Study on optimized adsorption chiller employing various heat and mass recovery schemes
•A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for differe...
Uloženo v:
| Vydáno v: | International journal of refrigeration Ročník 126; s. 222 - 237 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2021
|
| Témata: | |
| ISSN: | 0140-7007, 1879-2081 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for different operating temperatures are determined.•A nominal mass recovery may be sufficient for low generation temperature lift.
A typical commercial two-bed adsorption chiller using silica gel as adsorbent and water as adsorbate is simulated in the current study. Each of the two beds goes through four processes in one cycle, namely, adsorption, mass recovery, heat recovery, and desorption. A transient lumped analytical model is developed, and the governing equations are solved using the MATLAB® platform. The thermophysical properties of the refrigerant are collected from REFPROP®, which is integrated within the MATLAB® codes. The simulation model is validated with the test results of a commercial chiller manufactured by Bry-Air (Asia) Pvt. Ltd. The cooling capacity of the chiller is 40 ton of refrigeration, and in this study, the simulation results are in good agreement with the test results provided by the manufacturer. The simulation model is then utilized in the present investigation to predict the performance of a typical commercial chiller under various working conditions. The recovery times, the temperatures of hot water, cooling water, and chilled water are varied, and their impacts on the cooling capacity and COP of the chiller are analyzed. The optimum recovery durations are reported for different temperatures, and their effects on the bed uptakes are investigated. The model can be used as an effective means to determine the optimal cycle time with necessary recovery durations for a specific cooling load, with a view to providing the maximum efficiency under specified operating conditions. |
|---|---|
| AbstractList | •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental data.•The variations of uptake and bed temperature throughout the cycle are investigated.•Optimum mass and heat recovery durations for different operating temperatures are determined.•A nominal mass recovery may be sufficient for low generation temperature lift.
A typical commercial two-bed adsorption chiller using silica gel as adsorbent and water as adsorbate is simulated in the current study. Each of the two beds goes through four processes in one cycle, namely, adsorption, mass recovery, heat recovery, and desorption. A transient lumped analytical model is developed, and the governing equations are solved using the MATLAB® platform. The thermophysical properties of the refrigerant are collected from REFPROP®, which is integrated within the MATLAB® codes. The simulation model is validated with the test results of a commercial chiller manufactured by Bry-Air (Asia) Pvt. Ltd. The cooling capacity of the chiller is 40 ton of refrigeration, and in this study, the simulation results are in good agreement with the test results provided by the manufacturer. The simulation model is then utilized in the present investigation to predict the performance of a typical commercial chiller under various working conditions. The recovery times, the temperatures of hot water, cooling water, and chilled water are varied, and their impacts on the cooling capacity and COP of the chiller are analyzed. The optimum recovery durations are reported for different temperatures, and their effects on the bed uptakes are investigated. The model can be used as an effective means to determine the optimal cycle time with necessary recovery durations for a specific cooling load, with a view to providing the maximum efficiency under specified operating conditions. |
| Author | Islam, Md. Amirul Malik, Kuldeep Singh Muttakin, Mahbubul Pahwa, Deepak Saha, Bidyut Baran |
| Author_xml | – sequence: 1 givenname: Mahbubul orcidid: 0000-0002-5303-5683 surname: Muttakin fullname: Muttakin, Mahbubul organization: Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Tejgaon, Dhaka 1208, Bangladesh – sequence: 2 givenname: Md. Amirul surname: Islam fullname: Islam, Md. Amirul organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan – sequence: 3 givenname: Kuldeep Singh surname: Malik fullname: Malik, Kuldeep Singh organization: Bry-Air (Asia) Pvt. Ltd., 20 Rajpur Road, Delhi 110054, India – sequence: 4 givenname: Deepak surname: Pahwa fullname: Pahwa, Deepak organization: Bry-Air (Asia) Pvt. Ltd., 20 Rajpur Road, Delhi 110054, India – sequence: 5 givenname: Bidyut Baran surname: Saha fullname: Saha, Bidyut Baran email: saha.baran.bidyut.213@m.kyushu-u.ac.jp organization: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan |
| BookMark | eNqFkMtqwzAQRUVJoUnaXyj6Aad6-AldtIS-oNBFH1sxlsaJgm0FyQm4X1-FtJtushrmwrnMnBmZ9K5HQq45W3DG85vNwm48Nt6uFoKJGIoFk-KMTHlZVIlgJZ-QKeMpSwrGigsyC2HDGC9YVk7J1_uwMyN1PXXbwXb2Gw0FE5yPWwz12rYteordtnWj7Vd0D966XaBrhIFCb2gHIVCP2u3RjzToNXYYLsl5A23Aq985J5-PDx_L5-T17ellef-aaFmUQ1KKTEJdCZmnVcGzvDICQDQgaylMxjCTMasyLJsUqjTjDaQ11Izlha6MLGs5J7fHXu1dCNGC0naAw-mDB9sqztTBkdqoP0fq4EhxoaKjiOf_8K23HfjxNHh3BDE-t7foVdAWe43GRhWDMs6eqvgBvXSJLw |
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_121847 crossref_primary_10_1016_j_renene_2025_122582 crossref_primary_10_1016_j_icheatmasstransfer_2023_106774 crossref_primary_10_1016_j_icheatmasstransfer_2024_107848 crossref_primary_10_1016_j_applthermaleng_2021_117181 crossref_primary_10_1016_j_seta_2021_101793 crossref_primary_10_32604_fdmp_2022_022285 crossref_primary_10_3390_en14227478 crossref_primary_10_1016_j_enconman_2021_114654 crossref_primary_10_1016_j_enconman_2022_116649 crossref_primary_10_3390_en14133871 crossref_primary_10_1016_j_solener_2023_03_017 crossref_primary_10_3390_en14238038 crossref_primary_10_1016_j_applthermaleng_2023_120991 crossref_primary_10_1016_j_energy_2021_121813 crossref_primary_10_1016_j_icheatmasstransfer_2022_106461 crossref_primary_10_3390_cleantechnol4040070 crossref_primary_10_1016_j_rser_2024_115301 crossref_primary_10_1016_j_enconman_2024_119034 crossref_primary_10_1016_j_ijrefrig_2023_04_009 crossref_primary_10_1016_j_enconman_2023_118020 crossref_primary_10_1016_j_rser_2022_112890 crossref_primary_10_1016_j_icheatmasstransfer_2024_107779 crossref_primary_10_1016_j_enbuild_2024_114657 crossref_primary_10_1007_s10973_025_14119_6 crossref_primary_10_1016_j_susmat_2022_e00442 crossref_primary_10_1016_j_energy_2021_122079 crossref_primary_10_1016_j_rser_2021_111808 crossref_primary_10_1016_j_tsep_2021_101125 crossref_primary_10_1016_j_tsep_2022_101602 crossref_primary_10_1016_j_energy_2022_124977 crossref_primary_10_1016_j_supflu_2022_105517 crossref_primary_10_1016_j_ijrefrig_2022_12_009 |
| Cites_doi | 10.1016/S0017-9310(00)00072-7 10.1016/S0196-8904(01)00062-0 10.1016/j.ijrefrig.2004.10.001 10.1016/j.solener.2016.07.023 10.1016/j.enconman.2017.12.057 10.1016/j.applthermaleng.2016.02.066 10.1016/j.ijheatmasstransfer.2006.08.003 10.1016/j.ijheatmasstransfer.2015.09.060 10.1016/S1359-4311(00)00050-8 10.1016/S0301-9322(03)00103-4 10.1016/S1359-4311(01)00039-4 10.1016/j.ijrefrig.2011.01.008 10.1016/j.ijrefrig.2003.10.004 10.1016/j.ijrefrig.2008.12.002 10.1016/0008-6223(89)90157-7 10.1016/j.ijrefrig.2015.10.028 10.1016/j.ijrefrig.2010.01.006 10.1016/j.ijrefrig.2017.04.028 10.1016/j.apenergy.2009.11.027 10.1016/j.ijheatmasstransfer.2018.01.107 10.1016/S0140-7007(03)00074-4 10.1080/01457630601023625 10.1252/jcej.17.52 10.1016/0360-5442(95)00047-K 10.1016/S0140-7007(01)00004-4 10.1016/j.applthermaleng.2015.09.113 10.1016/j.ijheatmasstransfer.2006.01.053 10.1016/j.ijrefrig.2006.01.005 10.1016/j.ijrefrig.2009.01.022 10.1016/j.rser.2005.02.003 10.1016/j.enbuild.2017.11.040 10.1016/j.ijheatmasstransfer.2006.01.012 10.1016/j.ijrefrig.2004.11.011 10.1016/j.ijheatmasstransfer.2005.11.006 10.1016/j.ijhydene.2017.07.035 10.1080/10789669.2014.889512 10.1016/j.micromeso.2006.06.008 10.1016/j.ijrefrig.2012.11.009 10.1016/j.applthermaleng.2018.04.054 10.1016/j.egypro.2017.03.574 10.1016/j.ijrefrig.2018.12.017 10.1016/j.ijrefrig.2011.05.013 10.1016/j.ijrefrig.2019.10.027 10.1080/01430750.1986.9675500 10.1016/j.applthermaleng.2019.114431 10.1016/j.applthermaleng.2004.02.014 10.1016/j.enconman.2005.05.011 10.1016/0890-4332(87)90141-4 10.1016/j.ijrefrig.2011.05.002 10.1016/j.apenergy.2012.08.005 10.1016/S0140-7007(98)00063-2 10.1016/1359-4311(95)00045-3 10.1016/j.apenergy.2010.11.021 10.1016/j.applthermaleng.2012.08.033 10.1115/1.2241786 10.1016/j.energy.2017.06.079 10.1016/j.ijrefrig.2009.06.011 10.1016/j.ijrefrig.2016.03.001 10.1016/j.ijrefrig.2007.03.010 10.1063/1.2780117 10.1016/0360-5442(92)90101-5 10.1016/j.applthermaleng.2017.12.053 10.1016/j.ijheatmasstransfer.2019.118579 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd and IIR |
| Copyright_xml | – notice: 2020 Elsevier Ltd and IIR |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijrefrig.2020.12.032 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Étude d’un refroidisseur à adsorption optimisé utilisant différents schémas de récupération de chaleur et de masse |
| EISSN | 1879-2081 |
| EndPage | 237 |
| ExternalDocumentID | 10_1016_j_ijrefrig_2020_12_032 S0140700720305260 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSA SST SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c378t-8253ab92364971569d2aa2fa3b32d50e5356995e8f4a9451fa4bab0067c9d38b3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000669997000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-7007 |
| IngestDate | Tue Nov 18 21:37:25 EST 2025 Sat Nov 29 07:23:38 EST 2025 Fri Feb 23 02:44:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chiller Adsorption COP Modelling Refroidisseur Récupération de chaleur Heat recovery Mass recovery Récupération de masse Modélisation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-8253ab92364971569d2aa2fa3b32d50e5356995e8f4a9451fa4bab0067c9d38b3 |
| ORCID | 0000-0002-5303-5683 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijrefrig_2020_12_032 crossref_primary_10_1016_j_ijrefrig_2020_12_032 elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2020_12_032 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of refrigeration |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Moaleman, Kasaeian, Aramesh, Mahian, Sahota, Nath Tiwari (bib0027) 2018; 160 Palomba, Aprile, Motta, Vasta (bib0009) 2017; 134 Habib, Saha, Rahman, Chakraborty, Koyama, Ng (bib0032) 2010; 33 Saha, El-Sharkawy, Shahzad, Thu, Ang, Ng (bib0012) 2016; 97 Wang, Chua (bib0049) 2007; 50 Amirfakhraei, Zarei, Khorshidi (bib0001) 2020; 18 Zhu, Tso, Chan, Wu, Chao, Chen (bib0042) 2018; 131 Ng, Thu, Saha, Chakraborty (bib0008) 2012; 35 Thu, Saha, Mitra, Chua (bib0061) 2017; 105 Rezk, Al-Dadah (bib0064) 2012; 89 Chamra, Mago (bib0071) 2006; 49 Islam, Srinivasan, Thu, Saha (bib0002) 2017 Aldadah, Rezk (bib0034) 2010 Wang, Chua (bib0059) 2007; 30 Saha, Chakraborty, Koyama, Srinivasan, Ng, Kashiwagi (bib0003) 2007; 91 Jaiswal, Mitra, Dutta, Srinivasan, Srinivasa Murthy (bib0013) 2016; 136 Pan, Wang, Lu, Wang (bib0060) 2014; 20 Wang, Ng, Chakarborty, Saha (bib0052) 2007; 28 Mohammed, Mesalhy, Elsayed, Chow (bib0069) 2017; 80 Wang, Qu, Wang (bib0054) 2002; 43 Niazmand, Dabzadeh (bib0070) 2012; 35 Leong, Liu (bib0062) 2004; 24 Mitra, Kumar, Srinivasan, Dutta (bib0016) 2016; 67 Solmuş, Yamali, Kaftanoǧlu, Baker, Çaǧlar (bib0024) 2010; 87 Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (bib0047) 2005; 28 Kayal, Baichuan, Saha (bib0022) 2016; 92 Yonezawa Y, Matsushita M, Oku K, Nakano H, Okumura S, Yoshihara M, et al. Adsorption refrigeration system. US Patent No. 4881376, 1989. Aprile, Freni, Toppi, Motta (bib0039) 2020; 19 Critoph, Vogel (bib0028) 1986; 7 Wang (bib0055) 2001; 24 Alam, Saha, Kang, Akisawa, Kashiwagi (bib0044) 2000; 43 Critoph (bib0030) 1989; 27 Myat, Kim Choon, Thu, Kim (bib0023) 2013; 102 Sakoda, Suzuki (bib0066) 1983; 17 Islam, Pal, Saha (bib0035) 2020; 110 Rocky, Islam, Pal, Ghosh, Thu, Nasruddin (bib0006) 2020; 164 Saha, El-Sharkawy, Chakraborty, Koyama, Banker, Dutta (bib0004) 2006; 29 Aristov, Tokarev, Freni, Glaznev, Restuccia (bib0018) 2006; 96 Chan, Tso, Wu, Chao (bib0043) 2018; 158 Mahdavikhah, Niazmand (bib0068) 2013; 50 Ben, Sun, Meunier (bib0058) 1996; 16 Pan, Wang, Wang, Liu (bib0041) 2016; 67 Aristov (bib0067) 2009; 32 El-Sharkawy, Hassan, Saha, Koyama, Nasr (bib0029) 2009; 32 Saha, El-Sharkawy, Thorpe, Critoph (bib0031) 2012; 35 Cho, Kim (bib0057) 1992; 17 Karagiorgas, Meunier (bib0026) 1987; 7 Muttakin, Mitra, Thu, Ito, Saha (bib0005) 2018; 122 Rupam, Islam, Pal, Chakraborty, Saha (bib0038) 2019; 144 Ng, Chua, Chung, Loke, Kashiwagi, Akisawa (bib0017) 2001; 21 Yonezawa Y, Ohnishi T, Okumura S, Sakai A, Nakano H, Matsushita M, et al. Method of operating adsorption refrigerator. US Patent No. 5024064, 1991. Saha, Koyama, Kashiwagi, Akisawa, Ng, Chua (bib0007) 2003; 26 Saha, Koyama, Lee, Kuwahara, Alam, Hamamoto (bib0015) 2003; 29 Leong, Liu (bib0063) 2006; 49 Ng, Wang, Lim, Saha, Chakarborty, Koyama (bib0051) 2006; 49 Miyazaki, Akisawa, Saha, El-Sharkawy, Chakraborty (bib0019) 2009; 32 Akahira, Alam, Hamamoto, Akisawa, Kashiwagi (bib0046) 2004; 27 Chua, Ng, Wang (bib0050) 2004; 2004 Muttakin, Ito, Saha (bib0010) 2020 Saha, Boelman, Kashiwagi (bib0065) 1995; 20 Yang, Jiang, Fu, Zhang (bib0056) 2018; 138 Wang, Xia, Wu (bib0025) 2006; 47 Islam, Saha (bib0014) 2020 Askalany, Saha, Ahmed, Ismail (bib0033) 2013; 36 Ng, Sai, Chakraborty, Saha, Koyama (bib0021) 2006; 128 Wang, Chua, Ng (bib0048) 2005; 28 Qu, Wang, Wang (bib0053) 2001; 21 Balaras, Grossman, Henning, Ferreira, Podesser, Wang (bib0011) 2007; 11 Chua, Ng, Malek, Kashiwagi, Akisawa, Saha (bib0020) 1999; 22 Zajaczkowski (bib0045) 2016; 100 Mohammed, Mesalhy, Elsayed, Chow (bib0040) 2019; 99 Islam (10.1016/j.ijrefrig.2020.12.032_bib0002) 2017 Yang (10.1016/j.ijrefrig.2020.12.032_bib0056) 2018; 138 Ng (10.1016/j.ijrefrig.2020.12.032_bib0017) 2001; 21 Miyazaki (10.1016/j.ijrefrig.2020.12.032_bib0019) 2009; 32 Myat (10.1016/j.ijrefrig.2020.12.032_bib0023) 2013; 102 Islam (10.1016/j.ijrefrig.2020.12.032_bib0035) 2020; 110 Pan (10.1016/j.ijrefrig.2020.12.032_bib0060) 2014; 20 Saha (10.1016/j.ijrefrig.2020.12.032_bib0065) 1995; 20 Muttakin (10.1016/j.ijrefrig.2020.12.032_bib0005) 2018; 122 Pan (10.1016/j.ijrefrig.2020.12.032_bib0041) 2016; 67 Chua (10.1016/j.ijrefrig.2020.12.032_bib0050) 2004; 2004 Wang (10.1016/j.ijrefrig.2020.12.032_bib0049) 2007; 50 Thu (10.1016/j.ijrefrig.2020.12.032_bib0061) 2017; 105 Wang (10.1016/j.ijrefrig.2020.12.032_bib0054) 2002; 43 Alam (10.1016/j.ijrefrig.2020.12.032_bib0044) 2000; 43 Akahira (10.1016/j.ijrefrig.2020.12.032_bib0047) 2005; 28 Aprile (10.1016/j.ijrefrig.2020.12.032_bib0039) 2020; 19 Chan (10.1016/j.ijrefrig.2020.12.032_bib0043) 2018; 158 Jaiswal (10.1016/j.ijrefrig.2020.12.032_bib0013) 2016; 136 Chua (10.1016/j.ijrefrig.2020.12.032_bib0020) 1999; 22 Saha (10.1016/j.ijrefrig.2020.12.032_bib0012) 2016; 97 Wang (10.1016/j.ijrefrig.2020.12.032_bib0025) 2006; 47 Critoph (10.1016/j.ijrefrig.2020.12.032_bib0028) 1986; 7 Balaras (10.1016/j.ijrefrig.2020.12.032_bib0011) 2007; 11 Saha (10.1016/j.ijrefrig.2020.12.032_bib0015) 2003; 29 Zajaczkowski (10.1016/j.ijrefrig.2020.12.032_bib0045) 2016; 100 Sakoda (10.1016/j.ijrefrig.2020.12.032_bib0066) 1983; 17 Ng (10.1016/j.ijrefrig.2020.12.032_bib0021) 2006; 128 Habib (10.1016/j.ijrefrig.2020.12.032_bib0032) 2010; 33 Saha (10.1016/j.ijrefrig.2020.12.032_bib0004) 2006; 29 Rocky (10.1016/j.ijrefrig.2020.12.032_bib0006) 2020; 164 Karagiorgas (10.1016/j.ijrefrig.2020.12.032_bib0026) 1987; 7 Saha (10.1016/j.ijrefrig.2020.12.032_bib0031) 2012; 35 Askalany (10.1016/j.ijrefrig.2020.12.032_bib0033) 2013; 36 Wang (10.1016/j.ijrefrig.2020.12.032_bib0052) 2007; 28 Palomba (10.1016/j.ijrefrig.2020.12.032_bib0009) 2017; 134 Mohammed (10.1016/j.ijrefrig.2020.12.032_bib0069) 2017; 80 Mohammed (10.1016/j.ijrefrig.2020.12.032_bib0040) 2019; 99 Cho (10.1016/j.ijrefrig.2020.12.032_bib0057) 1992; 17 Rezk (10.1016/j.ijrefrig.2020.12.032_bib0064) 2012; 89 Muttakin (10.1016/j.ijrefrig.2020.12.032_bib0010) 2020 Critoph (10.1016/j.ijrefrig.2020.12.032_bib0030) 1989; 27 Kayal (10.1016/j.ijrefrig.2020.12.032_bib0022) 2016; 92 Mahdavikhah (10.1016/j.ijrefrig.2020.12.032_bib0068) 2013; 50 Ben (10.1016/j.ijrefrig.2020.12.032_bib0058) 1996; 16 Amirfakhraei (10.1016/j.ijrefrig.2020.12.032_bib0001) 2020; 18 Akahira (10.1016/j.ijrefrig.2020.12.032_bib0046) 2004; 27 Moaleman (10.1016/j.ijrefrig.2020.12.032_bib0027) 2018; 160 Aristov (10.1016/j.ijrefrig.2020.12.032_bib0018) 2006; 96 Solmuş (10.1016/j.ijrefrig.2020.12.032_bib0024) 2010; 87 Ng (10.1016/j.ijrefrig.2020.12.032_bib0008) 2012; 35 El-Sharkawy (10.1016/j.ijrefrig.2020.12.032_bib0029) 2009; 32 Wang (10.1016/j.ijrefrig.2020.12.032_bib0055) 2001; 24 Wang (10.1016/j.ijrefrig.2020.12.032_bib0059) 2007; 30 Aristov (10.1016/j.ijrefrig.2020.12.032_bib0067) 2009; 32 Saha (10.1016/j.ijrefrig.2020.12.032_bib0007) 2003; 26 Zhu (10.1016/j.ijrefrig.2020.12.032_bib0042) 2018; 131 Leong (10.1016/j.ijrefrig.2020.12.032_bib0062) 2004; 24 Wang (10.1016/j.ijrefrig.2020.12.032_bib0048) 2005; 28 Chamra (10.1016/j.ijrefrig.2020.12.032_bib0071) 2006; 49 Leong (10.1016/j.ijrefrig.2020.12.032_bib0063) 2006; 49 Ng (10.1016/j.ijrefrig.2020.12.032_bib0051) 2006; 49 Niazmand (10.1016/j.ijrefrig.2020.12.032_bib0070) 2012; 35 Islam (10.1016/j.ijrefrig.2020.12.032_bib0014) 2020 10.1016/j.ijrefrig.2020.12.032_bib0037 Rupam (10.1016/j.ijrefrig.2020.12.032_bib0038) 2019; 144 Aldadah (10.1016/j.ijrefrig.2020.12.032_bib0034) 2010 Mitra (10.1016/j.ijrefrig.2020.12.032_bib0016) 2016; 67 Saha (10.1016/j.ijrefrig.2020.12.032_bib0003) 2007; 91 10.1016/j.ijrefrig.2020.12.032_bib0036 Qu (10.1016/j.ijrefrig.2020.12.032_bib0053) 2001; 21 |
| References_xml | – volume: 18 year: 2020 ident: bib0001 article-title: Performance improvement of adsorption desalination system by applying mass and heat recovery processes publication-title: Therm. Sci. Eng. Prog. – volume: 35 start-page: 685 year: 2012 end-page: 693 ident: bib0008 article-title: Study on a waste heat-driven adsorption cooling cum desalination cycle publication-title: Int. J. Refrig. – volume: 21 start-page: 1631 year: 2001 end-page: 1642 ident: bib0017 article-title: Experimental investigation of the silica gel-water adsorption isotherm characteristics publication-title: Appl. Therm. Eng. – volume: 47 start-page: 590 year: 2006 end-page: 610 ident: bib0025 article-title: Design and performance prediction of a novel zeolite-water adsorption air conditioner publication-title: Energy Convers. Manag. – volume: 32 start-page: 675 year: 2009 end-page: 686 ident: bib0067 article-title: Optimal adsorbent for adsorptive heat transformers: dynamic considerations publication-title: Int. J. Refrig. – volume: 43 start-page: 4419 year: 2000 end-page: 4431 ident: bib0044 article-title: Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems publication-title: Int. J. Heat Mass Transf. – volume: 122 start-page: 795 year: 2018 end-page: 805 ident: bib0005 article-title: Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms publication-title: Int. J. Heat Mass Transf. – volume: 32 start-page: 1579 year: 2009 end-page: 1586 ident: bib0029 article-title: Study on adsorption of methanol onto carbon based adsorbents publication-title: Int. J. Refrig. – volume: 50 start-page: 433 year: 2007 end-page: 443 ident: bib0049 article-title: A comparative evaluation of two different heat-recovery schemes as applied to a two-bed adsorption chiller publication-title: Int. J. Heat Mass Transf. – volume: 35 start-page: 581 year: 2012 end-page: 593 ident: bib0070 article-title: Numerical simulation of heat and mass transfer in adsorbent beds with annular fins publication-title: Int. J. Refrig. – volume: 67 start-page: 336 year: 2016 end-page: 344 ident: bib0041 article-title: Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers publication-title: Int. J. Refrig. – volume: 49 start-page: 3343 year: 2006 end-page: 3348 ident: bib0051 article-title: Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery publication-title: Int. J. Heat Mass Transf. – volume: 7 start-page: 183 year: 1986 end-page: 190 ident: bib0028 article-title: Possible adsorption pairs for use in solar cooling publication-title: Int. J. Ambient Energy – volume: 32 start-page: 846 year: 2009 end-page: 853 ident: bib0019 article-title: A new cycle time allocation for enhancing the performance of two-bed adsorption chillers publication-title: Int. J. Refrig. – volume: 160 start-page: 191 year: 2018 end-page: 208 ident: bib0027 article-title: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system publication-title: Energy Convers. Manag. – volume: 28 start-page: 565 year: 2005 end-page: 572 ident: bib0047 article-title: Experimental investigation of mass recovery adsorption refrigeration cycle publication-title: Int. J. Refrig. – volume: 11 start-page: 299 year: 2007 end-page: 314 ident: bib0011 article-title: Solar air conditioning in Europe—an overview publication-title: Renew. Sustain. Energy Rev. – volume: 24 start-page: 2359 year: 2004 end-page: 2374 ident: bib0062 article-title: Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system publication-title: Appl. Therm. Eng. – volume: 43 start-page: 733 year: 2002 end-page: 741 ident: bib0054 article-title: Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles publication-title: Energy Convers. Manag. – volume: 17 start-page: 52 year: 1983 end-page: 57 ident: bib0066 article-title: Fundamental study on solar powered adsorption cooling system publication-title: J. Chem. Eng. Jpn. – volume: 110 start-page: 277 year: 2020 end-page: 285 ident: bib0035 article-title: Experimental study on thermophysical and porous properties of silica gels publication-title: Int. J. Refrig. – volume: 20 start-page: 983 year: 1995 end-page: 994 ident: bib0065 article-title: Computational analysis of an advanced adsorption-refrigeration cycle publication-title: Energy – year: 2010 ident: bib0034 article-title: Empirical simulation model of silica gel/water adsorption chiller publication-title: Conf. Therm. Environ. Issues Energy Syst. – volume: 89 start-page: 142 year: 2012 end-page: 149 ident: bib0064 article-title: Physical and operating conditions effects on silica gel/water adsorption chiller performance publication-title: Appl. Energy – start-page: 117 year: 2020 ident: bib0010 article-title: Solar Thermal-Powered Adsorption Chiller. Himanshu Tyagi Prodyut R. Chakraborty Satvasheel Powar – year: 2017 ident: bib0002 article-title: Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems publication-title: Int. J. Hydrogen Energy – volume: 102 start-page: 582 year: 2013 end-page: 590 ident: bib0023 article-title: Experimental investigation on the optimal performance of Zeolite–water adsorption chiller publication-title: Appl. Energy – volume: 158 start-page: 1368 year: 2018 end-page: 1378 ident: bib0043 article-title: Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence publication-title: Energy Build. – volume: 28 start-page: 756 year: 2005 end-page: 765 ident: bib0048 article-title: Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme publication-title: Int. J. Refrig. – volume: 138 start-page: 888 year: 2018 end-page: 899 ident: bib0056 article-title: Conjugate heat and mass transfer study of a new open-cycle absorption heat pump applied to total heat recovery of flue gas publication-title: Appl. Therm. Eng. – volume: 20 start-page: 311 year: 2014 end-page: 319 ident: bib0060 article-title: Thermodynamic analysis and performance simulation of different kinds of mass recovery processes applied in adsorption refrigeration system publication-title: HVAC&R Res. – reference: Yonezawa Y, Matsushita M, Oku K, Nakano H, Okumura S, Yoshihara M, et al. Adsorption refrigeration system. US Patent No. 4881376, 1989. – volume: 92 start-page: 1120 year: 2016 end-page: 1127 ident: bib0022 article-title: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers publication-title: Int. J. Heat Mass Transf. – volume: 29 start-page: 1249 year: 2003 end-page: 1263 ident: bib0015 article-title: Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller publication-title: Int. J. Multiph. Flow – volume: 7 start-page: 285 year: 1987 end-page: 299 ident: bib0026 article-title: The dynamics of a solid-adsorption heat pump connected with outside heat sources of finite capacity publication-title: Heat Recover Syst. CHP – volume: 134 start-page: 554 year: 2017 end-page: 565 ident: bib0009 article-title: Study of sorption systems for application on low-emission fishing vessels publication-title: Energy – volume: 91 year: 2007 ident: bib0003 article-title: Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device publication-title: Appl. Phys. Lett. – volume: 26 start-page: 749 year: 2003 end-page: 757 ident: bib0007 article-title: Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system publication-title: Int. J. Refrig. – volume: 128 start-page: 889 year: 2006 ident: bib0021 article-title: The electro-adsorption chiller: performance rating of a novel miniaturized cooling cycle for electronics cooling publication-title: J. Heat Transf. – volume: 2004 start-page: 425 year: 2004 end-page: 432 ident: bib0050 article-title: Improving the COP of a two-bed adsorption chiller via a passive regeneration scheme publication-title: Proc. ACRA – volume: 22 start-page: 194 year: 1999 end-page: 204 ident: bib0020 article-title: Modeling the performance of two-bed, silica gel-water adsorption chillers publication-title: Int. J. Refrig. – volume: 144 year: 2019 ident: bib0038 article-title: Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications publication-title: Int. J. Heat Mass Transf. – volume: 21 start-page: 439 year: 2001 end-page: 452 ident: bib0053 article-title: Study on heat and mass recovery in adsorption refrigeration cycles publication-title: Appl. Therm. Eng. – volume: 30 start-page: 1417 year: 2007 end-page: 1426 ident: bib0059 article-title: Two bed silica gel-water adsorption chillers: an effectual lumped parameter model publication-title: Int. J. Refrig. – volume: 99 start-page: 166 year: 2019 end-page: 175 ident: bib0040 article-title: Assessment of numerical models in the evaluation of adsorption cooling system performance publication-title: Int. J. Refrig. – volume: 33 start-page: 706 year: 2010 end-page: 713 ident: bib0032 article-title: Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs publication-title: Int. J. Refrig. – volume: 29 start-page: 1175 year: 2006 end-page: 1181 ident: bib0004 article-title: Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles publication-title: Int. J. Refrig. – volume: 164 year: 2020 ident: bib0006 article-title: Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps publication-title: Appl. Therm. Eng. – start-page: 147 year: 2020 end-page: 177 ident: bib0014 article-title: TEWI assessment of conventional and solar powered cooling systems publication-title: Sol. Energy – volume: 96 start-page: 65 year: 2006 end-page: 71 ident: bib0018 article-title: Kinetics of water adsorption on silica Fuji Davison RD publication-title: Microporous Mesoporous Mater. – volume: 35 start-page: 499 year: 2012 end-page: 505 ident: bib0031 article-title: Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications publication-title: Int. J. Refrig. – volume: 80 start-page: 238 year: 2017 end-page: 251 ident: bib0069 article-title: Conception d’un nouveau lit compact pour systèmes de refroidissement à adsorption: étude numérique paramétrique publication-title: Int. J. Refrig. – volume: 19 year: 2020 ident: bib0039 article-title: Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications publication-title: Therm. Sci. Eng. Prog. – volume: 105 start-page: 2004 year: 2017 end-page: 2009 ident: bib0061 article-title: Modeling and simulation of mass recovery process in adsorption system for cooling and desalination publication-title: Energy Procedia – volume: 17 start-page: 829 year: 1992 end-page: 839 ident: bib0057 article-title: Modeling of a silica gel-water adsorption cooling system publication-title: Energy – volume: 97 start-page: 68 year: 2016 end-page: 76 ident: bib0012 article-title: Fundamental and application aspects of adsorption cooling and desalination publication-title: Appl. Therm. Eng. – volume: 50 start-page: 939 year: 2013 end-page: 949 ident: bib0068 article-title: Effects of plate finned heat exchanger parameters on the adsorption chiller performance publication-title: Appl. Therm. Eng. – volume: 49 start-page: 1915 year: 2006 end-page: 1921 ident: bib0071 article-title: Modeling of condensation heat transfer of refrigerant mixture in micro-fin tubes publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 63 year: 1989 end-page: 70 ident: bib0030 article-title: Activated carbon adsorption cycles for refrigeration and heat pumping publication-title: Carbon – volume: 28 start-page: 147 year: 2007 end-page: 153 ident: bib0052 article-title: How heat and mass recovery strategies impact the performance of adsorption desalination plant: theory and experiments publication-title: Heat Transf. Eng. – volume: 136 start-page: 450 year: 2016 end-page: 459 ident: bib0013 article-title: Influence of cycle time and collector area on solar driven adsorption chillers publication-title: Sol. Energy – volume: 87 start-page: 2062 year: 2010 end-page: 2067 ident: bib0024 article-title: Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles publication-title: Appl. Energy – volume: 100 start-page: 744 year: 2016 end-page: 752 ident: bib0045 article-title: Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery publication-title: Appl. Therm. Eng. – volume: 36 start-page: 1037 year: 2013 end-page: 1044 ident: bib0033 article-title: Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications publication-title: Int. J. Refrig. – volume: 16 start-page: 405 year: 1996 end-page: 418 ident: bib0058 article-title: Numerical analysis of adsorptive temperature wave regenerative heat pump publication-title: Appl. Therm. Eng. – volume: 131 start-page: 649 year: 2018 end-page: 659 ident: bib0042 article-title: Experimental investigation on composite adsorbent – water pair for a solar-powered adsorption cooling system publication-title: Appl. Therm. Eng. – volume: 67 start-page: 174 year: 2016 end-page: 189 ident: bib0016 article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system publication-title: Int. J. Refrig. – volume: 24 start-page: 602 year: 2001 end-page: 611 ident: bib0055 article-title: Performance improvement of adsorption cooling by heat and mass recovery operation {Â} lioration de la performance d ’ un syste {Á} me de Ame {Á} adsorption a {Á} l ’ aide de re {Â} cupe {Â} ration de masse refroidissement a et de chaleur publication-title: Int. J. Refrig. – reference: Yonezawa Y, Ohnishi T, Okumura S, Sakai A, Nakano H, Matsushita M, et al. Method of operating adsorption refrigerator. US Patent No. 5024064, 1991. – volume: 49 start-page: 2703 year: 2006 end-page: 2711 ident: bib0063 article-title: System performance of a combined heat and mass recovery adsorption cooling cycle: a parametric study publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 225 year: 2004 end-page: 234 ident: bib0046 article-title: Mass recovery adsorption refrigeration cycle – improving cooling capicity publication-title: Int. J. Refrig. – volume: 43 start-page: 4419 year: 2000 ident: 10.1016/j.ijrefrig.2020.12.032_bib0044 article-title: Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00072-7 – volume: 43 start-page: 733 year: 2002 ident: 10.1016/j.ijrefrig.2020.12.032_bib0054 article-title: Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(01)00062-0 – volume: 28 start-page: 565 year: 2005 ident: 10.1016/j.ijrefrig.2020.12.032_bib0047 article-title: Experimental investigation of mass recovery adsorption refrigeration cycle publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2004.10.001 – volume: 136 start-page: 450 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0013 article-title: Influence of cycle time and collector area on solar driven adsorption chillers publication-title: Sol. Energy doi: 10.1016/j.solener.2016.07.023 – volume: 160 start-page: 191 year: 2018 ident: 10.1016/j.ijrefrig.2020.12.032_bib0027 article-title: Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.12.057 – volume: 100 start-page: 744 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0045 article-title: Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.066 – volume: 50 start-page: 433 year: 2007 ident: 10.1016/j.ijrefrig.2020.12.032_bib0049 article-title: A comparative evaluation of two different heat-recovery schemes as applied to a two-bed adsorption chiller publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.08.003 – start-page: 117 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0010 – volume: 92 start-page: 1120 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0022 article-title: Adsorption characteristics of AQSOA zeolites and water for adsorption chillers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.09.060 – volume: 21 start-page: 439 year: 2001 ident: 10.1016/j.ijrefrig.2020.12.032_bib0053 article-title: Study on heat and mass recovery in adsorption refrigeration cycles publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(00)00050-8 – volume: 2004 start-page: 425 year: 2004 ident: 10.1016/j.ijrefrig.2020.12.032_bib0050 article-title: Improving the COP of a two-bed adsorption chiller via a passive regeneration scheme publication-title: Proc. ACRA – ident: 10.1016/j.ijrefrig.2020.12.032_bib0036 – volume: 29 start-page: 1249 year: 2003 ident: 10.1016/j.ijrefrig.2020.12.032_bib0015 article-title: Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(03)00103-4 – volume: 21 start-page: 1631 year: 2001 ident: 10.1016/j.ijrefrig.2020.12.032_bib0017 article-title: Experimental investigation of the silica gel-water adsorption isotherm characteristics publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00039-4 – volume: 35 start-page: 685 year: 2012 ident: 10.1016/j.ijrefrig.2020.12.032_bib0008 article-title: Study on a waste heat-driven adsorption cooling cum desalination cycle publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.01.008 – volume: 27 start-page: 225 year: 2004 ident: 10.1016/j.ijrefrig.2020.12.032_bib0046 article-title: Mass recovery adsorption refrigeration cycle – improving cooling capicity publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2003.10.004 – volume: 18 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0001 article-title: Performance improvement of adsorption desalination system by applying mass and heat recovery processes publication-title: Therm. Sci. Eng. Prog. – volume: 32 start-page: 846 year: 2009 ident: 10.1016/j.ijrefrig.2020.12.032_bib0019 article-title: A new cycle time allocation for enhancing the performance of two-bed adsorption chillers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.12.002 – volume: 27 start-page: 63 year: 1989 ident: 10.1016/j.ijrefrig.2020.12.032_bib0030 article-title: Activated carbon adsorption cycles for refrigeration and heat pumping publication-title: Carbon doi: 10.1016/0008-6223(89)90157-7 – volume: 67 start-page: 174 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0016 article-title: Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.10.028 – volume: 33 start-page: 706 year: 2010 ident: 10.1016/j.ijrefrig.2020.12.032_bib0032 article-title: Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.01.006 – volume: 19 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0039 article-title: Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications publication-title: Therm. Sci. Eng. Prog. – volume: 80 start-page: 238 year: 2017 ident: 10.1016/j.ijrefrig.2020.12.032_bib0069 article-title: Conception d’un nouveau lit compact pour systèmes de refroidissement à adsorption: étude numérique paramétrique publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.04.028 – volume: 87 start-page: 2062 year: 2010 ident: 10.1016/j.ijrefrig.2020.12.032_bib0024 article-title: Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.11.027 – volume: 122 start-page: 795 year: 2018 ident: 10.1016/j.ijrefrig.2020.12.032_bib0005 article-title: Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.01.107 – volume: 26 start-page: 749 year: 2003 ident: 10.1016/j.ijrefrig.2020.12.032_bib0007 article-title: Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(03)00074-4 – start-page: 147 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0014 article-title: TEWI assessment of conventional and solar powered cooling systems – volume: 28 start-page: 147 year: 2007 ident: 10.1016/j.ijrefrig.2020.12.032_bib0052 article-title: How heat and mass recovery strategies impact the performance of adsorption desalination plant: theory and experiments publication-title: Heat Transf. Eng. doi: 10.1080/01457630601023625 – volume: 17 start-page: 52 year: 1983 ident: 10.1016/j.ijrefrig.2020.12.032_bib0066 article-title: Fundamental study on solar powered adsorption cooling system publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.17.52 – volume: 20 start-page: 983 year: 1995 ident: 10.1016/j.ijrefrig.2020.12.032_bib0065 article-title: Computational analysis of an advanced adsorption-refrigeration cycle publication-title: Energy doi: 10.1016/0360-5442(95)00047-K – volume: 24 start-page: 602 year: 2001 ident: 10.1016/j.ijrefrig.2020.12.032_bib0055 article-title: Performance improvement of adsorption cooling by heat and mass recovery operation {Â} lioration de la performance d ’ un syste {Á} me de Ame {Á} adsorption a {Á} l ’ aide de re {Â} cupe {Â} ration de masse refroidissement a et de chaleur publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00004-4 – volume: 97 start-page: 68 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0012 article-title: Fundamental and application aspects of adsorption cooling and desalination publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.113 – volume: 49 start-page: 3343 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0051 article-title: Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.01.053 – volume: 29 start-page: 1175 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0004 article-title: Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.01.005 – volume: 32 start-page: 675 year: 2009 ident: 10.1016/j.ijrefrig.2020.12.032_bib0067 article-title: Optimal adsorbent for adsorptive heat transformers: dynamic considerations publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.01.022 – volume: 11 start-page: 299 year: 2007 ident: 10.1016/j.ijrefrig.2020.12.032_bib0011 article-title: Solar air conditioning in Europe—an overview publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2005.02.003 – volume: 158 start-page: 1368 year: 2018 ident: 10.1016/j.ijrefrig.2020.12.032_bib0043 article-title: Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.040 – volume: 49 start-page: 2703 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0063 article-title: System performance of a combined heat and mass recovery adsorption cooling cycle: a parametric study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.01.012 – volume: 28 start-page: 756 year: 2005 ident: 10.1016/j.ijrefrig.2020.12.032_bib0048 article-title: Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2004.11.011 – volume: 49 start-page: 1915 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0071 article-title: Modeling of condensation heat transfer of refrigerant mixture in micro-fin tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.11.006 – year: 2017 ident: 10.1016/j.ijrefrig.2020.12.032_bib0002 article-title: Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.035 – volume: 20 start-page: 311 year: 2014 ident: 10.1016/j.ijrefrig.2020.12.032_bib0060 article-title: Thermodynamic analysis and performance simulation of different kinds of mass recovery processes applied in adsorption refrigeration system publication-title: HVAC&R Res. doi: 10.1080/10789669.2014.889512 – volume: 96 start-page: 65 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0018 article-title: Kinetics of water adsorption on silica Fuji Davison RD publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2006.06.008 – volume: 36 start-page: 1037 year: 2013 ident: 10.1016/j.ijrefrig.2020.12.032_bib0033 article-title: Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.11.009 – volume: 138 start-page: 888 year: 2018 ident: 10.1016/j.ijrefrig.2020.12.032_bib0056 article-title: Conjugate heat and mass transfer study of a new open-cycle absorption heat pump applied to total heat recovery of flue gas publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.054 – volume: 105 start-page: 2004 year: 2017 ident: 10.1016/j.ijrefrig.2020.12.032_bib0061 article-title: Modeling and simulation of mass recovery process in adsorption system for cooling and desalination publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.574 – volume: 99 start-page: 166 year: 2019 ident: 10.1016/j.ijrefrig.2020.12.032_bib0040 article-title: Assessment of numerical models in the evaluation of adsorption cooling system performance publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.12.017 – volume: 35 start-page: 581 year: 2012 ident: 10.1016/j.ijrefrig.2020.12.032_bib0070 article-title: Numerical simulation of heat and mass transfer in adsorbent beds with annular fins publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.05.013 – volume: 110 start-page: 277 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0035 article-title: Experimental study on thermophysical and porous properties of silica gels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.10.027 – volume: 7 start-page: 183 year: 1986 ident: 10.1016/j.ijrefrig.2020.12.032_bib0028 article-title: Possible adsorption pairs for use in solar cooling publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.1986.9675500 – volume: 164 year: 2020 ident: 10.1016/j.ijrefrig.2020.12.032_bib0006 article-title: Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114431 – volume: 24 start-page: 2359 year: 2004 ident: 10.1016/j.ijrefrig.2020.12.032_bib0062 article-title: Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.02.014 – volume: 47 start-page: 590 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0025 article-title: Design and performance prediction of a novel zeolite-water adsorption air conditioner publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2005.05.011 – volume: 7 start-page: 285 year: 1987 ident: 10.1016/j.ijrefrig.2020.12.032_bib0026 article-title: The dynamics of a solid-adsorption heat pump connected with outside heat sources of finite capacity publication-title: Heat Recover Syst. CHP doi: 10.1016/0890-4332(87)90141-4 – volume: 35 start-page: 499 year: 2012 ident: 10.1016/j.ijrefrig.2020.12.032_bib0031 article-title: Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.05.002 – volume: 102 start-page: 582 year: 2013 ident: 10.1016/j.ijrefrig.2020.12.032_bib0023 article-title: Experimental investigation on the optimal performance of Zeolite–water adsorption chiller publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.005 – volume: 22 start-page: 194 year: 1999 ident: 10.1016/j.ijrefrig.2020.12.032_bib0020 article-title: Modeling the performance of two-bed, silica gel-water adsorption chillers publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(98)00063-2 – volume: 16 start-page: 405 year: 1996 ident: 10.1016/j.ijrefrig.2020.12.032_bib0058 article-title: Numerical analysis of adsorptive temperature wave regenerative heat pump publication-title: Appl. Therm. Eng. doi: 10.1016/1359-4311(95)00045-3 – volume: 89 start-page: 142 year: 2012 ident: 10.1016/j.ijrefrig.2020.12.032_bib0064 article-title: Physical and operating conditions effects on silica gel/water adsorption chiller performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.11.021 – volume: 50 start-page: 939 year: 2013 ident: 10.1016/j.ijrefrig.2020.12.032_bib0068 article-title: Effects of plate finned heat exchanger parameters on the adsorption chiller performance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.08.033 – volume: 128 start-page: 889 year: 2006 ident: 10.1016/j.ijrefrig.2020.12.032_bib0021 article-title: The electro-adsorption chiller: performance rating of a novel miniaturized cooling cycle for electronics cooling publication-title: J. Heat Transf. doi: 10.1115/1.2241786 – volume: 134 start-page: 554 year: 2017 ident: 10.1016/j.ijrefrig.2020.12.032_bib0009 article-title: Study of sorption systems for application on low-emission fishing vessels publication-title: Energy doi: 10.1016/j.energy.2017.06.079 – volume: 32 start-page: 1579 year: 2009 ident: 10.1016/j.ijrefrig.2020.12.032_bib0029 article-title: Study on adsorption of methanol onto carbon based adsorbents publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.06.011 – volume: 67 start-page: 336 year: 2016 ident: 10.1016/j.ijrefrig.2020.12.032_bib0041 article-title: Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.03.001 – volume: 30 start-page: 1417 year: 2007 ident: 10.1016/j.ijrefrig.2020.12.032_bib0059 article-title: Two bed silica gel-water adsorption chillers: an effectual lumped parameter model publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2007.03.010 – volume: 91 year: 2007 ident: 10.1016/j.ijrefrig.2020.12.032_bib0003 article-title: Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device publication-title: Appl. Phys. Lett. doi: 10.1063/1.2780117 – year: 2010 ident: 10.1016/j.ijrefrig.2020.12.032_bib0034 article-title: Empirical simulation model of silica gel/water adsorption chiller – volume: 17 start-page: 829 year: 1992 ident: 10.1016/j.ijrefrig.2020.12.032_bib0057 article-title: Modeling of a silica gel-water adsorption cooling system publication-title: Energy doi: 10.1016/0360-5442(92)90101-5 – ident: 10.1016/j.ijrefrig.2020.12.032_bib0037 – volume: 131 start-page: 649 year: 2018 ident: 10.1016/j.ijrefrig.2020.12.032_bib0042 article-title: Experimental investigation on composite adsorbent – water pair for a solar-powered adsorption cooling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.053 – volume: 144 year: 2019 ident: 10.1016/j.ijrefrig.2020.12.032_bib0038 article-title: Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118579 |
| SSID | ssj0017058 |
| Score | 2.4979098 |
| Snippet | •A mathematical method is developed to simulate the processes of an adsorption chiller.•The simulated outlet temperatures are within ± 0.5 °C of experimental... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 222 |
| SubjectTerms | Adsorption Chiller COP Heat recovery Mass recovery Modelling Modélisation Refroidisseur Récupération de chaleur Récupération de masse |
| Title | Study on optimized adsorption chiller employing various heat and mass recovery schemes |
| URI | https://dx.doi.org/10.1016/j.ijrefrig.2020.12.032 |
| Volume | 126 |
| WOSCitedRecordID | wos000669997000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK5iDJAfeItSEjsh9mM1DXFRp0kbqG-REztauzatsrSM_SJ-5o4vuVRMGgjxElWu3LrnfD0-94PQu-gDK3impO4ZKnwdOvOF0MXuioQ0V3ADycwMm0iOj9l0yk8Gg19NLcx2kZQlu7ri6__KalgDZuvS2b9gd_uhsACvgenwBLbD848Yf2rbRIMaCNJgObsGjVLIy1VlZYMu3l6oylNm0q_2E2zBWtZ5sFoqm1DCEvRpTxvK8NN_emD9qqZKZN6lvXdexF7vCbhtwdhX1U50f7Kpa-GGfk3EebbJulzEFpATOfLGy1nVS1MEA8FI6q-bhVRq7Z3CYVvf9Yk4_2EjVfCWuOj7Lkgvx8o61Jqimi6Dyfo4Az8J7DDckbJymSUcuGynu7SCm-yIXlvf7G5xYlvJ_HZBWF_FfDSbW5KM4FiBcQg7N-tu822T-6bPQrRgBNvvHtojSczZEO2NPx9Nv7QRqyQws2Dbw_eq0W__ttsVoZ5yc_YYPXJWCR5bND1BA1U-RQ97vSqfoe8GV3hV4hZXuMMVdrjCLa6wwxXWuMKAK6xxhRtcYYer5-jbx6Ozw0--G8rh5zRhtc9ITEXG9dwBnoDxzyURghSCZpTIOFAxhTUeK1ZEgkdxWIgoEybin3NJWUZfoGG5KtVLhEWYS6pUHIVE9ywteJhHVMFuUgSCBHIfxQ2F0tx1rNeDUxZpk5o4TxvKppqyaUhSoOw-et_uW9ueLXfu4A0DUqd5Wo0yBdzcsffVP-w9QA-6v8VrNKyrjXqD7ufbenZZvXUQuwGEZ7AW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+optimized+adsorption+chiller+employing+various+heat+and+mass+recovery+schemes&rft.jtitle=International+journal+of+refrigeration&rft.au=Muttakin%2C+Mahbubul&rft.au=Islam%2C+Md.+Amirul&rft.au=Malik%2C+Kuldeep+Singh&rft.au=Pahwa%2C+Deepak&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0140-7007&rft.eissn=1879-2081&rft.volume=126&rft.spage=222&rft.epage=237&rft_id=info:doi/10.1016%2Fj.ijrefrig.2020.12.032&rft.externalDocID=S0140700720305260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon |