Primal–dual algorithm for distributed constrained optimization

The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented...

Full description

Saved in:
Bibliographic Details
Published in:Systems & control letters Vol. 96; pp. 110 - 117
Main Authors: Lei, Jinlong, Chen, Han-Fu, Fang, Hai-Tao
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2016
Subjects:
ISSN:0167-6911, 1872-7956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented Lagrange method, a distributed primal–dual algorithm with a projection operation included is proposed to solve the problem. It is shown that with appropriately chosen constant step size, the local estimates derived at all agents asymptotically reach a consensus at an optimal solution. In addition, the value of the cost function at the time-averaged estimate converges with rate O(1k) to the optimal value for the unconstrained problem. By these properties, the proposed primal–dual algorithm is distinguished from the existing algorithms for distributed constrained optimization. The theoretical analysis is justified by numerical simulations.
AbstractList The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented Lagrange method, a distributed primal–dual algorithm with a projection operation included is proposed to solve the problem. It is shown that with appropriately chosen constant step size, the local estimates derived at all agents asymptotically reach a consensus at an optimal solution. In addition, the value of the cost function at the time-averaged estimate converges with rate O(1k) to the optimal value for the unconstrained problem. By these properties, the proposed primal–dual algorithm is distinguished from the existing algorithms for distributed constrained optimization. The theoretical analysis is justified by numerical simulations.
Author Chen, Han-Fu
Fang, Hai-Tao
Lei, Jinlong
Author_xml – sequence: 1
  givenname: Jinlong
  surname: Lei
  fullname: Lei, Jinlong
  email: leijinlong11@mails.ucas.ac.cn
– sequence: 2
  givenname: Han-Fu
  surname: Chen
  fullname: Chen, Han-Fu
  email: hfchen@iss.ac.cn
– sequence: 3
  givenname: Hai-Tao
  surname: Fang
  fullname: Fang, Hai-Tao
  email: htfang@iss.ac.cn
BookMark eNqFUEtOwzAUtFCRaAtXQLlAgj9N7Egsiip-UiVYwNryF1ylcWW7SGXFHbghJ8GhsGHT1Xujp5k3MxMw6n1vADhHsEIQNRerKu6i8n1nKpxxBWkFYXsExohRXNK2bkZgnA-0bFqETsAkxhWEEENCxmD-GNxadF8fn3orukJ0Lz649LourA-FdjEFJ7fJ6CI_yEC4Pu9-k9zavYvkfH8Kjq3oojn7nVPwfHP9tLgrlw-394urZakIZalkAqnawha1omVKYYbRDAtpMbYMz6SqcS1nWmIlDEOaCGJqhoismWWWCijJFDR7XRV8jMFYvhmchx1HkA898BX_64EPPXBIee4hEy__EZVLP9aHON1h-nxPNzncmzOBR-VMr4x2wajEtXeHJL4BHO2DrQ
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2923269
crossref_primary_10_1109_TCNS_2020_3029996
crossref_primary_10_1109_TCNS_2024_3469048
crossref_primary_10_1007_s10957_024_02393_7
crossref_primary_10_1109_TAC_2021_3075666
crossref_primary_10_1007_s11424_020_0071_3
crossref_primary_10_1016_j_automatica_2020_109422
crossref_primary_10_1109_ACCESS_2022_3211395
crossref_primary_10_1137_16M1086133
crossref_primary_10_1016_j_sysconle_2025_106211
crossref_primary_10_1137_20M1340071
crossref_primary_10_1109_ACCESS_2020_3048330
crossref_primary_10_1109_TAC_2023_3282065
crossref_primary_10_1109_TNSE_2024_3374765
crossref_primary_10_1002_rnc_5543
crossref_primary_10_1016_j_sysconle_2018_12_005
crossref_primary_10_1109_ACCESS_2024_3393574
crossref_primary_10_1109_TAC_2021_3079192
crossref_primary_10_1109_TCYB_2020_3022240
crossref_primary_10_1109_TAC_2017_2681200
crossref_primary_10_1016_j_jfranklin_2025_107642
crossref_primary_10_1109_LCSYS_2022_3186900
crossref_primary_10_1109_TNNLS_2021_3137010
crossref_primary_10_1049_iet_cta_2018_6224
crossref_primary_10_1109_TAC_2022_3152720
crossref_primary_10_1109_TCYB_2023_3328716
crossref_primary_10_1109_ACCESS_2019_2912004
crossref_primary_10_1016_j_sysconle_2025_106189
crossref_primary_10_1109_TCNS_2022_3229769
crossref_primary_10_1049_gtd2_12912
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1109_TAC_2022_3192316
crossref_primary_10_3390_e24091278
crossref_primary_10_1016_j_ijepes_2021_107373
crossref_primary_10_1016_j_jfranklin_2023_11_017
crossref_primary_10_1109_JAS_2024_124935
crossref_primary_10_1109_TAC_2022_3173171
crossref_primary_10_1002_rnc_5451
crossref_primary_10_1016_j_neucom_2021_09_042
crossref_primary_10_1137_19M1258864
crossref_primary_10_1016_j_ifacol_2023_10_115
crossref_primary_10_1088_1674_1056_abfb5b
crossref_primary_10_1109_TCYB_2018_2883095
crossref_primary_10_1049_cth2_12075
crossref_primary_10_1016_j_sysconle_2021_104894
crossref_primary_10_1109_TAC_2019_2912713
crossref_primary_10_1007_s10957_019_01588_7
crossref_primary_10_1016_j_automatica_2022_110312
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1109_TAC_2024_3413854
crossref_primary_10_1109_TCSII_2020_2987947
crossref_primary_10_1016_j_isatra_2021_08_010
crossref_primary_10_1007_s11424_023_1321_y
crossref_primary_10_1016_j_oceaneng_2025_120561
crossref_primary_10_1109_TAC_2022_3221856
crossref_primary_10_1109_TAC_2021_3054072
crossref_primary_10_1016_j_neucom_2025_129770
crossref_primary_10_1109_TSMC_2018_2859364
crossref_primary_10_1109_TAC_2025_3527737
crossref_primary_10_1016_j_jfranklin_2024_107466
crossref_primary_10_1109_TSMC_2024_3405453
crossref_primary_10_1109_TAC_2019_2910946
crossref_primary_10_1137_23M1562032
crossref_primary_10_1109_TNSE_2022_3169151
crossref_primary_10_1109_TCNS_2023_3285887
crossref_primary_10_1002_asjc_3467
crossref_primary_10_1109_TSIPN_2025_3559433
crossref_primary_10_1109_TCNS_2022_3231185
crossref_primary_10_1016_j_ins_2021_02_049
crossref_primary_10_1109_LCSYS_2025_3577964
crossref_primary_10_1016_j_automatica_2021_109738
crossref_primary_10_1109_TAC_2019_2912494
crossref_primary_10_1137_18M119046X
crossref_primary_10_1109_TAC_2023_3327940
crossref_primary_10_1109_TAC_2025_3528410
crossref_primary_10_1016_j_automatica_2021_109899
crossref_primary_10_1109_TNNLS_2020_3027288
crossref_primary_10_1109_TAC_2022_3179216
crossref_primary_10_1109_JAS_2022_105890
crossref_primary_10_1016_j_neunet_2024_106123
crossref_primary_10_1109_TEVC_2024_3380436
crossref_primary_10_1002_rnc_6640
crossref_primary_10_1016_j_jfranklin_2019_07_018
crossref_primary_10_1016_j_automatica_2018_04_010
Cites_doi 10.1109/TIT.2012.2191450
10.1109/TAC.2008.2009515
10.1109/TAC.2010.2091295
10.1109/ACSSC.2015.7421158
10.1007/s10957-010-9737-7
10.1109/TAC.2014.2298712
10.1016/j.automatica.2007.09.003
10.1109/CDC.2011.6161503
10.1109/TAC.2004.834113
10.1109/TAC.2014.2308612
10.1109/JSTSP.2011.2118740
10.1109/TAC.2015.2416927
10.1016/j.sysconle.2015.06.006
10.1016/j.automatica.2013.07.024
10.1109/ALLERTON.2010.5706956
10.1007/s10957-009-9522-7
10.1109/TAC.2011.2167817
10.1016/j.sysconle.2015.05.007
10.1109/TSP.2009.2014812
10.1137/14096668X
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2016.07.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7956
EndPage 117
ExternalDocumentID 10_1016_j_sysconle_2016_07_009
S0167691116301050
GrantInformation_xml – fundername: National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences
  grantid: Y629091ZZ2
– fundername: 973 program of China
  grantid: 2014CB845301
– fundername: NSFC
  grantid: 61273193; 61120106011; 61134013; 61573345
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c378t-8a1c5f0919a98cc282142abf22f824bc525b4db2cae81d3a3e5813b58f8f7a0b3
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384788100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6911
IngestDate Sat Nov 29 05:30:30 EST 2025
Tue Nov 18 22:33:26 EST 2025
Fri Feb 23 02:32:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Augmented Lagrange method
Distributed constrained optimization
Multi-agent network
Primal–dual algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-8a1c5f0919a98cc282142abf22f824bc525b4db2cae81d3a3e5813b58f8f7a0b3
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_sysconle_2016_07_009
crossref_citationtrail_10_1016_j_sysconle_2016_07_009
elsevier_sciencedirect_doi_10_1016_j_sysconle_2016_07_009
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ruszczynski (br000115) 2006
A. Mokhtari, A. Ribeiro, DSA: decentralized double stochastic averaging gradient algorithm, 2015.
J. Wang, N. Elia, Control approach to distributed optimization, in: Allerton Conference, 2010, pp. 557–561.
Nedić, Ozdaglar (br000125) 2009; 142
Nedić, Ozdaglar (br000035) 2009; 54
Uzawa (br000120) 1958
Xiao, Boyd, Lall (br000135) 2006
Yi, Hong, Liu (br000095) 2015; 83
Lobel, Ozdaglar (br000040) 2011; 56
Chang, Nedić, Scaglione (br000060) 2014; 59
Kar, Moura, Ramanan (br000015) 2012; 58
Srivastava, Nedić (br000050) 2011; 5
Liu, Wang (br000070) 2015; 60
Godsil, Royle (br000110) 2001
Cao, Zhang, Ren (br000010) 2015; 82
Khan, Kar, Moura (br000020) 2009; 57
Zeng, Yi, Hong (br000090)
Jakovetic, Xavier, Moura (br000055) 2014; 59
Shi, Ling, Wu, Yin (br000075) 2015; 25
Johansson, Speranzon, Johansson, Johansson (br000030) 2008; 44
.
J. Wang, N. Elia, A control perspective for centralized and distributed convex optimization, in: CDC-ECC, 2011 pp. 3800–3805.
Bertsekas (br000100) 2010
Olfati-Saber, Murray (br000005) 2004; 49
Zhu, Martínez (br000065) 2012; 57
Ram, Nedić, Veeravalli (br000045) 2010; 147
Nesterov (br000130) 1998
You, Li, Xie (br000025) 2013; 49
Yi (10.1016/j.sysconle.2016.07.009_br000095) 2015; 83
Godsil (10.1016/j.sysconle.2016.07.009_br000110) 2001
Chang (10.1016/j.sysconle.2016.07.009_br000060) 2014; 59
Nedić (10.1016/j.sysconle.2016.07.009_br000125) 2009; 142
10.1016/j.sysconle.2016.07.009_br000080
10.1016/j.sysconle.2016.07.009_br000085
Nedić (10.1016/j.sysconle.2016.07.009_br000035) 2009; 54
Uzawa (10.1016/j.sysconle.2016.07.009_br000120) 1958
Zeng (10.1016/j.sysconle.2016.07.009_br000090)
Lobel (10.1016/j.sysconle.2016.07.009_br000040) 2011; 56
Cao (10.1016/j.sysconle.2016.07.009_br000010) 2015; 82
You (10.1016/j.sysconle.2016.07.009_br000025) 2013; 49
Xiao (10.1016/j.sysconle.2016.07.009_br000135) 2006
10.1016/j.sysconle.2016.07.009_br000105
Srivastava (10.1016/j.sysconle.2016.07.009_br000050) 2011; 5
Jakovetic (10.1016/j.sysconle.2016.07.009_br000055) 2014; 59
Nesterov (10.1016/j.sysconle.2016.07.009_br000130) 1998
Olfati-Saber (10.1016/j.sysconle.2016.07.009_br000005) 2004; 49
Kar (10.1016/j.sysconle.2016.07.009_br000015) 2012; 58
Johansson (10.1016/j.sysconle.2016.07.009_br000030) 2008; 44
Khan (10.1016/j.sysconle.2016.07.009_br000020) 2009; 57
Liu (10.1016/j.sysconle.2016.07.009_br000070) 2015; 60
Bertsekas (10.1016/j.sysconle.2016.07.009_br000100) 2010
Zhu (10.1016/j.sysconle.2016.07.009_br000065) 2012; 57
Shi (10.1016/j.sysconle.2016.07.009_br000075) 2015; 25
Ruszczynski (10.1016/j.sysconle.2016.07.009_br000115) 2006
Ram (10.1016/j.sysconle.2016.07.009_br000045) 2010; 147
References_xml – volume: 59
  start-page: 1131
  year: 2014
  end-page: 1146
  ident: br000055
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Automat. Control
– year: 1998
  ident: br000130
  article-title: Introductory Lectures on Convex Programming Volume I: Basic Course
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: br000035
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Automat. Control
– volume: 58
  start-page: 3575
  year: 2012
  end-page: 3605
  ident: br000015
  article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication
  publication-title: IEEE Trans. Inform. Theory
– volume: 25
  start-page: 944
  year: 2015
  end-page: 966
  ident: br000075
  article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
– volume: 56
  start-page: 1291
  year: 2011
  end-page: 1306
  ident: br000040
  article-title: Distributed subgradient methods for convex optimization over random networks
  publication-title: IEEE Trans. Automat. Control
– ident: br000090
– reference: J. Wang, N. Elia, A control perspective for centralized and distributed convex optimization, in: CDC-ECC, 2011 pp. 3800–3805.
– start-page: 154
  year: 1958
  end-page: 165
  ident: br000120
  article-title: Iterative methods in concave programming
  publication-title: Studies in Linear and Nonlinear Programming
– volume: 49
  start-page: 3125
  year: 2013
  end-page: 3132
  ident: br000025
  article-title: Consensus condition for linear multi-agent systems over randomly switching topologies
  publication-title: Automatica
– volume: 83
  start-page: 45
  year: 2015
  end-page: 52
  ident: br000095
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Systems Control Lett.
– volume: 60
  start-page: 3310
  year: 2015
  end-page: 3315
  ident: br000070
  article-title: A second-order multi-agent network for bounded constrained distributed optimization
  publication-title: IEEE Trans. Automat. Control
– start-page: 168
  year: 2006
  end-page: 176
  ident: br000135
  article-title: A space-time diffusion scheme for peer-to-peer least-squares estimation
  publication-title: Proceedings of the 5th international conference on Information processing in sensor networks
– volume: 59
  start-page: 1524
  year: 2014
  end-page: 1538
  ident: br000060
  article-title: Distributed constrained optimization by consensus-based primal–dual perturbation method
  publication-title: IEEE Trans. Automat. Control
– volume: 5
  start-page: 772
  year: 2011
  end-page: 790
  ident: br000050
  article-title: Distributed asynchronous constrained stochastic optimization
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– year: 2010
  ident: br000100
  article-title: Convex Optimization Theory
– volume: 57
  start-page: 151
  year: 2012
  end-page: 164
  ident: br000065
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans. Automat. Control
– volume: 82
  start-page: 64
  year: 2015
  end-page: 70
  ident: br000010
  article-title: Leader–follower consensus of linear multi-agent systems with unknown external disturbances
  publication-title: Systems Control Lett.
– volume: 142
  start-page: 205
  year: 2009
  end-page: 228
  ident: br000125
  article-title: Subgradeint methods for saddle-point problems
  publication-title: J. Optim. Theory Appl.
– volume: 49
  start-page: 1520
  year: 2004
  end-page: 1533
  ident: br000005
  article-title: Consensus problems in networks of agents with switching topology and time-delays
  publication-title: IEEE Trans. Automat. Control
– reference: .
– volume: 57
  start-page: 2000
  year: 2009
  end-page: 2016
  ident: br000020
  article-title: Distributed sensor localization in random environments using minimal number of anchor nodes
  publication-title: IEEE Trans. Signal Process.
– reference: A. Mokhtari, A. Ribeiro, DSA: decentralized double stochastic averaging gradient algorithm, 2015.
– year: 2001
  ident: br000110
  article-title: Algebraic Graph Theory
– volume: 44
  start-page: 1175
  year: 2008
  end-page: 1179
  ident: br000030
  article-title: On decentralized negotiation of optimal consensus
  publication-title: Automatic
– reference: J. Wang, N. Elia, Control approach to distributed optimization, in: Allerton Conference, 2010, pp. 557–561.
– volume: 147
  start-page: 516
  year: 2010
  end-page: 545
  ident: br000045
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optim. Theory Appl.
– year: 2006
  ident: br000115
  article-title: Nonlinear Optimization
– volume: 58
  start-page: 3575
  issue: 6
  year: 2012
  ident: 10.1016/j.sysconle.2016.07.009_br000015
  article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2012.2191450
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.sysconle.2016.07.009_br000035
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 56
  start-page: 1291
  issue: 6
  year: 2011
  ident: 10.1016/j.sysconle.2016.07.009_br000040
  article-title: Distributed subgradient methods for convex optimization over random networks
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2010.2091295
– ident: 10.1016/j.sysconle.2016.07.009_br000105
  doi: 10.1109/ACSSC.2015.7421158
– year: 1998
  ident: 10.1016/j.sysconle.2016.07.009_br000130
– volume: 147
  start-page: 516
  year: 2010
  ident: 10.1016/j.sysconle.2016.07.009_br000045
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9737-7
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  ident: 10.1016/j.sysconle.2016.07.009_br000055
  article-title: Fast distributed gradient methods
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2298712
– start-page: 168
  year: 2006
  ident: 10.1016/j.sysconle.2016.07.009_br000135
  article-title: A space-time diffusion scheme for peer-to-peer least-squares estimation
– volume: 44
  start-page: 1175
  issue: 4
  year: 2008
  ident: 10.1016/j.sysconle.2016.07.009_br000030
  article-title: On decentralized negotiation of optimal consensus
  publication-title: Automatic
  doi: 10.1016/j.automatica.2007.09.003
– ident: 10.1016/j.sysconle.2016.07.009_br000085
  doi: 10.1109/CDC.2011.6161503
– year: 2001
  ident: 10.1016/j.sysconle.2016.07.009_br000110
– volume: 49
  start-page: 1520
  issue: 9
  year: 2004
  ident: 10.1016/j.sysconle.2016.07.009_br000005
  article-title: Consensus problems in networks of agents with switching topology and time-delays
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2004.834113
– volume: 59
  start-page: 1524
  issue: 6
  year: 2014
  ident: 10.1016/j.sysconle.2016.07.009_br000060
  article-title: Distributed constrained optimization by consensus-based primal–dual perturbation method
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2308612
– year: 2006
  ident: 10.1016/j.sysconle.2016.07.009_br000115
– volume: 5
  start-page: 772
  issue: 4
  year: 2011
  ident: 10.1016/j.sysconle.2016.07.009_br000050
  article-title: Distributed asynchronous constrained stochastic optimization
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2011.2118740
– volume: 60
  start-page: 3310
  issue: 12
  year: 2015
  ident: 10.1016/j.sysconle.2016.07.009_br000070
  article-title: A second-order multi-agent network for bounded constrained distributed optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2416927
– volume: 83
  start-page: 45
  year: 2015
  ident: 10.1016/j.sysconle.2016.07.009_br000095
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2015.06.006
– volume: 49
  start-page: 3125
  issue: 10
  year: 2013
  ident: 10.1016/j.sysconle.2016.07.009_br000025
  article-title: Consensus condition for linear multi-agent systems over randomly switching topologies
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.07.024
– ident: 10.1016/j.sysconle.2016.07.009_br000080
  doi: 10.1109/ALLERTON.2010.5706956
– year: 2010
  ident: 10.1016/j.sysconle.2016.07.009_br000100
– volume: 142
  start-page: 205
  year: 2009
  ident: 10.1016/j.sysconle.2016.07.009_br000125
  article-title: Subgradeint methods for saddle-point problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9522-7
– volume: 57
  start-page: 151
  issue: 1
  year: 2012
  ident: 10.1016/j.sysconle.2016.07.009_br000065
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2167817
– start-page: 154
  year: 1958
  ident: 10.1016/j.sysconle.2016.07.009_br000120
  article-title: Iterative methods in concave programming
– volume: 82
  start-page: 64
  year: 2015
  ident: 10.1016/j.sysconle.2016.07.009_br000010
  article-title: Leader–follower consensus of linear multi-agent systems with unknown external disturbances
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2015.05.007
– ident: 10.1016/j.sysconle.2016.07.009_br000090
– volume: 57
  start-page: 2000
  issue: 5
  year: 2009
  ident: 10.1016/j.sysconle.2016.07.009_br000020
  article-title: Distributed sensor localization in random environments using minimal number of anchor nodes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2014812
– volume: 25
  start-page: 944
  issue: 2
  year: 2015
  ident: 10.1016/j.sysconle.2016.07.009_br000075
  article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/14096668X
SSID ssj0002033
Score 2.507211
Snippet The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110
SubjectTerms Augmented Lagrange method
Distributed constrained optimization
Multi-agent network
Primal–dual algorithm
Title Primal–dual algorithm for distributed constrained optimization
URI https://dx.doi.org/10.1016/j.sysconle.2016.07.009
Volume 96
WOSCitedRecordID wos000384788100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002033
  issn: 0167-6911
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXtpof2ENIvmk986K24laXVSrolhIRNCCHQLezNSLLcbnDssLsJ6a3_of-wvyQjS3YEXUhL6cV4DfJqNY_Rm9mZJ4TeFywrClGa1AgNAQrTOlWU0JQxyjEQdFzYVsT1jJ-fi-lUXoQ_2hftcQK8rsXdnbz-r6aGZ2Bs1zr7F-buXwoP4B6MDlcwO1z_yPAXTj-i6ooYaNtrpaqvzXy2_HbVVhUWTizXnXNlXUubk5BVwDWLDw24j6vQlxmT1qBq3qKkK22v2jagnpCf2bYq4HRWV03YC9uaAe_UxqpOj296qIQU9VjN0olq4rxDNuor2EIy7LeGGJ-fBL87ksF_Wu9TBQcSL71-eOd0Zew1s1DZasMnvtK3-zTD5cfF9wX81sppnGZeeRXLh92srzH87ObipgKM0x0Dip-iNcKZFAO0dnByND3tN2yCKe0k4N2AqJF89bet5jARL5lsoPUQUCQHHggv0RNbv0IvIpnJ12jfQ-LXj58ODEkPhgTAkERgSCIwJDEY3qAvx0eTw3EaTs5IDeVimQqVGVYCFZRKCmMgrM6GROmSkFKQoTaMMD0sNDHKQrxCFbVMZFQzUYqSK6zpWzSom9q-Q4niBpsRwWrIXOw9krBCJcQMghhw_YXeRKxbi9wEWXk30yrv6gcv824Nc7eGOXYVD3ITferHXXthlUdHyG6p80APPe3LASGPjN36h7Hb6PkD_nfQYDm_sbvombldzhbzvQCme89pjeQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primal%E2%80%93dual+algorithm+for+distributed+constrained+optimization&rft.jtitle=Systems+%26+control+letters&rft.au=Lei%2C+Jinlong&rft.au=Chen%2C+Han-Fu&rft.au=Fang%2C+Hai-Tao&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=96&rft.spage=110&rft.epage=117&rft_id=info:doi/10.1016%2Fj.sysconle.2016.07.009&rft.externalDocID=S0167691116301050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon