Luminescent osmium(ii) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in light-emitting electrochemical cells

The series of osmium(ii) complexes [Os(bpy)3-n(btz)n][PF6]2 (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 0, n = 1, n = 2, n = 3), have been prepared and characterised. The progressive replacement of bpy by btz leads to blue-shifted UV-visible electronic abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry Jg. 45; H. 18; S. 7748 - 7757
Hauptverfasser: Ross, Daniel A W, Scattergood, Paul A, Babaei, Azin, Pertegás, Antonio, Bolink, Henk J, Elliott, Paul I P
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 04.05.2016
ISSN:1477-9234
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The series of osmium(ii) complexes [Os(bpy)3-n(btz)n][PF6]2 (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 0, n = 1, n = 2, n = 3), have been prepared and characterised. The progressive replacement of bpy by btz leads to blue-shifted UV-visible electronic absorption spectra, indicative of btz perturbation of the successively destabilised bpy-centred LUMO. For , a dramatic blue-shift relative to the absorption profile for is observed, indicative of the much higher energy LUMO of the btz ligand over that of bpy, mirroring previously reported data on analogous ruthenium(ii) complexes. Unlike the previously reported ruthenium systems, heteroleptic complexes and display intense emission in the far-red/near-infrared (λmax = 724 and 713 nm respectively in aerated acetonitrile at RT) as a consequence of higher lying, and hence less thermally accessible, (3)MC states. This assertion is supported by ground state DFT calculations which show that the dσ* orbitals of to are destabilised by between 0.60 and 0.79 eV relative to their Ru(ii) analogues. The homoleptic complex appears to display extremely weak room temperature emission, but on cooling to 77 K the complex exhibits highly intense blue emission with λmax 444 nm. As complexes to display room temperature luminescent emission and readily reversible Os(ii)/(iii) redox couples, light-emitting electrochemical cell (LEC) devices were fabricated. All LECs display electroluminescent emission in the deep-red/near-IR (λmax = 695 to 730 nm). Whilst devices based on and show inferior current density and luminance than LECs based on , the device utilising shows the highest external quantum efficiency at 0.3%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9234
DOI:10.1039/c6dt00830e