Study on optimized adsorption chiller employing various heat and mass recovery schemes

•A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for differe...

Full description

Saved in:
Bibliographic Details
Published in:International journal of refrigeration Vol. 126; pp. 222 - 237
Main Authors: Muttakin, Mahbubul, Islam, Md. Amirul, Malik, Kuldeep Singh, Pahwa, Deepak, Saha, Bidyut Baran
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2021
Subjects:
ISSN:0140-7007, 1879-2081
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for different operating temperatures are determined.•A nominal mass recovery may be sufficient for low generation temperature lift. A typical commercial two-bed adsorption chiller using silica gel as adsorbent and water as adsorbate is simulated in the current study. Each of the two beds goes through four processes in one cycle, namely, adsorption, mass recovery, heat recovery, and desorption. A transient lumped analytical model is developed, and the governing equations are solved using the MATLAB® platform. The thermophysical properties of the refrigerant are collected from REFPROP®, which is integrated within the MATLAB® codes. The simulation model is validated with the test results of a commercial chiller manufactured by Bry-Air (Asia) Pvt. Ltd. The cooling capacity of the chiller is 40 ton of refrigeration, and in this study, the simulation results are in good agreement with the test results provided by the manufacturer. The simulation model is then utilized in the present investigation to predict the performance of a typical commercial chiller under various working conditions. The recovery times, the temperatures of hot water, cooling water, and chilled water are varied, and their impacts on the cooling capacity and COP of the chiller are analyzed. The optimum recovery durations are reported for different temperatures, and their effects on the bed uptakes are investigated. The model can be used as an effective means to determine the optimal cycle time with necessary recovery durations for a specific cooling load, with a view to providing the maximum efficiency under specified operating conditions.
AbstractList •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for different operating temperatures are determined.•A nominal mass recovery may be sufficient for low generation temperature lift. A typical commercial two-bed adsorption chiller using silica gel as adsorbent and water as adsorbate is simulated in the current study. Each of the two beds goes through four processes in one cycle, namely, adsorption, mass recovery, heat recovery, and desorption. A transient lumped analytical model is developed, and the governing equations are solved using the MATLAB® platform. The thermophysical properties of the refrigerant are collected from REFPROP®, which is integrated within the MATLAB® codes. The simulation model is validated with the test results of a commercial chiller manufactured by Bry-Air (Asia) Pvt. Ltd. The cooling capacity of the chiller is 40 ton of refrigeration, and in this study, the simulation results are in good agreement with the test results provided by the manufacturer. The simulation model is then utilized in the present investigation to predict the performance of a typical commercial chiller under various working conditions. The recovery times, the temperatures of hot water, cooling water, and chilled water are varied, and their impacts on the cooling capacity and COP of the chiller are analyzed. The optimum recovery durations are reported for different temperatures, and their effects on the bed uptakes are investigated. The model can be used as an effective means to determine the optimal cycle time with necessary recovery durations for a specific cooling load, with a view to providing the maximum efficiency under specified operating conditions.
Author Islam, Md. Amirul
Malik, Kuldeep Singh
Muttakin, Mahbubul
Pahwa, Deepak
Saha, Bidyut Baran
Author_xml – sequence: 1
  givenname: Mahbubul
  orcidid: 0000-0002-5303-5683
  surname: Muttakin
  fullname: Muttakin, Mahbubul
  organization: Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Tejgaon, Dhaka 1208, Bangladesh
– sequence: 2
  givenname: Md. Amirul
  surname: Islam
  fullname: Islam, Md. Amirul
  organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
– sequence: 3
  givenname: Kuldeep Singh
  surname: Malik
  fullname: Malik, Kuldeep Singh
  organization: Bry-Air (Asia) Pvt. Ltd., 20 Rajpur Road, Delhi 110054, India
– sequence: 4
  givenname: Deepak
  surname: Pahwa
  fullname: Pahwa, Deepak
  organization: Bry-Air (Asia) Pvt. Ltd., 20 Rajpur Road, Delhi 110054, India
– sequence: 5
  givenname: Bidyut Baran
  surname: Saha
  fullname: Saha, Bidyut Baran
  email: saha.baran.bidyut.213@m.kyushu-u.ac.jp
  organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
BookMark eNqFkMtqwzAQRUVJoUnaXyj6Aad6-AldtIS-oNBFH1sxlsaJgm0FyQm4X1-FtJtushrmwrnMnBmZ9K5HQq45W3DG85vNwm48Nt6uFoKJGIoFk-KMTHlZVIlgJZ-QKeMpSwrGigsyC2HDGC9YVk7J1_uwMyN1PXXbwXb2Gw0FE5yPWwz12rYteordtnWj7Vd0D966XaBrhIFCb2gHIVCP2u3RjzToNXYYLsl5A23Aq985J5-PDx_L5-T17ellef-aaFmUQ1KKTEJdCZmnVcGzvDICQDQgaylMxjCTMasyLJsUqjTjDaQ11Izlha6MLGs5J7fHXu1dCNGC0naAw-mDB9sqztTBkdqoP0fq4EhxoaKjiOf_8K23HfjxNHh3BDE-t7foVdAWe43GRhWDMs6eqvgBvXSJLw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_121847
crossref_primary_10_1016_j_renene_2025_122582
crossref_primary_10_1016_j_icheatmasstransfer_2023_106774
crossref_primary_10_1016_j_icheatmasstransfer_2024_107848
crossref_primary_10_1016_j_applthermaleng_2021_117181
crossref_primary_10_1016_j_seta_2021_101793
crossref_primary_10_32604_fdmp_2022_022285
crossref_primary_10_3390_en14227478
crossref_primary_10_1016_j_enconman_2021_114654
crossref_primary_10_1016_j_enconman_2022_116649
crossref_primary_10_3390_en14133871
crossref_primary_10_1016_j_solener_2023_03_017
crossref_primary_10_3390_en14238038
crossref_primary_10_1016_j_applthermaleng_2023_120991
crossref_primary_10_1016_j_energy_2021_121813
crossref_primary_10_1016_j_icheatmasstransfer_2022_106461
crossref_primary_10_3390_cleantechnol4040070
crossref_primary_10_1016_j_rser_2024_115301
crossref_primary_10_1016_j_enconman_2024_119034
crossref_primary_10_1016_j_ijrefrig_2023_04_009
crossref_primary_10_1016_j_enconman_2023_118020
crossref_primary_10_1016_j_rser_2022_112890
crossref_primary_10_1016_j_icheatmasstransfer_2024_107779
crossref_primary_10_1016_j_enbuild_2024_114657
crossref_primary_10_1007_s10973_025_14119_6
crossref_primary_10_1016_j_susmat_2022_e00442
crossref_primary_10_1016_j_energy_2021_122079
crossref_primary_10_1016_j_rser_2021_111808
crossref_primary_10_1016_j_tsep_2021_101125
crossref_primary_10_1016_j_tsep_2022_101602
crossref_primary_10_1016_j_energy_2022_124977
crossref_primary_10_1016_j_supflu_2022_105517
crossref_primary_10_1016_j_ijrefrig_2022_12_009
Cites_doi 10.1016/S0017-9310(00)00072-7
10.1016/S0196-8904(01)00062-0
10.1016/j.ijrefrig.2004.10.001
10.1016/j.solener.2016.07.023
10.1016/j.enconman.2017.12.057
10.1016/j.applthermaleng.2016.02.066
10.1016/j.ijheatmasstransfer.2006.08.003
10.1016/j.ijheatmasstransfer.2015.09.060
10.1016/S1359-4311(00)00050-8
10.1016/S0301-9322(03)00103-4
10.1016/S1359-4311(01)00039-4
10.1016/j.ijrefrig.2011.01.008
10.1016/j.ijrefrig.2003.10.004
10.1016/j.ijrefrig.2008.12.002
10.1016/0008-6223(89)90157-7
10.1016/j.ijrefrig.2015.10.028
10.1016/j.ijrefrig.2010.01.006
10.1016/j.ijrefrig.2017.04.028
10.1016/j.apenergy.2009.11.027
10.1016/j.ijheatmasstransfer.2018.01.107
10.1016/S0140-7007(03)00074-4
10.1080/01457630601023625
10.1252/jcej.17.52
10.1016/0360-5442(95)00047-K
10.1016/S0140-7007(01)00004-4
10.1016/j.applthermaleng.2015.09.113
10.1016/j.ijheatmasstransfer.2006.01.053
10.1016/j.ijrefrig.2006.01.005
10.1016/j.ijrefrig.2009.01.022
10.1016/j.rser.2005.02.003
10.1016/j.enbuild.2017.11.040
10.1016/j.ijheatmasstransfer.2006.01.012
10.1016/j.ijrefrig.2004.11.011
10.1016/j.ijheatmasstransfer.2005.11.006
10.1016/j.ijhydene.2017.07.035
10.1080/10789669.2014.889512
10.1016/j.micromeso.2006.06.008
10.1016/j.ijrefrig.2012.11.009
10.1016/j.applthermaleng.2018.04.054
10.1016/j.egypro.2017.03.574
10.1016/j.ijrefrig.2018.12.017
10.1016/j.ijrefrig.2011.05.013
10.1016/j.ijrefrig.2019.10.027
10.1080/01430750.1986.9675500
10.1016/j.applthermaleng.2019.114431
10.1016/j.applthermaleng.2004.02.014
10.1016/j.enconman.2005.05.011
10.1016/0890-4332(87)90141-4
10.1016/j.ijrefrig.2011.05.002
10.1016/j.apenergy.2012.08.005
10.1016/S0140-7007(98)00063-2
10.1016/1359-4311(95)00045-3
10.1016/j.apenergy.2010.11.021
10.1016/j.applthermaleng.2012.08.033
10.1115/1.2241786
10.1016/j.energy.2017.06.079
10.1016/j.ijrefrig.2009.06.011
10.1016/j.ijrefrig.2016.03.001
10.1016/j.ijrefrig.2007.03.010
10.1063/1.2780117
10.1016/0360-5442(92)90101-5
10.1016/j.applthermaleng.2017.12.053
10.1016/j.ijheatmasstransfer.2019.118579
ContentType Journal Article
Copyright 2020 Elsevier Ltd and IIR
Copyright_xml – notice: 2020 Elsevier Ltd and IIR
DBID AAYXX
CITATION
DOI 10.1016/j.ijrefrig.2020.12.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Étude d’un refroidisseur à adsorption optimisé utilisant différents schémas de récupération de chaleur et de masse
EISSN 1879-2081
EndPage 237
ExternalDocumentID 10_1016_j_ijrefrig_2020_12_032
S0140700720305260
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c378t-8253ab92364971569d2aa2fa3b32d50e5356995e8f4a9451fa4bab0067c9d38b3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669997000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-7007
IngestDate Tue Nov 18 21:37:25 EST 2025
Sat Nov 29 07:23:38 EST 2025
Fri Feb 23 02:44:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chiller
Adsorption
COP
Modelling
Refroidisseur
Récupération de chaleur
Heat recovery
Mass recovery
Récupération de masse
Modélisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-8253ab92364971569d2aa2fa3b32d50e5356995e8f4a9451fa4bab0067c9d38b3
ORCID 0000-0002-5303-5683
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ijrefrig_2020_12_032
crossref_primary_10_1016_j_ijrefrig_2020_12_032
elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2020_12_032
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle International journal of refrigeration
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moaleman, Kasaeian, Aramesh, Mahian, Sahota, Nath Tiwari (bib0027) 2018; 160
Palomba, Aprile, Motta, Vasta (bib0009) 2017; 134
Habib, Saha, Rahman, Chakraborty, Koyama, Ng (bib0032) 2010; 33
Saha, El-Sharkawy, Shahzad, Thu, Ang, Ng (bib0012) 2016; 97
Wang, Chua (bib0049) 2007; 50
Amirfakhraei, Zarei, Khorshidi (bib0001) 2020; 18
Zhu, Tso, Chan, Wu, Chao, Chen (bib0042) 2018; 131
Ng, Thu, Saha, Chakraborty (bib0008) 2012; 35
Thu, Saha, Mitra, Chua (bib0061) 2017; 105
Rezk, Al-Dadah (bib0064) 2012; 89
Chamra, Mago (bib0071) 2006; 49
Islam, Srinivasan, Thu, Saha (bib0002) 2017
Aldadah, Rezk (bib0034) 2010
Wang, Chua (bib0059) 2007; 30
Saha, Chakraborty, Koyama, Srinivasan, Ng, Kashiwagi (bib0003) 2007; 91
Jaiswal, Mitra, Dutta, Srinivasan, Srinivasa Murthy (bib0013) 2016; 136
Pan, Wang, Lu, Wang (bib0060) 2014; 20
Wang, Ng, Chakarborty, Saha (bib0052) 2007; 28
Mohammed, Mesalhy, Elsayed, Chow (bib0069) 2017; 80
Wang, Qu, Wang (bib0054) 2002; 43
Niazmand, Dabzadeh (bib0070) 2012; 35
Leong, Liu (bib0062) 2004; 24
Mitra, Kumar, Srinivasan, Dutta (bib0016) 2016; 67
Solmuş, Yamali, Kaftanoǧlu, Baker, Çaǧlar (bib0024) 2010; 87
Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (bib0047) 2005; 28
Kayal, Baichuan, Saha (bib0022) 2016; 92
Yonezawa Y, Matsushita M, Oku K, Nakano H, Okumura S, Yoshihara M, et al. Adsorption refrigeration system. US Patent No. 4881376, 1989.
Aprile, Freni, Toppi, Motta (bib0039) 2020; 19
Critoph, Vogel (bib0028) 1986; 7
Wang (bib0055) 2001; 24
Alam, Saha, Kang, Akisawa, Kashiwagi (bib0044) 2000; 43
Critoph (bib0030) 1989; 27
Myat, Kim Choon, Thu, Kim (bib0023) 2013; 102
Sakoda, Suzuki (bib0066) 1983; 17
Islam, Pal, Saha (bib0035) 2020; 110
Rocky, Islam, Pal, Ghosh, Thu, Nasruddin (bib0006) 2020; 164
Saha, El-Sharkawy, Chakraborty, Koyama, Banker, Dutta (bib0004) 2006; 29
Aristov, Tokarev, Freni, Glaznev, Restuccia (bib0018) 2006; 96
Chan, Tso, Wu, Chao (bib0043) 2018; 158
Mahdavikhah, Niazmand (bib0068) 2013; 50
Ben, Sun, Meunier (bib0058) 1996; 16
Pan, Wang, Wang, Liu (bib0041) 2016; 67
Aristov (bib0067) 2009; 32
El-Sharkawy, Hassan, Saha, Koyama, Nasr (bib0029) 2009; 32
Saha, El-Sharkawy, Thorpe, Critoph (bib0031) 2012; 35
Cho, Kim (bib0057) 1992; 17
Karagiorgas, Meunier (bib0026) 1987; 7
Muttakin, Mitra, Thu, Ito, Saha (bib0005) 2018; 122
Rupam, Islam, Pal, Chakraborty, Saha (bib0038) 2019; 144
Ng, Chua, Chung, Loke, Kashiwagi, Akisawa (bib0017) 2001; 21
Yonezawa Y, Ohnishi T, Okumura S, Sakai A, Nakano H, Matsushita M, et al. Method of operating adsorption refrigerator. US Patent No. 5024064, 1991.
Saha, Koyama, Kashiwagi, Akisawa, Ng, Chua (bib0007) 2003; 26
Saha, Koyama, Lee, Kuwahara, Alam, Hamamoto (bib0015) 2003; 29
Leong, Liu (bib0063) 2006; 49
Ng, Wang, Lim, Saha, Chakarborty, Koyama (bib0051) 2006; 49
Miyazaki, Akisawa, Saha, El-Sharkawy, Chakraborty (bib0019) 2009; 32
Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (bib0046) 2004; 27
Chua, Ng, Wang (bib0050) 2004; 2004
Muttakin, Ito, Saha (bib0010) 2020
Saha, Boelman, Kashiwagi (bib0065) 1995; 20
Yang, Jiang, Fu, Zhang (bib0056) 2018; 138
Wang, Xia, Wu (bib0025) 2006; 47
Islam, Saha (bib0014) 2020
Askalany, Saha, Ahmed, Ismail (bib0033) 2013; 36
Ng, Sai, Chakraborty, Saha, Koyama (bib0021) 2006; 128
Wang, Chua, Ng (bib0048) 2005; 28
Qu, Wang, Wang (bib0053) 2001; 21
Balaras, Grossman, Henning, Ferreira, Podesser, Wang (bib0011) 2007; 11
Chua, Ng, Malek, Kashiwagi, Akisawa, Saha (bib0020) 1999; 22
Zajaczkowski (bib0045) 2016; 100
Mohammed, Mesalhy, Elsayed, Chow (bib0040) 2019; 99
Islam (10.1016/j.ijrefrig.2020.12.032_bib0002) 2017
Yang (10.1016/j.ijrefrig.2020.12.032_bib0056) 2018; 138
Ng (10.1016/j.ijrefrig.2020.12.032_bib0017) 2001; 21
Miyazaki (10.1016/j.ijrefrig.2020.12.032_bib0019) 2009; 32
Myat (10.1016/j.ijrefrig.2020.12.032_bib0023) 2013; 102
Islam (10.1016/j.ijrefrig.2020.12.032_bib0035) 2020; 110
Pan (10.1016/j.ijrefrig.2020.12.032_bib0060) 2014; 20
Saha (10.1016/j.ijrefrig.2020.12.032_bib0065) 1995; 20
Muttakin (10.1016/j.ijrefrig.2020.12.032_bib0005) 2018; 122
Pan (10.1016/j.ijrefrig.2020.12.032_bib0041) 2016; 67
Chua (10.1016/j.ijrefrig.2020.12.032_bib0050) 2004; 2004
Wang (10.1016/j.ijrefrig.2020.12.032_bib0049) 2007; 50
Thu (10.1016/j.ijrefrig.2020.12.032_bib0061) 2017; 105
Wang (10.1016/j.ijrefrig.2020.12.032_bib0054) 2002; 43
Alam (10.1016/j.ijrefrig.2020.12.032_bib0044) 2000; 43
Akahira (10.1016/j.ijrefrig.2020.12.032_bib0047) 2005; 28
Aprile (10.1016/j.ijrefrig.2020.12.032_bib0039) 2020; 19
Chan (10.1016/j.ijrefrig.2020.12.032_bib0043) 2018; 158
Jaiswal (10.1016/j.ijrefrig.2020.12.032_bib0013) 2016; 136
Chua (10.1016/j.ijrefrig.2020.12.032_bib0020) 1999; 22
Saha (10.1016/j.ijrefrig.2020.12.032_bib0012) 2016; 97
Wang (10.1016/j.ijrefrig.2020.12.032_bib0025) 2006; 47
Critoph (10.1016/j.ijrefrig.2020.12.032_bib0028) 1986; 7
Balaras (10.1016/j.ijrefrig.2020.12.032_bib0011) 2007; 11
Saha (10.1016/j.ijrefrig.2020.12.032_bib0015) 2003; 29
Zajaczkowski (10.1016/j.ijrefrig.2020.12.032_bib0045) 2016; 100
Sakoda (10.1016/j.ijrefrig.2020.12.032_bib0066) 1983; 17
Ng (10.1016/j.ijrefrig.2020.12.032_bib0021) 2006; 128
Habib (10.1016/j.ijrefrig.2020.12.032_bib0032) 2010; 33
Saha (10.1016/j.ijrefrig.2020.12.032_bib0004) 2006; 29
Rocky (10.1016/j.ijrefrig.2020.12.032_bib0006) 2020; 164
Karagiorgas (10.1016/j.ijrefrig.2020.12.032_bib0026) 1987; 7
Saha (10.1016/j.ijrefrig.2020.12.032_bib0031) 2012; 35
Askalany (10.1016/j.ijrefrig.2020.12.032_bib0033) 2013; 36
Wang (10.1016/j.ijrefrig.2020.12.032_bib0052) 2007; 28
Palomba (10.1016/j.ijrefrig.2020.12.032_bib0009) 2017; 134
Mohammed (10.1016/j.ijrefrig.2020.12.032_bib0069) 2017; 80
Mohammed (10.1016/j.ijrefrig.2020.12.032_bib0040) 2019; 99
Cho (10.1016/j.ijrefrig.2020.12.032_bib0057) 1992; 17
Rezk (10.1016/j.ijrefrig.2020.12.032_bib0064) 2012; 89
Muttakin (10.1016/j.ijrefrig.2020.12.032_bib0010) 2020
Critoph (10.1016/j.ijrefrig.2020.12.032_bib0030) 1989; 27
Kayal (10.1016/j.ijrefrig.2020.12.032_bib0022) 2016; 92
Mahdavikhah (10.1016/j.ijrefrig.2020.12.032_bib0068) 2013; 50
Ben (10.1016/j.ijrefrig.2020.12.032_bib0058) 1996; 16
Amirfakhraei (10.1016/j.ijrefrig.2020.12.032_bib0001) 2020; 18
Akahira (10.1016/j.ijrefrig.2020.12.032_bib0046) 2004; 27
Moaleman (10.1016/j.ijrefrig.2020.12.032_bib0027) 2018; 160
Aristov (10.1016/j.ijrefrig.2020.12.032_bib0018) 2006; 96
Solmuş (10.1016/j.ijrefrig.2020.12.032_bib0024) 2010; 87
Ng (10.1016/j.ijrefrig.2020.12.032_bib0008) 2012; 35
El-Sharkawy (10.1016/j.ijrefrig.2020.12.032_bib0029) 2009; 32
Wang (10.1016/j.ijrefrig.2020.12.032_bib0055) 2001; 24
Wang (10.1016/j.ijrefrig.2020.12.032_bib0059) 2007; 30
Aristov (10.1016/j.ijrefrig.2020.12.032_bib0067) 2009; 32
Saha (10.1016/j.ijrefrig.2020.12.032_bib0007) 2003; 26
Zhu (10.1016/j.ijrefrig.2020.12.032_bib0042) 2018; 131
Leong (10.1016/j.ijrefrig.2020.12.032_bib0062) 2004; 24
Wang (10.1016/j.ijrefrig.2020.12.032_bib0048) 2005; 28
Chamra (10.1016/j.ijrefrig.2020.12.032_bib0071) 2006; 49
Leong (10.1016/j.ijrefrig.2020.12.032_bib0063) 2006; 49
Ng (10.1016/j.ijrefrig.2020.12.032_bib0051) 2006; 49
Niazmand (10.1016/j.ijrefrig.2020.12.032_bib0070) 2012; 35
Islam (10.1016/j.ijrefrig.2020.12.032_bib0014) 2020
10.1016/j.ijrefrig.2020.12.032_bib0037
Rupam (10.1016/j.ijrefrig.2020.12.032_bib0038) 2019; 144
Aldadah (10.1016/j.ijrefrig.2020.12.032_bib0034) 2010
Mitra (10.1016/j.ijrefrig.2020.12.032_bib0016) 2016; 67
Saha (10.1016/j.ijrefrig.2020.12.032_bib0003) 2007; 91
10.1016/j.ijrefrig.2020.12.032_bib0036
Qu (10.1016/j.ijrefrig.2020.12.032_bib0053) 2001; 21
References_xml – volume: 18
  year: 2020
  ident: bib0001
  article-title: Performance improvement of adsorption desalination system by applying mass and heat recovery processes
  publication-title: Therm. Sci. Eng. Prog.
– volume: 35
  start-page: 685
  year: 2012
  end-page: 693
  ident: bib0008
  article-title: Study on a waste heat-driven adsorption cooling cum desalination cycle
  publication-title: Int. J. Refrig.
– volume: 21
  start-page: 1631
  year: 2001
  end-page: 1642
  ident: bib0017
  article-title: Experimental investigation of the silica gel-water adsorption isotherm characteristics
  publication-title: Appl. Therm. Eng.
– volume: 47
  start-page: 590
  year: 2006
  end-page: 610
  ident: bib0025
  article-title: Design and performance prediction of a novel zeolite-water adsorption air conditioner
  publication-title: Energy Convers. Manag.
– volume: 32
  start-page: 675
  year: 2009
  end-page: 686
  ident: bib0067
  article-title: Optimal adsorbent for adsorptive heat transformers: dynamic considerations
  publication-title: Int. J. Refrig.
– volume: 43
  start-page: 4419
  year: 2000
  end-page: 4431
  ident: bib0044
  article-title: Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems
  publication-title: Int. J. Heat Mass Transf.
– volume: 122
  start-page: 795
  year: 2018
  end-page: 805
  ident: bib0005
  article-title: Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms
  publication-title: Int. J. Heat Mass Transf.
– volume: 32
  start-page: 1579
  year: 2009
  end-page: 1586
  ident: bib0029
  article-title: Study on adsorption of methanol onto carbon based adsorbents
  publication-title: Int. J. Refrig.
– volume: 50
  start-page: 433
  year: 2007
  end-page: 443
  ident: bib0049
  article-title: A comparative evaluation of two different heat-recovery schemes as applied to a two-bed adsorption chiller
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  start-page: 581
  year: 2012
  end-page: 593
  ident: bib0070
  article-title: Numerical simulation of heat and mass transfer in adsorbent beds with annular fins
  publication-title: Int. J. Refrig.
– volume: 67
  start-page: 336
  year: 2016
  end-page: 344
  ident: bib0041
  article-title: Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers
  publication-title: Int. J. Refrig.
– volume: 49
  start-page: 3343
  year: 2006
  end-page: 3348
  ident: bib0051
  article-title: Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery
  publication-title: Int. J. Heat Mass Transf.
– volume: 7
  start-page: 183
  year: 1986
  end-page: 190
  ident: bib0028
  article-title: Possible adsorption pairs for use in solar cooling
  publication-title: Int. J. Ambient Energy
– volume: 32
  start-page: 846
  year: 2009
  end-page: 853
  ident: bib0019
  article-title: A new cycle time allocation for enhancing the performance of two-bed adsorption chillers
  publication-title: Int. J. Refrig.
– volume: 160
  start-page: 191
  year: 2018
  end-page: 208
  ident: bib0027
  article-title: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system
  publication-title: Energy Convers. Manag.
– volume: 28
  start-page: 565
  year: 2005
  end-page: 572
  ident: bib0047
  article-title: Experimental investigation of mass recovery adsorption refrigeration cycle
  publication-title: Int. J. Refrig.
– volume: 11
  start-page: 299
  year: 2007
  end-page: 314
  ident: bib0011
  article-title: Solar air conditioning in Europe—an overview
  publication-title: Renew. Sustain. Energy Rev.
– volume: 24
  start-page: 2359
  year: 2004
  end-page: 2374
  ident: bib0062
  article-title: Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 733
  year: 2002
  end-page: 741
  ident: bib0054
  article-title: Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles
  publication-title: Energy Convers. Manag.
– volume: 17
  start-page: 52
  year: 1983
  end-page: 57
  ident: bib0066
  article-title: Fundamental study on solar powered adsorption cooling system
  publication-title: J. Chem. Eng. Jpn.
– volume: 110
  start-page: 277
  year: 2020
  end-page: 285
  ident: bib0035
  article-title: Experimental study on thermophysical and porous properties of silica gels
  publication-title: Int. J. Refrig.
– volume: 20
  start-page: 983
  year: 1995
  end-page: 994
  ident: bib0065
  article-title: Computational analysis of an advanced adsorption-refrigeration cycle
  publication-title: Energy
– year: 2010
  ident: bib0034
  article-title: Empirical simulation model of silica gel/water adsorption chiller
  publication-title: Conf. Therm. Environ. Issues Energy Syst.
– volume: 89
  start-page: 142
  year: 2012
  end-page: 149
  ident: bib0064
  article-title: Physical and operating conditions effects on silica gel/water adsorption chiller performance
  publication-title: Appl. Energy
– start-page: 117
  year: 2020
  ident: bib0010
  article-title: Solar Thermal-Powered Adsorption Chiller. Himanshu Tyagi Prodyut R. Chakraborty Satvasheel Powar
– year: 2017
  ident: bib0002
  article-title: Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems
  publication-title: Int. J. Hydrogen Energy
– volume: 102
  start-page: 582
  year: 2013
  end-page: 590
  ident: bib0023
  article-title: Experimental investigation on the optimal performance of Zeolite–water adsorption chiller
  publication-title: Appl. Energy
– volume: 158
  start-page: 1368
  year: 2018
  end-page: 1378
  ident: bib0043
  article-title: Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence
  publication-title: Energy Build.
– volume: 28
  start-page: 756
  year: 2005
  end-page: 765
  ident: bib0048
  article-title: Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme
  publication-title: Int. J. Refrig.
– volume: 138
  start-page: 888
  year: 2018
  end-page: 899
  ident: bib0056
  article-title: Conjugate heat and mass transfer study of a new open-cycle absorption heat pump applied to total heat recovery of flue gas
  publication-title: Appl. Therm. Eng.
– volume: 20
  start-page: 311
  year: 2014
  end-page: 319
  ident: bib0060
  article-title: Thermodynamic analysis and performance simulation of different kinds of mass recovery processes applied in adsorption refrigeration system
  publication-title: HVAC&R Res.
– reference: Yonezawa Y, Matsushita M, Oku K, Nakano H, Okumura S, Yoshihara M, et al. Adsorption refrigeration system. US Patent No. 4881376, 1989.
– volume: 92
  start-page: 1120
  year: 2016
  end-page: 1127
  ident: bib0022
  article-title: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers
  publication-title: Int. J. Heat Mass Transf.
– volume: 29
  start-page: 1249
  year: 2003
  end-page: 1263
  ident: bib0015
  article-title: Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller
  publication-title: Int. J. Multiph. Flow
– volume: 7
  start-page: 285
  year: 1987
  end-page: 299
  ident: bib0026
  article-title: The dynamics of a solid-adsorption heat pump connected with outside heat sources of finite capacity
  publication-title: Heat Recover Syst. CHP
– volume: 134
  start-page: 554
  year: 2017
  end-page: 565
  ident: bib0009
  article-title: Study of sorption systems for application on low-emission fishing vessels
  publication-title: Energy
– volume: 91
  year: 2007
  ident: bib0003
  article-title: Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 749
  year: 2003
  end-page: 757
  ident: bib0007
  article-title: Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system
  publication-title: Int. J. Refrig.
– volume: 128
  start-page: 889
  year: 2006
  ident: bib0021
  article-title: The electro-adsorption chiller: performance rating of a novel miniaturized cooling cycle for electronics cooling
  publication-title: J. Heat Transf.
– volume: 2004
  start-page: 425
  year: 2004
  end-page: 432
  ident: bib0050
  article-title: Improving the COP of a two-bed adsorption chiller via a passive regeneration scheme
  publication-title: Proc. ACRA
– volume: 22
  start-page: 194
  year: 1999
  end-page: 204
  ident: bib0020
  article-title: Modeling the performance of two-bed, silica gel-water adsorption chillers
  publication-title: Int. J. Refrig.
– volume: 144
  year: 2019
  ident: bib0038
  article-title: Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications
  publication-title: Int. J. Heat Mass Transf.
– volume: 21
  start-page: 439
  year: 2001
  end-page: 452
  ident: bib0053
  article-title: Study on heat and mass recovery in adsorption refrigeration cycles
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 1417
  year: 2007
  end-page: 1426
  ident: bib0059
  article-title: Two bed silica gel-water adsorption chillers: an effectual lumped parameter model
  publication-title: Int. J. Refrig.
– volume: 99
  start-page: 166
  year: 2019
  end-page: 175
  ident: bib0040
  article-title: Assessment of numerical models in the evaluation of adsorption cooling system performance
  publication-title: Int. J. Refrig.
– volume: 33
  start-page: 706
  year: 2010
  end-page: 713
  ident: bib0032
  article-title: Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs
  publication-title: Int. J. Refrig.
– volume: 29
  start-page: 1175
  year: 2006
  end-page: 1181
  ident: bib0004
  article-title: Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles
  publication-title: Int. J. Refrig.
– volume: 164
  year: 2020
  ident: bib0006
  article-title: Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps
  publication-title: Appl. Therm. Eng.
– start-page: 147
  year: 2020
  end-page: 177
  ident: bib0014
  article-title: TEWI assessment of conventional and solar powered cooling systems
  publication-title: Sol. Energy
– volume: 96
  start-page: 65
  year: 2006
  end-page: 71
  ident: bib0018
  article-title: Kinetics of water adsorption on silica Fuji Davison RD
  publication-title: Microporous Mesoporous Mater.
– volume: 35
  start-page: 499
  year: 2012
  end-page: 505
  ident: bib0031
  article-title: Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications
  publication-title: Int. J. Refrig.
– volume: 80
  start-page: 238
  year: 2017
  end-page: 251
  ident: bib0069
  article-title: Conception d’un nouveau lit compact pour systèmes de refroidissement à adsorption: étude numérique paramétrique
  publication-title: Int. J. Refrig.
– volume: 19
  year: 2020
  ident: bib0039
  article-title: Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications
  publication-title: Therm. Sci. Eng. Prog.
– volume: 105
  start-page: 2004
  year: 2017
  end-page: 2009
  ident: bib0061
  article-title: Modeling and simulation of mass recovery process in adsorption system for cooling and desalination
  publication-title: Energy Procedia
– volume: 17
  start-page: 829
  year: 1992
  end-page: 839
  ident: bib0057
  article-title: Modeling of a silica gel-water adsorption cooling system
  publication-title: Energy
– volume: 97
  start-page: 68
  year: 2016
  end-page: 76
  ident: bib0012
  article-title: Fundamental and application aspects of adsorption cooling and desalination
  publication-title: Appl. Therm. Eng.
– volume: 50
  start-page: 939
  year: 2013
  end-page: 949
  ident: bib0068
  article-title: Effects of plate finned heat exchanger parameters on the adsorption chiller performance
  publication-title: Appl. Therm. Eng.
– volume: 49
  start-page: 1915
  year: 2006
  end-page: 1921
  ident: bib0071
  article-title: Modeling of condensation heat transfer of refrigerant mixture in micro-fin tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 63
  year: 1989
  end-page: 70
  ident: bib0030
  article-title: Activated carbon adsorption cycles for refrigeration and heat pumping
  publication-title: Carbon
– volume: 28
  start-page: 147
  year: 2007
  end-page: 153
  ident: bib0052
  article-title: How heat and mass recovery strategies impact the performance of adsorption desalination plant: theory and experiments
  publication-title: Heat Transf. Eng.
– volume: 136
  start-page: 450
  year: 2016
  end-page: 459
  ident: bib0013
  article-title: Influence of cycle time and collector area on solar driven adsorption chillers
  publication-title: Sol. Energy
– volume: 87
  start-page: 2062
  year: 2010
  end-page: 2067
  ident: bib0024
  article-title: Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles
  publication-title: Appl. Energy
– volume: 100
  start-page: 744
  year: 2016
  end-page: 752
  ident: bib0045
  article-title: Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 1037
  year: 2013
  end-page: 1044
  ident: bib0033
  article-title: Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications
  publication-title: Int. J. Refrig.
– volume: 16
  start-page: 405
  year: 1996
  end-page: 418
  ident: bib0058
  article-title: Numerical analysis of adsorptive temperature wave regenerative heat pump
  publication-title: Appl. Therm. Eng.
– volume: 131
  start-page: 649
  year: 2018
  end-page: 659
  ident: bib0042
  article-title: Experimental investigation on composite adsorbent – water pair for a solar-powered adsorption cooling system
  publication-title: Appl. Therm. Eng.
– volume: 67
  start-page: 174
  year: 2016
  end-page: 189
  ident: bib0016
  article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system
  publication-title: Int. J. Refrig.
– volume: 24
  start-page: 602
  year: 2001
  end-page: 611
  ident: bib0055
  article-title: Performance improvement of adsorption cooling by heat and mass recovery operation {Â} lioration de la performance d ’ un syste {Á} me de Ame {Á} adsorption a {Á} l ’ aide de re {Â} cupe {Â} ration de masse refroidissement a et de chaleur
  publication-title: Int. J. Refrig.
– reference: Yonezawa Y, Ohnishi T, Okumura S, Sakai A, Nakano H, Matsushita M, et al. Method of operating adsorption refrigerator. US Patent No. 5024064, 1991.
– volume: 49
  start-page: 2703
  year: 2006
  end-page: 2711
  ident: bib0063
  article-title: System performance of a combined heat and mass recovery adsorption cooling cycle: a parametric study
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 225
  year: 2004
  end-page: 234
  ident: bib0046
  article-title: Mass recovery adsorption refrigeration cycle – improving cooling capicity
  publication-title: Int. J. Refrig.
– volume: 43
  start-page: 4419
  year: 2000
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0044
  article-title: Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00072-7
– volume: 43
  start-page: 733
  year: 2002
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0054
  article-title: Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(01)00062-0
– volume: 28
  start-page: 565
  year: 2005
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0047
  article-title: Experimental investigation of mass recovery adsorption refrigeration cycle
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2004.10.001
– volume: 136
  start-page: 450
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0013
  article-title: Influence of cycle time and collector area on solar driven adsorption chillers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.07.023
– volume: 160
  start-page: 191
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0027
  article-title: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.12.057
– volume: 100
  start-page: 744
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0045
  article-title: Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.02.066
– volume: 50
  start-page: 433
  year: 2007
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0049
  article-title: A comparative evaluation of two different heat-recovery schemes as applied to a two-bed adsorption chiller
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.08.003
– start-page: 117
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0010
– volume: 92
  start-page: 1120
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0022
  article-title: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.09.060
– volume: 21
  start-page: 439
  year: 2001
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0053
  article-title: Study on heat and mass recovery in adsorption refrigeration cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(00)00050-8
– volume: 2004
  start-page: 425
  year: 2004
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0050
  article-title: Improving the COP of a two-bed adsorption chiller via a passive regeneration scheme
  publication-title: Proc. ACRA
– ident: 10.1016/j.ijrefrig.2020.12.032_bib0036
– volume: 29
  start-page: 1249
  year: 2003
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0015
  article-title: Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(03)00103-4
– volume: 21
  start-page: 1631
  year: 2001
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0017
  article-title: Experimental investigation of the silica gel-water adsorption isotherm characteristics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00039-4
– volume: 35
  start-page: 685
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0008
  article-title: Study on a waste heat-driven adsorption cooling cum desalination cycle
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.01.008
– volume: 27
  start-page: 225
  year: 2004
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0046
  article-title: Mass recovery adsorption refrigeration cycle – improving cooling capicity
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2003.10.004
– volume: 18
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0001
  article-title: Performance improvement of adsorption desalination system by applying mass and heat recovery processes
  publication-title: Therm. Sci. Eng. Prog.
– volume: 32
  start-page: 846
  year: 2009
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0019
  article-title: A new cycle time allocation for enhancing the performance of two-bed adsorption chillers
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2008.12.002
– volume: 27
  start-page: 63
  year: 1989
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0030
  article-title: Activated carbon adsorption cycles for refrigeration and heat pumping
  publication-title: Carbon
  doi: 10.1016/0008-6223(89)90157-7
– volume: 67
  start-page: 174
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0016
  article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.10.028
– volume: 33
  start-page: 706
  year: 2010
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0032
  article-title: Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2010.01.006
– volume: 19
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0039
  article-title: Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications
  publication-title: Therm. Sci. Eng. Prog.
– volume: 80
  start-page: 238
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0069
  article-title: Conception d’un nouveau lit compact pour systèmes de refroidissement à adsorption: étude numérique paramétrique
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2017.04.028
– volume: 87
  start-page: 2062
  year: 2010
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0024
  article-title: Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.11.027
– volume: 122
  start-page: 795
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0005
  article-title: Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.01.107
– volume: 26
  start-page: 749
  year: 2003
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0007
  article-title: Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(03)00074-4
– start-page: 147
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0014
  article-title: TEWI assessment of conventional and solar powered cooling systems
– volume: 28
  start-page: 147
  year: 2007
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0052
  article-title: How heat and mass recovery strategies impact the performance of adsorption desalination plant: theory and experiments
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630601023625
– volume: 17
  start-page: 52
  year: 1983
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0066
  article-title: Fundamental study on solar powered adsorption cooling system
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.17.52
– volume: 20
  start-page: 983
  year: 1995
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0065
  article-title: Computational analysis of an advanced adsorption-refrigeration cycle
  publication-title: Energy
  doi: 10.1016/0360-5442(95)00047-K
– volume: 24
  start-page: 602
  year: 2001
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0055
  article-title: Performance improvement of adsorption cooling by heat and mass recovery operation {Â} lioration de la performance d ’ un syste {Á} me de Ame {Á} adsorption a {Á} l ’ aide de re {Â} cupe {Â} ration de masse refroidissement a et de chaleur
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00004-4
– volume: 97
  start-page: 68
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0012
  article-title: Fundamental and application aspects of adsorption cooling and desalination
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.113
– volume: 49
  start-page: 3343
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0051
  article-title: Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.01.053
– volume: 29
  start-page: 1175
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0004
  article-title: Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.01.005
– volume: 32
  start-page: 675
  year: 2009
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0067
  article-title: Optimal adsorbent for adsorptive heat transformers: dynamic considerations
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.01.022
– volume: 11
  start-page: 299
  year: 2007
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0011
  article-title: Solar air conditioning in Europe—an overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.02.003
– volume: 158
  start-page: 1368
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0043
  article-title: Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.040
– volume: 49
  start-page: 2703
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0063
  article-title: System performance of a combined heat and mass recovery adsorption cooling cycle: a parametric study
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.01.012
– volume: 28
  start-page: 756
  year: 2005
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0048
  article-title: Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2004.11.011
– volume: 49
  start-page: 1915
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0071
  article-title: Modeling of condensation heat transfer of refrigerant mixture in micro-fin tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.11.006
– year: 2017
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0002
  article-title: Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.035
– volume: 20
  start-page: 311
  year: 2014
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0060
  article-title: Thermodynamic analysis and performance simulation of different kinds of mass recovery processes applied in adsorption refrigeration system
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2014.889512
– volume: 96
  start-page: 65
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0018
  article-title: Kinetics of water adsorption on silica Fuji Davison RD
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2006.06.008
– volume: 36
  start-page: 1037
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0033
  article-title: Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.11.009
– volume: 138
  start-page: 888
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0056
  article-title: Conjugate heat and mass transfer study of a new open-cycle absorption heat pump applied to total heat recovery of flue gas
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.054
– volume: 105
  start-page: 2004
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0061
  article-title: Modeling and simulation of mass recovery process in adsorption system for cooling and desalination
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.574
– volume: 99
  start-page: 166
  year: 2019
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0040
  article-title: Assessment of numerical models in the evaluation of adsorption cooling system performance
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.12.017
– volume: 35
  start-page: 581
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0070
  article-title: Numerical simulation of heat and mass transfer in adsorbent beds with annular fins
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.05.013
– volume: 110
  start-page: 277
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0035
  article-title: Experimental study on thermophysical and porous properties of silica gels
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.10.027
– volume: 7
  start-page: 183
  year: 1986
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0028
  article-title: Possible adsorption pairs for use in solar cooling
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.1986.9675500
– volume: 164
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0006
  article-title: Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114431
– volume: 24
  start-page: 2359
  year: 2004
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0062
  article-title: Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.02.014
– volume: 47
  start-page: 590
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0025
  article-title: Design and performance prediction of a novel zeolite-water adsorption air conditioner
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2005.05.011
– volume: 7
  start-page: 285
  year: 1987
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0026
  article-title: The dynamics of a solid-adsorption heat pump connected with outside heat sources of finite capacity
  publication-title: Heat Recover Syst. CHP
  doi: 10.1016/0890-4332(87)90141-4
– volume: 35
  start-page: 499
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0031
  article-title: Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.05.002
– volume: 102
  start-page: 582
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0023
  article-title: Experimental investigation on the optimal performance of Zeolite–water adsorption chiller
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.005
– volume: 22
  start-page: 194
  year: 1999
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0020
  article-title: Modeling the performance of two-bed, silica gel-water adsorption chillers
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(98)00063-2
– volume: 16
  start-page: 405
  year: 1996
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0058
  article-title: Numerical analysis of adsorptive temperature wave regenerative heat pump
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/1359-4311(95)00045-3
– volume: 89
  start-page: 142
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0064
  article-title: Physical and operating conditions effects on silica gel/water adsorption chiller performance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.11.021
– volume: 50
  start-page: 939
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0068
  article-title: Effects of plate finned heat exchanger parameters on the adsorption chiller performance
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.08.033
– volume: 128
  start-page: 889
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0021
  article-title: The electro-adsorption chiller: performance rating of a novel miniaturized cooling cycle for electronics cooling
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2241786
– volume: 134
  start-page: 554
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0009
  article-title: Study of sorption systems for application on low-emission fishing vessels
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.079
– volume: 32
  start-page: 1579
  year: 2009
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0029
  article-title: Study on adsorption of methanol onto carbon based adsorbents
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.06.011
– volume: 67
  start-page: 336
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0041
  article-title: Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.03.001
– volume: 30
  start-page: 1417
  year: 2007
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0059
  article-title: Two bed silica gel-water adsorption chillers: an effectual lumped parameter model
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2007.03.010
– volume: 91
  year: 2007
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0003
  article-title: Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2780117
– year: 2010
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0034
  article-title: Empirical simulation model of silica gel/water adsorption chiller
– volume: 17
  start-page: 829
  year: 1992
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0057
  article-title: Modeling of a silica gel-water adsorption cooling system
  publication-title: Energy
  doi: 10.1016/0360-5442(92)90101-5
– ident: 10.1016/j.ijrefrig.2020.12.032_bib0037
– volume: 131
  start-page: 649
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0042
  article-title: Experimental investigation on composite adsorbent – water pair for a solar-powered adsorption cooling system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.053
– volume: 144
  year: 2019
  ident: 10.1016/j.ijrefrig.2020.12.032_bib0038
  article-title: Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118579
SSID ssj0017058
Score 2.4978366
Snippet •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 222
SubjectTerms Adsorption
Chiller
COP
Heat recovery
Mass recovery
Modelling
Modélisation
Refroidisseur
Récupération de chaleur
Récupération de masse
Title Study on optimized adsorption chiller employing various heat and mass recovery schemes
URI https://dx.doi.org/10.1016/j.ijrefrig.2020.12.032
Volume 126
WOSCitedRecordID wos000669997000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5i3OQH3qIMx7nZjxUa4tZp0sbUt8iJHa2lTausLYO_wx_lOHacFCbGHniJIkd245yvx-d-EHotQI9OQK73iZLUjyQpfRYEhR8ySYqgSLhqPKZnn9OjIzaZ8OPB4GebC7Odp1XFLi_56r-SGsaA2Dp19gbkdovCANwD0eEKZIfrPxH-xJSJBjEQuMFi-gMkSiEvlrXhDTp5e65qTzWdfrWdYAvaso6D1Vy5cSUsQJ72tKIMW__ugfar2iyRWRf23lkRe7Un4LQFZV_VO9798Wa9Frbp11ic55u8i0V0gBzLA2-0mNa9MEVQEBpO_Wkzl0qtvBN4WWe7Phbn34ynCh6Jr33bBe3FWDlzJvFTYvreOn5MdziqSVu2hzM1FWL-4PvGBDE7mM7MTkHxp6Sx81rr6U6h7d8OQBeW2Ea8zbJ2nUyvkwU0g3VuoT2axpwN0d7ow-Hko3NWpaRpA-s200tEv_qNrpaBenLN6X10zyokeGSA9AANVPUQ3e2VqXyEzhpI4WWFHaRwBylsIYUdpLCFFNaQwgAprCGFW0hhC6nH6Mu7w9O3733bj8MvwpStfUbjUORctxzgKej9XFIhaCnCPKQyJioOYYzHipWR4FEclCLKRePsL7gMWR4-QcNqWamnCCeSsZiFMlEkj4oyFyoiIgnKVEZFKATZR3H7hbLCFqvXPVPm2d9ptI_euHkrU67l2hm8JUBmhU4jTGaArWvmPrvxrz1Hd7r_wQs0XNcb9RLdLrbr6UX9ygLrF-CArCU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+optimized+adsorption+chiller+employing+various+heat+and+mass+recovery+schemes&rft.jtitle=International+journal+of+refrigeration&rft.au=Muttakin%2C+Mahbubul&rft.au=Islam%2C+Md.+Amirul&rft.au=Malik%2C+Kuldeep+Singh&rft.au=Pahwa%2C+Deepak&rft.date=2021-06-01&rft.issn=0140-7007&rft.volume=126&rft.spage=222&rft.epage=237&rft_id=info:doi/10.1016%2Fj.ijrefrig.2020.12.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrefrig_2020_12_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon