Primal–dual algorithm for distributed constrained optimization
The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented...
Saved in:
| Published in: | Systems & control letters Vol. 96; pp. 110 - 117 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2016
|
| Subjects: | |
| ISSN: | 0167-6911, 1872-7956 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented Lagrange method, a distributed primal–dual algorithm with a projection operation included is proposed to solve the problem. It is shown that with appropriately chosen constant step size, the local estimates derived at all agents asymptotically reach a consensus at an optimal solution. In addition, the value of the cost function at the time-averaged estimate converges with rate O(1k) to the optimal value for the unconstrained problem. By these properties, the proposed primal–dual algorithm is distinguished from the existing algorithms for distributed constrained optimization. The theoretical analysis is justified by numerical simulations. |
|---|---|
| AbstractList | The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual objective functions subject to a global constraint being an intersection of the local constraints assigned to the agents. Based on the augmented Lagrange method, a distributed primal–dual algorithm with a projection operation included is proposed to solve the problem. It is shown that with appropriately chosen constant step size, the local estimates derived at all agents asymptotically reach a consensus at an optimal solution. In addition, the value of the cost function at the time-averaged estimate converges with rate O(1k) to the optimal value for the unconstrained problem. By these properties, the proposed primal–dual algorithm is distinguished from the existing algorithms for distributed constrained optimization. The theoretical analysis is justified by numerical simulations. |
| Author | Chen, Han-Fu Fang, Hai-Tao Lei, Jinlong |
| Author_xml | – sequence: 1 givenname: Jinlong surname: Lei fullname: Lei, Jinlong email: leijinlong11@mails.ucas.ac.cn – sequence: 2 givenname: Han-Fu surname: Chen fullname: Chen, Han-Fu email: hfchen@iss.ac.cn – sequence: 3 givenname: Hai-Tao surname: Fang fullname: Fang, Hai-Tao email: htfang@iss.ac.cn |
| BookMark | eNqFUEtOwzAUtFCRaAtXQLlAgj9N7Egsiip-UiVYwNryF1ylcWW7SGXFHbghJ8GhsGHT1Xujp5k3MxMw6n1vADhHsEIQNRerKu6i8n1nKpxxBWkFYXsExohRXNK2bkZgnA-0bFqETsAkxhWEEENCxmD-GNxadF8fn3orukJ0Lz649LourA-FdjEFJ7fJ6CI_yEC4Pu9-k9zavYvkfH8Kjq3oojn7nVPwfHP9tLgrlw-394urZakIZalkAqnawha1omVKYYbRDAtpMbYMz6SqcS1nWmIlDEOaCGJqhoismWWWCijJFDR7XRV8jMFYvhmchx1HkA898BX_64EPPXBIee4hEy__EZVLP9aHON1h-nxPNzncmzOBR-VMr4x2wajEtXeHJL4BHO2DrQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2923269 crossref_primary_10_1109_TCNS_2020_3029996 crossref_primary_10_1109_TCNS_2024_3469048 crossref_primary_10_1007_s10957_024_02393_7 crossref_primary_10_1109_TAC_2021_3075666 crossref_primary_10_1007_s11424_020_0071_3 crossref_primary_10_1016_j_automatica_2020_109422 crossref_primary_10_1109_ACCESS_2022_3211395 crossref_primary_10_1137_16M1086133 crossref_primary_10_1016_j_sysconle_2025_106211 crossref_primary_10_1137_20M1340071 crossref_primary_10_1109_ACCESS_2020_3048330 crossref_primary_10_1109_TAC_2023_3282065 crossref_primary_10_1109_TNSE_2024_3374765 crossref_primary_10_1002_rnc_5543 crossref_primary_10_1016_j_sysconle_2018_12_005 crossref_primary_10_1109_ACCESS_2024_3393574 crossref_primary_10_1109_TAC_2021_3079192 crossref_primary_10_1109_TCYB_2020_3022240 crossref_primary_10_1109_TAC_2017_2681200 crossref_primary_10_1016_j_jfranklin_2025_107642 crossref_primary_10_1109_LCSYS_2022_3186900 crossref_primary_10_1109_TNNLS_2021_3137010 crossref_primary_10_1049_iet_cta_2018_6224 crossref_primary_10_1109_TAC_2022_3152720 crossref_primary_10_1109_TCYB_2023_3328716 crossref_primary_10_1109_ACCESS_2019_2912004 crossref_primary_10_1016_j_sysconle_2025_106189 crossref_primary_10_1109_TCNS_2022_3229769 crossref_primary_10_1049_gtd2_12912 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1109_TAC_2022_3192316 crossref_primary_10_3390_e24091278 crossref_primary_10_1016_j_ijepes_2021_107373 crossref_primary_10_1016_j_jfranklin_2023_11_017 crossref_primary_10_1109_JAS_2024_124935 crossref_primary_10_1109_TAC_2022_3173171 crossref_primary_10_1002_rnc_5451 crossref_primary_10_1016_j_neucom_2021_09_042 crossref_primary_10_1137_19M1258864 crossref_primary_10_1016_j_ifacol_2023_10_115 crossref_primary_10_1088_1674_1056_abfb5b crossref_primary_10_1109_TCYB_2018_2883095 crossref_primary_10_1049_cth2_12075 crossref_primary_10_1016_j_sysconle_2021_104894 crossref_primary_10_1109_TAC_2019_2912713 crossref_primary_10_1007_s10957_019_01588_7 crossref_primary_10_1016_j_automatica_2022_110312 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1109_TAC_2024_3413854 crossref_primary_10_1109_TCSII_2020_2987947 crossref_primary_10_1016_j_isatra_2021_08_010 crossref_primary_10_1007_s11424_023_1321_y crossref_primary_10_1016_j_oceaneng_2025_120561 crossref_primary_10_1109_TAC_2022_3221856 crossref_primary_10_1109_TAC_2021_3054072 crossref_primary_10_1016_j_neucom_2025_129770 crossref_primary_10_1109_TSMC_2018_2859364 crossref_primary_10_1109_TAC_2025_3527737 crossref_primary_10_1016_j_jfranklin_2024_107466 crossref_primary_10_1109_TSMC_2024_3405453 crossref_primary_10_1109_TAC_2019_2910946 crossref_primary_10_1137_23M1562032 crossref_primary_10_1109_TNSE_2022_3169151 crossref_primary_10_1109_TCNS_2023_3285887 crossref_primary_10_1002_asjc_3467 crossref_primary_10_1109_TSIPN_2025_3559433 crossref_primary_10_1109_TCNS_2022_3231185 crossref_primary_10_1016_j_ins_2021_02_049 crossref_primary_10_1109_LCSYS_2025_3577964 crossref_primary_10_1016_j_automatica_2021_109738 crossref_primary_10_1109_TAC_2019_2912494 crossref_primary_10_1137_18M119046X crossref_primary_10_1109_TAC_2023_3327940 crossref_primary_10_1109_TAC_2025_3528410 crossref_primary_10_1016_j_automatica_2021_109899 crossref_primary_10_1109_TNNLS_2020_3027288 crossref_primary_10_1109_TAC_2022_3179216 crossref_primary_10_1109_JAS_2022_105890 crossref_primary_10_1016_j_neunet_2024_106123 crossref_primary_10_1109_TEVC_2024_3380436 crossref_primary_10_1002_rnc_6640 crossref_primary_10_1016_j_jfranklin_2019_07_018 crossref_primary_10_1016_j_automatica_2018_04_010 |
| Cites_doi | 10.1109/TIT.2012.2191450 10.1109/TAC.2008.2009515 10.1109/TAC.2010.2091295 10.1109/ACSSC.2015.7421158 10.1007/s10957-010-9737-7 10.1109/TAC.2014.2298712 10.1016/j.automatica.2007.09.003 10.1109/CDC.2011.6161503 10.1109/TAC.2004.834113 10.1109/TAC.2014.2308612 10.1109/JSTSP.2011.2118740 10.1109/TAC.2015.2416927 10.1016/j.sysconle.2015.06.006 10.1016/j.automatica.2013.07.024 10.1109/ALLERTON.2010.5706956 10.1007/s10957-009-9522-7 10.1109/TAC.2011.2167817 10.1016/j.sysconle.2015.05.007 10.1109/TSP.2009.2014812 10.1137/14096668X |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sysconle.2016.07.009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7956 |
| EndPage | 117 |
| ExternalDocumentID | 10_1016_j_sysconle_2016_07_009 S0167691116301050 |
| GrantInformation_xml | – fundername: National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences grantid: Y629091ZZ2 – fundername: 973 program of China grantid: 2014CB845301 – fundername: NSFC grantid: 61273193; 61120106011; 61134013; 61573345 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W JJJVA KOM LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c378t-8a1c5f0919a98cc282142abf22f824bc525b4db2cae81d3a3e5813b58f8f7a0b3 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384788100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-6911 |
| IngestDate | Sat Nov 29 05:30:30 EST 2025 Tue Nov 18 22:33:26 EST 2025 Fri Feb 23 02:32:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Augmented Lagrange method Distributed constrained optimization Multi-agent network Primal–dual algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-8a1c5f0919a98cc282142abf22f824bc525b4db2cae81d3a3e5813b58f8f7a0b3 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_sysconle_2016_07_009 crossref_citationtrail_10_1016_j_sysconle_2016_07_009 elsevier_sciencedirect_doi_10_1016_j_sysconle_2016_07_009 |
| PublicationCentury | 2000 |
| PublicationDate | October 2016 2016-10-00 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Systems & control letters |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ruszczynski (br000115) 2006 A. Mokhtari, A. Ribeiro, DSA: decentralized double stochastic averaging gradient algorithm, 2015. J. Wang, N. Elia, Control approach to distributed optimization, in: Allerton Conference, 2010, pp. 557–561. Nedić, Ozdaglar (br000125) 2009; 142 Nedić, Ozdaglar (br000035) 2009; 54 Uzawa (br000120) 1958 Xiao, Boyd, Lall (br000135) 2006 Yi, Hong, Liu (br000095) 2015; 83 Lobel, Ozdaglar (br000040) 2011; 56 Chang, Nedić, Scaglione (br000060) 2014; 59 Kar, Moura, Ramanan (br000015) 2012; 58 Srivastava, Nedić (br000050) 2011; 5 Liu, Wang (br000070) 2015; 60 Godsil, Royle (br000110) 2001 Cao, Zhang, Ren (br000010) 2015; 82 Khan, Kar, Moura (br000020) 2009; 57 Zeng, Yi, Hong (br000090) Jakovetic, Xavier, Moura (br000055) 2014; 59 Shi, Ling, Wu, Yin (br000075) 2015; 25 Johansson, Speranzon, Johansson, Johansson (br000030) 2008; 44 . J. Wang, N. Elia, A control perspective for centralized and distributed convex optimization, in: CDC-ECC, 2011 pp. 3800–3805. Bertsekas (br000100) 2010 Olfati-Saber, Murray (br000005) 2004; 49 Zhu, Martínez (br000065) 2012; 57 Ram, Nedić, Veeravalli (br000045) 2010; 147 Nesterov (br000130) 1998 You, Li, Xie (br000025) 2013; 49 Yi (10.1016/j.sysconle.2016.07.009_br000095) 2015; 83 Godsil (10.1016/j.sysconle.2016.07.009_br000110) 2001 Chang (10.1016/j.sysconle.2016.07.009_br000060) 2014; 59 Nedić (10.1016/j.sysconle.2016.07.009_br000125) 2009; 142 10.1016/j.sysconle.2016.07.009_br000080 10.1016/j.sysconle.2016.07.009_br000085 Nedić (10.1016/j.sysconle.2016.07.009_br000035) 2009; 54 Uzawa (10.1016/j.sysconle.2016.07.009_br000120) 1958 Zeng (10.1016/j.sysconle.2016.07.009_br000090) Lobel (10.1016/j.sysconle.2016.07.009_br000040) 2011; 56 Cao (10.1016/j.sysconle.2016.07.009_br000010) 2015; 82 You (10.1016/j.sysconle.2016.07.009_br000025) 2013; 49 Xiao (10.1016/j.sysconle.2016.07.009_br000135) 2006 10.1016/j.sysconle.2016.07.009_br000105 Srivastava (10.1016/j.sysconle.2016.07.009_br000050) 2011; 5 Jakovetic (10.1016/j.sysconle.2016.07.009_br000055) 2014; 59 Nesterov (10.1016/j.sysconle.2016.07.009_br000130) 1998 Olfati-Saber (10.1016/j.sysconle.2016.07.009_br000005) 2004; 49 Kar (10.1016/j.sysconle.2016.07.009_br000015) 2012; 58 Johansson (10.1016/j.sysconle.2016.07.009_br000030) 2008; 44 Khan (10.1016/j.sysconle.2016.07.009_br000020) 2009; 57 Liu (10.1016/j.sysconle.2016.07.009_br000070) 2015; 60 Bertsekas (10.1016/j.sysconle.2016.07.009_br000100) 2010 Zhu (10.1016/j.sysconle.2016.07.009_br000065) 2012; 57 Shi (10.1016/j.sysconle.2016.07.009_br000075) 2015; 25 Ruszczynski (10.1016/j.sysconle.2016.07.009_br000115) 2006 Ram (10.1016/j.sysconle.2016.07.009_br000045) 2010; 147 |
| References_xml | – volume: 59 start-page: 1131 year: 2014 end-page: 1146 ident: br000055 article-title: Fast distributed gradient methods publication-title: IEEE Trans. Automat. Control – year: 1998 ident: br000130 article-title: Introductory Lectures on Convex Programming Volume I: Basic Course – volume: 54 start-page: 48 year: 2009 end-page: 61 ident: br000035 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Automat. Control – volume: 58 start-page: 3575 year: 2012 end-page: 3605 ident: br000015 article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication publication-title: IEEE Trans. Inform. Theory – volume: 25 start-page: 944 year: 2015 end-page: 966 ident: br000075 article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization publication-title: SIAM J. Optim. – volume: 56 start-page: 1291 year: 2011 end-page: 1306 ident: br000040 article-title: Distributed subgradient methods for convex optimization over random networks publication-title: IEEE Trans. Automat. Control – ident: br000090 – reference: J. Wang, N. Elia, A control perspective for centralized and distributed convex optimization, in: CDC-ECC, 2011 pp. 3800–3805. – start-page: 154 year: 1958 end-page: 165 ident: br000120 article-title: Iterative methods in concave programming publication-title: Studies in Linear and Nonlinear Programming – volume: 49 start-page: 3125 year: 2013 end-page: 3132 ident: br000025 article-title: Consensus condition for linear multi-agent systems over randomly switching topologies publication-title: Automatica – volume: 83 start-page: 45 year: 2015 end-page: 52 ident: br000095 article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems publication-title: Systems Control Lett. – volume: 60 start-page: 3310 year: 2015 end-page: 3315 ident: br000070 article-title: A second-order multi-agent network for bounded constrained distributed optimization publication-title: IEEE Trans. Automat. Control – start-page: 168 year: 2006 end-page: 176 ident: br000135 article-title: A space-time diffusion scheme for peer-to-peer least-squares estimation publication-title: Proceedings of the 5th international conference on Information processing in sensor networks – volume: 59 start-page: 1524 year: 2014 end-page: 1538 ident: br000060 article-title: Distributed constrained optimization by consensus-based primal–dual perturbation method publication-title: IEEE Trans. Automat. Control – volume: 5 start-page: 772 year: 2011 end-page: 790 ident: br000050 article-title: Distributed asynchronous constrained stochastic optimization publication-title: IEEE J. Sel. Top. Sign. Proces. – year: 2010 ident: br000100 article-title: Convex Optimization Theory – volume: 57 start-page: 151 year: 2012 end-page: 164 ident: br000065 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans. Automat. Control – volume: 82 start-page: 64 year: 2015 end-page: 70 ident: br000010 article-title: Leader–follower consensus of linear multi-agent systems with unknown external disturbances publication-title: Systems Control Lett. – volume: 142 start-page: 205 year: 2009 end-page: 228 ident: br000125 article-title: Subgradeint methods for saddle-point problems publication-title: J. Optim. Theory Appl. – volume: 49 start-page: 1520 year: 2004 end-page: 1533 ident: br000005 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans. Automat. Control – reference: . – volume: 57 start-page: 2000 year: 2009 end-page: 2016 ident: br000020 article-title: Distributed sensor localization in random environments using minimal number of anchor nodes publication-title: IEEE Trans. Signal Process. – reference: A. Mokhtari, A. Ribeiro, DSA: decentralized double stochastic averaging gradient algorithm, 2015. – year: 2001 ident: br000110 article-title: Algebraic Graph Theory – volume: 44 start-page: 1175 year: 2008 end-page: 1179 ident: br000030 article-title: On decentralized negotiation of optimal consensus publication-title: Automatic – reference: J. Wang, N. Elia, Control approach to distributed optimization, in: Allerton Conference, 2010, pp. 557–561. – volume: 147 start-page: 516 year: 2010 end-page: 545 ident: br000045 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optim. Theory Appl. – year: 2006 ident: br000115 article-title: Nonlinear Optimization – volume: 58 start-page: 3575 issue: 6 year: 2012 ident: 10.1016/j.sysconle.2016.07.009_br000015 article-title: Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect communication publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2012.2191450 – volume: 54 start-page: 48 issue: 1 year: 2009 ident: 10.1016/j.sysconle.2016.07.009_br000035 article-title: Distributed subgradient methods for multi-agent optimization publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2008.2009515 – volume: 56 start-page: 1291 issue: 6 year: 2011 ident: 10.1016/j.sysconle.2016.07.009_br000040 article-title: Distributed subgradient methods for convex optimization over random networks publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2010.2091295 – ident: 10.1016/j.sysconle.2016.07.009_br000105 doi: 10.1109/ACSSC.2015.7421158 – year: 1998 ident: 10.1016/j.sysconle.2016.07.009_br000130 – volume: 147 start-page: 516 year: 2010 ident: 10.1016/j.sysconle.2016.07.009_br000045 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9737-7 – volume: 59 start-page: 1131 issue: 5 year: 2014 ident: 10.1016/j.sysconle.2016.07.009_br000055 article-title: Fast distributed gradient methods publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2298712 – start-page: 168 year: 2006 ident: 10.1016/j.sysconle.2016.07.009_br000135 article-title: A space-time diffusion scheme for peer-to-peer least-squares estimation – volume: 44 start-page: 1175 issue: 4 year: 2008 ident: 10.1016/j.sysconle.2016.07.009_br000030 article-title: On decentralized negotiation of optimal consensus publication-title: Automatic doi: 10.1016/j.automatica.2007.09.003 – ident: 10.1016/j.sysconle.2016.07.009_br000085 doi: 10.1109/CDC.2011.6161503 – year: 2001 ident: 10.1016/j.sysconle.2016.07.009_br000110 – volume: 49 start-page: 1520 issue: 9 year: 2004 ident: 10.1016/j.sysconle.2016.07.009_br000005 article-title: Consensus problems in networks of agents with switching topology and time-delays publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2004.834113 – volume: 59 start-page: 1524 issue: 6 year: 2014 ident: 10.1016/j.sysconle.2016.07.009_br000060 article-title: Distributed constrained optimization by consensus-based primal–dual perturbation method publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2308612 – year: 2006 ident: 10.1016/j.sysconle.2016.07.009_br000115 – volume: 5 start-page: 772 issue: 4 year: 2011 ident: 10.1016/j.sysconle.2016.07.009_br000050 article-title: Distributed asynchronous constrained stochastic optimization publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2011.2118740 – volume: 60 start-page: 3310 issue: 12 year: 2015 ident: 10.1016/j.sysconle.2016.07.009_br000070 article-title: A second-order multi-agent network for bounded constrained distributed optimization publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2015.2416927 – volume: 83 start-page: 45 year: 2015 ident: 10.1016/j.sysconle.2016.07.009_br000095 article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2015.06.006 – volume: 49 start-page: 3125 issue: 10 year: 2013 ident: 10.1016/j.sysconle.2016.07.009_br000025 article-title: Consensus condition for linear multi-agent systems over randomly switching topologies publication-title: Automatica doi: 10.1016/j.automatica.2013.07.024 – ident: 10.1016/j.sysconle.2016.07.009_br000080 doi: 10.1109/ALLERTON.2010.5706956 – year: 2010 ident: 10.1016/j.sysconle.2016.07.009_br000100 – volume: 142 start-page: 205 year: 2009 ident: 10.1016/j.sysconle.2016.07.009_br000125 article-title: Subgradeint methods for saddle-point problems publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9522-7 – volume: 57 start-page: 151 issue: 1 year: 2012 ident: 10.1016/j.sysconle.2016.07.009_br000065 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2167817 – start-page: 154 year: 1958 ident: 10.1016/j.sysconle.2016.07.009_br000120 article-title: Iterative methods in concave programming – volume: 82 start-page: 64 year: 2015 ident: 10.1016/j.sysconle.2016.07.009_br000010 article-title: Leader–follower consensus of linear multi-agent systems with unknown external disturbances publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2015.05.007 – ident: 10.1016/j.sysconle.2016.07.009_br000090 – volume: 57 start-page: 2000 issue: 5 year: 2009 ident: 10.1016/j.sysconle.2016.07.009_br000020 article-title: Distributed sensor localization in random environments using minimal number of anchor nodes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2014812 – volume: 25 start-page: 944 issue: 2 year: 2015 ident: 10.1016/j.sysconle.2016.07.009_br000075 article-title: EXTRA: An exact first-order algorithm for decentralized consensus optimization publication-title: SIAM J. Optim. doi: 10.1137/14096668X |
| SSID | ssj0002033 |
| Score | 2.507211 |
| Snippet | The paper studies a distributed constrained optimization problem, where multiple agents connected in a network collectively minimize the sum of individual... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110 |
| SubjectTerms | Augmented Lagrange method Distributed constrained optimization Multi-agent network Primal–dual algorithm |
| Title | Primal–dual algorithm for distributed constrained optimization |
| URI | https://dx.doi.org/10.1016/j.sysconle.2016.07.009 |
| Volume | 96 |
| WOSCitedRecordID | wos000384788100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002033 issn: 0167-6911 databaseCode: AIEXJ dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXtpof2ENIvmk986K24laXVSrolhIRNCCHQLezNSLLcbnDssLsJ6a3_of-wvyQjS3YEXUhL6cV4DfJqNY_Rm9mZJ4TeFywrClGa1AgNAQrTOlWU0JQxyjEQdFzYVsT1jJ-fi-lUXoQ_2hftcQK8rsXdnbz-r6aGZ2Bs1zr7F-buXwoP4B6MDlcwO1z_yPAXTj-i6ooYaNtrpaqvzXy2_HbVVhUWTizXnXNlXUubk5BVwDWLDw24j6vQlxmT1qBq3qKkK22v2jagnpCf2bYq4HRWV03YC9uaAe_UxqpOj296qIQU9VjN0olq4rxDNuor2EIy7LeGGJ-fBL87ksF_Wu9TBQcSL71-eOd0Zew1s1DZasMnvtK3-zTD5cfF9wX81sppnGZeeRXLh92srzH87ObipgKM0x0Dip-iNcKZFAO0dnByND3tN2yCKe0k4N2AqJF89bet5jARL5lsoPUQUCQHHggv0RNbv0IvIpnJ12jfQ-LXj58ODEkPhgTAkERgSCIwJDEY3qAvx0eTw3EaTs5IDeVimQqVGVYCFZRKCmMgrM6GROmSkFKQoTaMMD0sNDHKQrxCFbVMZFQzUYqSK6zpWzSom9q-Q4niBpsRwWrIXOw9krBCJcQMghhw_YXeRKxbi9wEWXk30yrv6gcv824Nc7eGOXYVD3ITferHXXthlUdHyG6p80APPe3LASGPjN36h7Hb6PkD_nfQYDm_sbvombldzhbzvQCme89pjeQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primal%E2%80%93dual+algorithm+for+distributed+constrained+optimization&rft.jtitle=Systems+%26+control+letters&rft.au=Lei%2C+Jinlong&rft.au=Chen%2C+Han-Fu&rft.au=Fang%2C+Hai-Tao&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.eissn=1872-7956&rft.volume=96&rft.spage=110&rft.epage=117&rft_id=info:doi/10.1016%2Fj.sysconle.2016.07.009&rft.externalDocID=S0167691116301050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon |