Robust Reconstruction of MRSI Data Using a Sparse Spectral Model and High Resolution MRI Priors
We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables...
Saved in:
| Published in: | IEEE transactions on medical imaging Vol. 29; no. 6; pp. 1297 - 1309 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts. |
|---|---|
| AbstractList | We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts. We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts.We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts. |
| Author | Eslami, Ramin Jacob, Mathews |
| Author_xml | – sequence: 1 givenname: Ramin surname: Eslami fullname: Eslami, Ramin email: reslami@ieee.org organization: Dept. of Biomed. Eng., Univ. of Rochester, Rochester, NY, USA – sequence: 2 givenname: Mathews surname: Jacob fullname: Jacob, Mathews email: mathews.jacob@rochester.edu organization: Dept. of Biomed. Eng., Univ. of Rochester, Rochester, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20363676$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9LHDEYhkOx1NX2XhAk0IOnsV9-zuQotuqCS8uq0Fv4NpPVyOxkTWYO_e_NuqsHD-3pI_A8L-R9D8heH3tPyFcGp4yB-X47m55yKC8OUutafCATplRTcSX_7JEJ8LqpADTfJwc5PwIwqcB8IvschBa61hNi53Ex5oHOvYt9HtLohhB7Gpd0Nr-Z0h84IL3Lob-nSG_WmLIvx7shYUdnsfUdxb6lV-H-oUTk2I0v-mw-pb9TiCl_Jh-X2GX_ZXcPyd3Fz9vzq-r61-X0_Oy6cqJuhqqWSqrWSGbA-Ja71rWNRCUQFUOjALgWDlArXDgnWSOMUsiY04C1bxZLcUhOtrnrFJ9Gnwe7Ctn5rsPexzHbWmqmGmPk_0khQQA0qpDf3pGPcUx9-YZlpVrOQHJTqOMdNS5WvrXrFFaY_trXjgugt4BLMefkl9aFATc9lRZDV7LsZkxbxrSbMe1uzCLCO_E1-x_K0VYJ3vs3XEkJBoR4BjoNpoc |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TBME_2022_3161417 crossref_primary_10_1002_mrm_25394 crossref_primary_10_1002_nbm_4314 crossref_primary_10_1016_j_jmr_2021_107048 crossref_primary_10_1002_nbm_4230 crossref_primary_10_1002_nbm_4615 crossref_primary_10_1002_nbm_70146 crossref_primary_10_1016_j_jmr_2015_11_003 crossref_primary_10_1109_TMI_2013_2266259 crossref_primary_10_1109_TMI_2020_3048933 crossref_primary_10_1109_TBME_2015_2476499 crossref_primary_10_1002_mrm_28949 crossref_primary_10_1109_TBME_2017_2770088 crossref_primary_10_1371_journal_pone_0162810 crossref_primary_10_1016_j_jmr_2014_01_016 crossref_primary_10_1002_mrm_30276 crossref_primary_10_1002_mrm_26130 crossref_primary_10_1137_15M1042280 crossref_primary_10_1002_mrm_27980 crossref_primary_10_1002_nbm_4224 crossref_primary_10_1016_j_mri_2019_03_024 crossref_primary_10_1002_mrm_24399 crossref_primary_10_1016_j_neuroimage_2014_11_006 crossref_primary_10_1002_mrm_26019 crossref_primary_10_1002_mrm_26118 crossref_primary_10_1007_s00034_024_02937_2 crossref_primary_10_1002_mrm_24693 crossref_primary_10_1002_mrm_26537 crossref_primary_10_1002_mrm_25168 crossref_primary_10_1097_RMR_0b013e31821e568f crossref_primary_10_1109_TMI_2019_2930586 crossref_primary_10_1016_j_ab_2017_01_007 crossref_primary_10_1371_journal_pone_0056098 crossref_primary_10_1002_mrm_25605 |
| Cites_doi | 10.1002/mrm.1129 10.1002/nbm.1025 10.1002/mrm.20079 10.1109/TCS.1975.1084118 10.1002/mrm.1910180208 10.1002/mrm.1910080308 10.1109/TMI.2007.898583 10.1002/mrm.1910300604 10.1002/mrm.1910400607 10.1002/jmri.1880010504 10.1109/42.79470 10.1002/mrm.21875 10.1002/mrm.20917 10.1002/mrm.1910350509 10.1109/TMI.2007.897385 10.1002/mrm.21522 10.1002/mrm.10444 10.3171/jns.2007.106.4.660 10.1002/cpa.20042 10.1002/mrm.20624 10.1109/TMI.2008.927344 10.1002/mrm.21536 10.1109/ISBI.2006.1625019 10.1016/S0730-725X(02)00645-8 10.1016/0167-2789(92)90242-F 10.1002/(SICI)1099-0534(2000)12:1<21::AID-CMR4>3.0.CO;2-R 10.1002/mrm.1910400606 10.1109/TIP.2007.909318 10.1109/78.558475 10.1006/jmre.1997.1114 10.1016/0022-2364(91)90106-4 10.1109/TMI.2007.895482 10.1016/j.jmr.2008.03.003 10.1002/mrm.21310 10.1002/mrm.21287 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2010.2046673 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 1309 |
| ExternalDocumentID | 2717043331 20363676 10_1109_TMI_2010_2046673 5440903 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: UL1 RR024160 – fundername: NCRR NIH HHS grantid: U11RR024160 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c378t-74545d941909ed2cdcd84a53aa51a9500263c0a65abcc4183955a11c60a7e8bf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278535800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Mon Oct 06 18:04:26 EDT 2025 Sat Sep 27 23:44:22 EDT 2025 Sun Nov 30 05:18:11 EST 2025 Wed Feb 19 01:46:26 EST 2025 Tue Nov 18 22:11:18 EST 2025 Sat Nov 29 05:13:25 EST 2025 Tue Aug 26 17:03:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-74545d941909ed2cdcd84a53aa51a9500263c0a65abcc4183955a11c60a7e8bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 20363676 |
| PQID | 1027210429 |
| PQPubID | 85460 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TMI_2010_2046673 crossref_citationtrail_10_1109_TMI_2010_2046673 proquest_miscellaneous_746158994 proquest_miscellaneous_734030085 proquest_journals_1027210429 pubmed_primary_20363676 ieee_primary_5440903 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-June 2010-6-00 2010-Jun 20100601 |
| PublicationDateYYYYMMDD | 2010-06-01 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2010 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 gonen (ref11) 2007; 28 ref2 ref1 ref39 ref17 ref38 ref16 fadili (ref7) 2006 ref19 ref18 eslami (ref6) 2009 ref24 ref26 ref25 ref20 ref22 liang (ref23) 2000 ref21 ref28 ref27 nocedal (ref29) 2006 ref8 ref9 ref4 ref3 ref5 ref40 |
| References_xml | – ident: ref37 doi: 10.1002/mrm.1129 – ident: ref24 doi: 10.1002/nbm.1025 – year: 2009 ident: ref6 article-title: correction of b0 field inhomogeneity distortion in magnetic resonance spectroscopic imaging publication-title: IEEE Int Conf Acoustics Speech Signal Process – ident: ref38 doi: 10.1002/mrm.20079 – ident: ref30 doi: 10.1109/TCS.1975.1084118 – ident: ref35 doi: 10.1002/mrm.1910180208 – ident: ref17 doi: 10.1002/mrm.1910080308 – ident: ref20 doi: 10.1109/TMI.2007.898583 – ident: ref32 doi: 10.1002/mrm.1910300604 – ident: ref36 doi: 10.1002/mrm.1910400607 – ident: ref9 doi: 10.1002/jmri.1880010504 – year: 2000 ident: ref23 publication-title: Principles of Magnetic Resonance Imaging A Signal Processing Perspective – ident: ref22 doi: 10.1109/42.79470 – ident: ref25 doi: 10.1002/mrm.21875 – ident: ref2 doi: 10.1002/mrm.20917 – ident: ref14 doi: 10.1002/mrm.1910350509 – ident: ref21 doi: 10.1109/TMI.2007.897385 – ident: ref15 doi: 10.1002/mrm.21522 – ident: ref4 doi: 10.1002/mrm.10444 – year: 2006 ident: ref29 publication-title: Numerical Optimization – ident: ref26 doi: 10.3171/jns.2007.106.4.660 – ident: ref3 doi: 10.1002/cpa.20042 – ident: ref33 doi: 10.1002/mrm.20624 – ident: ref18 doi: 10.1109/TMI.2008.927344 – ident: ref13 doi: 10.1002/mrm.21536 – ident: ref19 doi: 10.1109/ISBI.2006.1625019 – ident: ref5 doi: 10.1016/S0730-725X(02)00645-8 – ident: ref34 doi: 10.1016/0167-2789(92)90242-F – ident: ref27 doi: 10.1002/(SICI)1099-0534(2000)12:1<21::AID-CMR4>3.0.CO;2-R – ident: ref40 doi: 10.1002/mrm.1910400606 – ident: ref8 doi: 10.1109/TIP.2007.909318 – year: 2006 ident: ref7 article-title: sparse representation-based image deconvolution by iterative thresholding publication-title: Data Analysis in Astronomy IV – volume: 28 start-page: 267 year: 2007 ident: ref11 article-title: reproducibility of three whole-brain n-acetylaspartate decline cohorts in relapsing-remitting multiple sclerosis publication-title: Am J Neuroradiol – ident: ref12 doi: 10.1109/78.558475 – ident: ref28 doi: 10.1006/jmre.1997.1114 – ident: ref39 doi: 10.1016/0022-2364(91)90106-4 – ident: ref1 doi: 10.1109/TMI.2007.895482 – ident: ref16 doi: 10.1016/j.jmr.2008.03.003 – ident: ref10 doi: 10.1002/mrm.21310 – ident: ref31 doi: 10.1002/mrm.21287 |
| SSID | ssj0014509 |
| Score | 2.1636825 |
| Snippet | We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1297 |
| SubjectTerms | Algorithms B_{0} inhomogeneity compensation Biopolymers - metabolism Brain - anatomy & histology Brain - metabolism Data processing ell _{1} -minimization fat leakage field map High-resolution imaging Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image reconstruction Image resolution Integrated approach Magnetic fields Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods magnetic resonance spectroscopic imaging (MRSI) Magnetic Resonance Spectroscopy - methods Pattern Recognition, Automated - methods Polynomials Reproducibility of Results Robustness Sensitivity and Specificity sparsity Spectroscopy Studies Subtraction Technique total variation |
| Title | Robust Reconstruction of MRSI Data Using a Sparse Spectral Model and High Resolution MRI Priors |
| URI | https://ieeexplore.ieee.org/document/5440903 https://www.ncbi.nlm.nih.gov/pubmed/20363676 https://www.proquest.com/docview/1027210429 https://www.proquest.com/docview/734030085 https://www.proquest.com/docview/746158994 |
| Volume | 29 |
| WOSCitedRecordID | wos000278535800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5USmkftGqtUSv70JdC08tlN9ndR_EHPfBE1JZ7C5vNBARJ5HLn3-9MkktbaAXfAtlNQr6Z3Zn5ZmcAvkibunic-xDRy1CRAoVWGRWW1nhTlkblbSHtX5f66srMZvZ6Db4NZ2EQsU0-w-982XL5Re2XHCobJUpxWGEd1rVOu7NaA2Ogki6dI-aKsVEaryjJyI7uppMuhysmZzDV3DqH6TeuVfbXbtS2V_m_pdnuOBdbr_vWD7DZW5bipBOFbVjDagfe_1FvcAfeTnsmfReymzpfNgvB7ufvIrKiLsX05nYiztzCiTadQDhx-0jeLwpuVc9xEcH90x6EqwrBWSKCGYBOfmnuRFzP7-t58xF-Xpzfnf4I-2YLoZfaLEKtyJYqrCIDwWIR-8IXRrlEOpeMnU3YV5M-cmnicu8V21VJ4sZjn0ZOo8lLuQcbVV3hPgivY4I4xbz0qEjBbYzKySJ3UiItLz6A0eqnZ76vRM4NMR6y1iOJbEaIZYxY1iMWwNdhxmNXheOFsbuMxjCuByKAoxWuWa-mDT0jJg-Y9-QAxHCbFIxZE1dhvWwyLRUthGSZvjBEkV1IjqsK4FMnMcPbV4J28O-vOoR3XToCh3WOYIPgxs_wxj8t7pv5Mcn5zBy3cv4MwlH1Wg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgigcePQBKQV84IJEulnbefhYAVVX7K6qdkG9WY4zkSpVSbXZ7e9nJskGkKASN0sZJ1a-GXtengH4oEzi5Dj3IaJXoSYBCo3OdFiazGdlmem8LaT9Y5rO59nVlTnfgk_DXRhEbJPP8JiHbSy_qP2aXWWjWGt2KzyAhzSSUXdba4gZ6LhL6JBcMzZK5CYoGZnRYjbpsrgkmYNJys1zOADH1cr-OI_aBiv_1jXbM-f0-f-t9gU863VLcdIxw0vYwmoXnv5WcXAXHs_6WPoe2Is6XzcrwQborzKyoi7F7OJyIr64lRNtQoFw4vKW7F8U3KyePSOCO6jdCFcVgvNEBMcAOg6muRNxvryul80-fD_9uvh8FvbtFkKv0mwVppq0qcJoUhEMFtIXvsi0i5Vz8diZmK015SOXxC73XrNmFcduPPZJ5FLM8lIdwHZVV_gahE8lgZxgXnrUJOJGonaqyJ1SSBuMD2C0-enW97XIuSXGjW1tkshYQswyYrZHLICPw4zbrg7HPbR7jMZA1wMRwNEGV9sLakPvkGQD86kcgBgek4hx3MRVWK8bmypNWyHppveQaNIMyXTVAbzqOGb4-obRDv--qvewc7aYTe10Mv_2Bp50yQns5DmCbYIe38Ijf7e6bpbvWm7_CeMX97k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+reconstruction+of+MRSI+data+using+a+sparse+spectral+model+and+high+resolution+MRI+priors&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Eslami%2C+Ramin&rft.au=Jacob%2C+Mathews&rft.date=2010-06-01&rft.eissn=1558-254X&rft.volume=29&rft.issue=6&rft.spage=1297&rft_id=info:doi/10.1109%2FTMI.2010.2046673&rft_id=info%3Apmid%2F20363676&rft.externalDocID=20363676 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |