201804736
crossref_primary_10_1016_j_atherosclerosis_2019_05_011
crossref_primary_10_1111_jcpe_13902
crossref_primary_10_3389_fvets_2023_1105113
crossref_primary_10_1016_j_diabet_2024_101584
crossref_primary_10_1371_journal_pone_0304966
crossref_primary_10_1016_j_jhazmat_2024_136498
crossref_primary_10_3389_fnut_2024_1462300
crossref_primary_10_1186_s12916_024_03529_2
crossref_primary_10_1038_s41467_023_44459_6
crossref_primary_10_3390_nu12113309
crossref_primary_10_1002_ejhf_3226
crossref_primary_10_1016_j_atherosclerosis_2019_05_023
crossref_primary_10_1186_s12916_023_02742_9
crossref_primary_10_1016_j_biopsych_2019_08_016
crossref_primary_10_1136_bmjopen_2017_020900
crossref_primary_10_3390_metabo13121181
crossref_primary_10_1017_S0007114522000241
crossref_primary_10_1038_s41366_020_0565_z
crossref_primary_10_1038_s41598_023_34598_7
crossref_primary_10_1111_cns_70507
crossref_primary_10_1016_j_atherosclerosis_2024_119094
crossref_primary_10_1097_EJA_0000000000001591
crossref_primary_10_1177_17474930241293408
crossref_primary_10_1186_s12916_021_01959_w
crossref_primary_10_1016_j_lanepe_2025_101223
crossref_primary_10_1016_j_clnu_2024_07_027
crossref_primary_10_1186_s12916_018_1008_8
crossref_primary_10_1016_j_jacc_2017_12_006
crossref_primary_10_1161_JAHA_122_027934
crossref_primary_10_1111_dom_15935
crossref_primary_10_1161_JAHA_118_011852
crossref_primary_10_1186_s12916_022_02449_3
crossref_primary_10_1002_dmrr_3734
crossref_primary_10_1186_s12979_025_00527_7
crossref_primary_10_1161_ATVBAHA_118_312021
crossref_primary_10_1093_clinchem_hvae222
crossref_primary_10_1016_j_ebiom_2024_105279
crossref_primary_10_1038_s41380_019_0640_9
crossref_primary_10_1038_s41598_018_36450_9
crossref_primary_10_1016_j_plefa_2020_102099
crossref_primary_10_1016_j_atherosclerosis_2020_01_020
crossref_primary_10_3389_fnut_2022_962787
crossref_primary_10_1016_j_jtemb_2018_09_003
crossref_primary_10_1038_s41467_024_54357_0
crossref_primary_10_3390_metabo9040064
crossref_primary_10_1093_eurheartj_ehaa972
crossref_primary_10_2337_dc21_1415
crossref_primary_10_1038_s41598_024_69594_y
crossref_primary_10_3389_fnut_2021_664939
crossref_primary_10_3390_metabo11090614
crossref_primary_10_1007_s10654_025_01284_z
crossref_primary_10_3390_metabo12121172
crossref_primary_10_1002_advs_202413491
crossref_primary_10_1038_s41467_020_20750_8
crossref_primary_10_1186_s12933_022_01493_w
crossref_primary_10_1038_s41598_021_90644_2
crossref_primary_10_1097_HEP_0000000000000879
crossref_primary_10_1186_s12916_018_1248_7
crossref_primary_10_1111_joim_13306
crossref_primary_10_1177_00220345231203562
crossref_primary_10_1016_j_jad_2023_11_070
crossref_primary_10_1186_s12933_025_02581_3
crossref_primary_10_1016_j_atherosclerosis_2023_117316
crossref_primary_10_1186_s12916_022_02688_4
crossref_primary_10_1007_s00125_020_05162_z
crossref_primary_10_1542_peds_2019_3666
crossref_primary_10_1038_s41598_025_16493_5
crossref_primary_10_1177_1744806920923885
crossref_primary_10_7554_eLife_75170
crossref_primary_10_1017_S0007114517002768
crossref_primary_10_1111_jsr_13245
crossref_primary_10_1186_s12916_020_01819_z
crossref_primary_10_1038_s41467_023_37729_w
crossref_primary_10_1093_aje_kwy221
crossref_primary_10_1038_s41586_024_07148_y
crossref_primary_10_1186_s12916_022_02653_1
crossref_primary_10_1016_j_tjnut_2025_04_034
crossref_primary_10_7554_eLife_72909
crossref_primary_10_3390_ijms232112947
crossref_primary_10_1186_s12969_024_01041_8
crossref_primary_10_1038_s41598_024_67177_5
crossref_primary_10_1016_j_jhep_2025_05_026
crossref_primary_10_1038_s41598_018_28793_0
crossref_primary_10_1210_clinem_dgad032
crossref_primary_10_1038_s43856_022_00140_5
crossref_primary_10_1039_D3FO03575A
crossref_primary_10_1093_clinchem_hvaa290
crossref_primary_10_1016_j_jacc_2020_09_610
crossref_primary_10_1159_000542468
crossref_primary_10_3389_fnut_2024_1479800
crossref_primary_10_1016_j_ijcard_2018_11_020
crossref_primary_10_1038_s41598_025_12305_y
crossref_primary_10_1038_s41598_022_19159_8
crossref_primary_10_1093_clinchem_hvab024
crossref_primary_10_1186_s12916_023_03188_9
crossref_primary_10_1038_s41467_024_46663_4
crossref_primary_10_1017_S0007114518000673
crossref_primary_10_1016_j_ajog_2022_06_009
crossref_primary_10_1093_hmg_ddad097
crossref_primary_10_7554_eLife_90132_3
crossref_primary_10_3390_metabo11020121
crossref_primary_10_1007_s11306_022_01954_z
crossref_primary_10_3390_nu14245306
crossref_primary_10_1097_HJH_0000000000002310
crossref_primary_10_1515_znc_2018_0214
crossref_primary_10_1007_s11306_021_01803_5
crossref_primary_10_1186_s13073_024_01395_4
crossref_primary_10_3390_nu12123610
crossref_primary_10_1111_jnc_15659
crossref_primary_10_1017_S0007114524000138
crossref_primary_10_1111_rssc_12490
crossref_primary_10_3389_fnut_2024_1454364
crossref_primary_10_1186_s13054_023_04589_1
crossref_primary_10_1016_j_jad_2023_05_033
crossref_primary_10_1080_01635581_2021_1957947
crossref_primary_10_1038_s41598_020_61801_w
crossref_primary_10_1038_s41598_018_33507_7
crossref_primary_10_1186_s12933_023_01815_6
crossref_primary_10_1093_ije_dyab156
crossref_primary_10_1111_joim_13479
crossref_primary_10_1161_CIRCGENETICS_117_001759
crossref_primary_10_1093_aje_kwae445
crossref_primary_10_1093_ije_dyaa188
crossref_primary_10_1186_s12874_024_02181_x
crossref_primary_10_1016_j_jacc_2022_10_019
crossref_primary_10_1093_ajcn_nqab132
crossref_primary_10_1111_aogs_14750
crossref_primary_10_7554_eLife_87894_3
crossref_primary_10_1007_s10654_024_01114_8
crossref_primary_10_1093_eurjpc_zwac252
crossref_primary_10_1016_j_jacc_2018_09_066
crossref_primary_10_1002_alz_12180
crossref_primary_10_1039_D4FO00987H
crossref_primary_10_1038_s41467_023_42404_1
crossref_primary_10_3390_nu15133002
crossref_primary_10_1186_s12916_023_03198_7
crossref_primary_10_1017_S0033291721001471
crossref_primary_10_1161_ATVBAHA_120_315639
crossref_primary_10_1016_j_jacl_2019_10_012
crossref_primary_10_1016_j_cca_2024_119671
crossref_primary_10_1093_ajcn_nqab269
crossref_primary_10_1161_CIRCRESAHA_121_319272
crossref_primary_10_1161_JAHA_124_039750
crossref_primary_10_1016_j_diabres_2025_112420
crossref_primary_10_1093_cvr_cvac194
crossref_primary_10_12688_wellcomeopenres_15087_2
crossref_primary_10_1093_eurjpc_zwaf305
crossref_primary_10_1016_j_atherosclerosis_2020_03_028
crossref_primary_10_1186_s12937_025_01077_w
crossref_primary_10_1210_clinem_dgae204
crossref_primary_10_1016_j_jhep_2024_10_015
crossref_primary_10_1161_ATVBAHA_120_315766
crossref_primary_10_1016_j_ebiom_2023_104503
crossref_primary_10_1210_clinem_dgae318
crossref_primary_10_3390_metabo12060537
crossref_primary_10_1016_j_jrras_2024_101278
crossref_primary_10_1093_eurjpc_zwaf543
crossref_primary_10_1111_bph_15433
crossref_primary_10_1038_s41366_023_01281_w
crossref_primary_10_1038_s43856_023_00382_x
crossref_primary_10_1016_j_psyneuen_2017_10_005
crossref_primary_10_7554_eLife_90132
crossref_primary_10_1093_ije_dyab051
crossref_primary_10_1017_thg_2020_53
crossref_primary_10_1016_j_jlr_2022_100313
crossref_primary_10_1016_j_jad_2025_119594
crossref_primary_10_1111_dom_16533
crossref_primary_10_1038_s41598_022_09056_5
crossref_primary_10_2337_dc19_2348
crossref_primary_10_1002_mnfr_201801095
crossref_primary_10_3389_fmed_2022_923746
crossref_primary_10_1016_j_tjpad_2025_100067
crossref_primary_10_1016_j_ebiom_2023_104884
crossref_primary_10_1038_s42003_024_06724_2
crossref_primary_10_1038_s41467_023_40245_6
crossref_primary_10_1186_s40364_023_00555_9
crossref_primary_10_1038_s41598_021_00531_z
crossref_primary_10_3389_fimmu_2024_1514977
crossref_primary_10_1136_jech_2023_221245
crossref_primary_10_1016_j_jpsychores_2018_02_016
crossref_primary_10_1093_ajcn_nqac025
crossref_primary_10_1093_aje_kwae402
crossref_primary_10_1007_s11306_025_02264_w
crossref_primary_10_1158_1055_9965_EPI_25_0196
crossref_primary_10_1007_s11306_025_02308_1
crossref_primary_10_1016_j_jacl_2021_01_011
crossref_primary_10_1038_s41416_024_02906_1
crossref_primary_10_1038_s41467_019_11311_9
crossref_primary_10_1136_annrheumdis_2021_220168
crossref_primary_10_1161_CIRCULATIONAHA_118_034942
crossref_primary_10_1161_CIRCRESAHA_118_314642
crossref_primary_10_7554_eLife_63033
crossref_primary_10_1111_dom_15782
crossref_primary_10_3390_nu12020310
crossref_primary_10_1002_mrc_70026
crossref_primary_10_1007_s11695_023_07042_y
crossref_primary_10_1038_s41467_025_60058_z
crossref_primary_10_1007_s11357_023_00778_6
crossref_primary_10_1007_s11306_019_1474_9
crossref_primary_10_1161_ATVBAHA_120_315321
crossref_primary_10_3390_biom13030470
crossref_primary_10_1039_D5FO01906K
crossref_primary_10_1016_j_mito_2024_101991
crossref_primary_10_1136_bmjopen_2021_049231
crossref_primary_10_1038_s41467_025_59964_z
crossref_primary_10_1016_j_jacl_2022_02_007
crossref_primary_10_1021_acs_analchem_4c03229
crossref_primary_10_1093_eurjpc_zwad285
crossref_primary_10_1371_journal_pmed_1003636
crossref_primary_10_1093_eurjpc_zwad160
crossref_primary_10_1016_j_abb_2021_108987
crossref_primary_10_1016_j_freeradbiomed_2020_10_020
crossref_primary_10_1016_j_clnu_2025_01_007
crossref_primary_10_1016_j_chest_2024_06_3809
crossref_primary_10_1093_ije_dyad162
crossref_primary_10_3390_nu13020533
crossref_primary_10_1093_brain_awae257
crossref_primary_10_1007_s00125_019_05001_w
crossref_primary_10_1016_j_jad_2025_02_109
crossref_primary_10_1186_s12916_022_02354_9
crossref_primary_10_1371_journal_pone_0284570
crossref_primary_10_1016_j_jacl_2024_12_007
crossref_primary_10_1161_CIRCGEN_124_004978
crossref_primary_10_1038_s41390_021_01672_7
crossref_primary_10_1136_rmdopen_2023_003560
crossref_primary_10_3390_metabo9070123
crossref_primary_10_1002_mnfr_70059
crossref_primary_10_1016_j_cca_2022_06_002
crossref_primary_10_1161_CIRCULATIONAHA_121_056892
crossref_primary_10_1016_j_pnmrs_2025_101564
crossref_primary_10_1093_ageing_afae256
crossref_primary_10_1186_s12944_020_01417_1
crossref_primary_10_1016_j_diabet_2024_101527
crossref_primary_10_1007_s11357_024_01142_y
crossref_primary_10_1038_s41586_019_1457_z
crossref_primary_10_1038_s41467_019_12703_7
crossref_primary_10_1016_j_cclet_2023_109276
crossref_primary_10_1093_eurheartj_ehad330
crossref_primary_10_1111_dom_15224
crossref_primary_10_1038_s41538_023_00233_y
crossref_primary_10_1161_CIRCRESAHA_123_323973
crossref_primary_10_1038_s41416_025_02997_4
crossref_primary_10_1038_s41366_023_01361_x
crossref_primary_10_12688_wellcomeopenres_14974_1
crossref_primary_10_3390_ijms22063010
crossref_primary_10_1016_j_ebiom_2025_105881
crossref_primary_10_12688_wellcomeopenres_14974_2
crossref_primary_10_7554_eLife_98709
crossref_primary_10_1038_s41596_020_00475_0
crossref_primary_10_3389_fmolb_2021_676349
crossref_primary_10_1016_j_jacc_2018_10_016
crossref_primary_10_1016_j_atherosclerosis_2022_12_008
crossref_primary_10_1177_0004563220961753
crossref_primary_10_1007_s11306_021_01856_6
crossref_primary_10_1093_annweh_wxad018
crossref_primary_10_1210_clinem_dgac412
crossref_primary_10_1093_ije_dyz244
crossref_primary_10_1111_jnc_15845
crossref_primary_10_1186_s12967_024_05868_3
crossref_primary_10_3390_metabo14070380
crossref_primary_10_1007_s11357_025_01544_6
crossref_primary_10_1016_j_ebiom_2025_105868
crossref_primary_10_1136_bmjdrc_2020_002022
crossref_primary_10_1007_s11357_022_00657_6
crossref_primary_10_1111_acel_70033
crossref_primary_10_1111_imm_13739
crossref_primary_10_1002_gps_70138
crossref_primary_10_1016_j_clnesp_2022_04_022
crossref_primary_10_1093_ije_dyae055
crossref_primary_10_1093_bioadv_vbad123
crossref_primary_10_1210_jc_2018_01165
crossref_primary_10_1186_s12916_022_02399_w
crossref_primary_10_1038_s41467_023_36231_7
crossref_primary_10_3390_metabo15070434
crossref_primary_10_1007_s00125_018_4619_x
crossref_primary_10_3390_metabo9090191
crossref_primary_10_1093_ecco_jcc_jjy162
crossref_primary_10_1186_s12916_019_1440_4
crossref_primary_10_1093_bioinformatics_btaf065
crossref_primary_10_1038_s41598_024_54569_w
crossref_primary_10_1093_cvr_cvz219
crossref_primary_10_3390_cells10112832
crossref_primary_10_3390_metabo9090190
crossref_primary_10_1210_jendso_bvaa026
crossref_primary_10_1016_j_biopsych_2023_01_027
crossref_primary_10_1007_s41666_025_00208_6
crossref_primary_10_1016_j_bone_2025_117460
crossref_primary_10_1002_nbm_4638
crossref_primary_10_1186_s12916_020_01700_z
crossref_primary_10_1111_jocn_16090
crossref_primary_10_1007_s11306_019_1626_y
crossref_primary_10_1186_s12916_020_01855_9
crossref_primary_10_1007_s11357_023_00918_y
crossref_primary_10_1111_acel_14164
crossref_primary_10_1161_JAHA_124_036573
crossref_primary_10_1016_j_jad_2025_119784
crossref_primary_10_1016_j_clnu_2022_12_012
crossref_primary_10_1016_j_vph_2020_106804
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/aje/kwx016
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1476-6256
ExternalDocumentID 29106475
Genre Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MC_UU_12013/1
– fundername: Medical Research Council
  grantid: MC_UU_12013/5
GroupedDBID ---
-DZ
-E4
-~X
..I
.2P
.I3
.XZ
.ZR
0R~
1TH
23M
2WC
4.4
482
48X
5GY
5RE
5VS
5WA
5WD
6J9
70D
85S
AABZA
AACZT
AAILS
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABVGC
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADCFL
ADEYI
ADEZT
ADGHP
ADGZP
ADHKW
ADHZD
ADIPN
ADMHG
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHKS
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
ECM
EE~
EIF
EJD
EMOBN
F5P
F9B
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NOMLY
NOYVH
NPM
NVLIB
O9-
OAWHX
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TR2
UHB
UPT
W8F
WOQ
X7H
YAYTL
YF5
YKOAZ
YOC
YROCO
YSK
YXANX
ZKX
~91
7X8
ID FETCH-LOGICAL-c378t-8aac3f4c7097ff584400e920d77472724cc3f72c38ad47852717b254e3f1b3c12
IEDL.DBID 7X8
ISICitedReferencesCount 426
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414354000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-6256
IngestDate Sun Nov 09 11:18:06 EST 2025
Mon Jul 21 06:04:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords fatty acids
metabolomics
biomarkers
amino acids
drug development
Mendelian randomization
serum
nuclear magnetic resonance
Language English
License The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-8aac3f4c7097ff584400e920d77472724cc3f72c38ad47852717b254e3f1b3c12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5860146
PMID 29106475
PQID 1961036193
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1961036193
pubmed_primary_29106475
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of epidemiology
PublicationTitleAlternate Am J Epidemiol
PublicationYear 2017
SSID ssj0011950
Score 2.672473
SecondaryResourceType review_article
Snippet Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1084
SubjectTerms Biomarkers - blood
Cardiovascular Diseases - blood
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - genetics
Cardiovascular Diseases - metabolism
Cause of Death
Epidemiologic Methods
Genome-Wide Association Study
Humans
Magnetic Resonance Spectroscopy
Mendelian Randomization Analysis - methods
Metabolomics - instrumentation
Metabolomics - methods
Risk Assessment - methods
Title Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies
URI https://www.ncbi.nlm.nih.gov/pubmed/29106475
https://www.proquest.com/docview/1961036193
Volume 186
WOSCitedRecordID wos000414354000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRATxMm_zRgRfw9Yma1pfZMjEB1snKuytpEkq85LOdZv67z1pO_ckCL70pQ2U5MvJd87JOR9CZ4qmOqVKECqFRxjnbSKAVRClpNAioI7UqhCb4FHk9_tBrwq45dW1yplNLAy1yqSNkTcBKQ5YW-AbF8N3YlWjbHa1ktBYRDUKVMaimvfnWQQrcVpUF3GPAM_3Zu1JA9oUz7r58vHZcrzfqWVxxFxt_PfnNtF6RS5xp0TDFlrQpo5Wwip9XkdrZZAOl7VH22h6NxGmqDIDm4fBbEzecGQbHIsRDsWTsQWO2Ab4bVcOjUM9Bsi82jrmHA8MvrG3yMk9rLLG3bnS7Nc57uCelQ0Y4cxgcgvf458QPnjmO-jxqvtweU0qIQYiKffHxBdC0pRJ3gp4mgJlgY2vA7elgDvaRC6T8Jq7kvpCMe63XfARE_A8NU2dhErH3UVLJjN6H2HKwGooJplUgknKfOq7Mkk4UBHV0i5toNPZDMcAdJu9EEZnkzyez3ED7ZXLFA_LjhyxC6THY7x98IfRh2jVtUdzUU94hGopbHN9jJbldDzIRycFguAZ9cJv97fR6A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Serum+Nuclear+Magnetic+Resonance+Metabolomics+in+Large-Scale+Epidemiology%3A+A+Primer+on+-Omic+Technologies&rft.jtitle=American+journal+of+epidemiology&rft.au=W%C3%BCrtz%2C+Peter&rft.au=Kangas%2C+Antti+J&rft.au=Soininen%2C+Pasi&rft.au=Lawlor%2C+Debbie+A&rft.date=2017-11-01&rft.issn=1476-6256&rft.eissn=1476-6256&rft.volume=186&rft.issue=9&rft.spage=1084&rft_id=info:doi/10.1093%2Faje%2Fkwx016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-6256&client=summon