Robust Reconstruction of MRSI Data Using a Sparse Spectral Model and High Resolution MRI Priors

We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 29; no. 6; pp. 1297 - 1309
Main Authors: Eslami, Ramin, Jacob, Mathews
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts.
AbstractList We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts.
We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts.We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing schemes, the proposed method combines the reconstruction and postprocessing steps into a unified algorithm. This integrated approach enables us to inject a range of prior information into the data processing scheme, thus constraining the reconstructions. We use high resolution, 3-D estimate of the magnetic field inhomogeneity map to generate an accurate forward model, while a high resolution estimate of the fat/water boundary is used to minimize spectral leakage artifacts. We parameterize the spectrum at each voxel as a sparse linear combination of spikes and polynomials to capture the metabolite and baseline components, respectively. The constrained model makes the problem better conditioned in regions with significant field inhomogeneity, thus enabling the recovery even in regions with high field map variations. To exploit the high resolution MR information, we formulate the problem as an anatomically constrained total variation optimization scheme on a grid with the same spacing as the magnetic resonance imaging data. We analyze the performance of the proposed scheme using phantom and human subjects. Quantitative and qualitative comparisons indicate a significant improvement in spectral quality and lower leakage artifacts.
Author Eslami, Ramin
Jacob, Mathews
Author_xml – sequence: 1
  givenname: Ramin
  surname: Eslami
  fullname: Eslami, Ramin
  email: reslami@ieee.org
  organization: Dept. of Biomed. Eng., Univ. of Rochester, Rochester, NY, USA
– sequence: 2
  givenname: Mathews
  surname: Jacob
  fullname: Jacob, Mathews
  email: mathews.jacob@rochester.edu
  organization: Dept. of Biomed. Eng., Univ. of Rochester, Rochester, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20363676$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEYhkOx1NX2XhAk0IOnsV9-zuQotuqCS8uq0Fv4NpPVyOxkTWYO_e_NuqsHD-3pI_A8L-R9D8heH3tPyFcGp4yB-X47m55yKC8OUutafCATplRTcSX_7JEJ8LqpADTfJwc5PwIwqcB8IvschBa61hNi53Ex5oHOvYt9HtLohhB7Gpd0Nr-Z0h84IL3Lob-nSG_WmLIvx7shYUdnsfUdxb6lV-H-oUTk2I0v-mw-pb9TiCl_Jh-X2GX_ZXcPyd3Fz9vzq-r61-X0_Oy6cqJuhqqWSqrWSGbA-Ja71rWNRCUQFUOjALgWDlArXDgnWSOMUsiY04C1bxZLcUhOtrnrFJ9Gnwe7Ctn5rsPexzHbWmqmGmPk_0khQQA0qpDf3pGPcUx9-YZlpVrOQHJTqOMdNS5WvrXrFFaY_trXjgugt4BLMefkl9aFATc9lRZDV7LsZkxbxrSbMe1uzCLCO_E1-x_K0VYJ3vs3XEkJBoR4BjoNpoc
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TBME_2022_3161417
crossref_primary_10_1002_mrm_25394
crossref_primary_10_1002_nbm_4314
crossref_primary_10_1016_j_jmr_2021_107048
crossref_primary_10_1002_nbm_4230
crossref_primary_10_1002_nbm_4615
crossref_primary_10_1002_nbm_70146
crossref_primary_10_1016_j_jmr_2015_11_003
crossref_primary_10_1109_TMI_2013_2266259
crossref_primary_10_1109_TMI_2020_3048933
crossref_primary_10_1109_TBME_2015_2476499
crossref_primary_10_1002_mrm_28949
crossref_primary_10_1109_TBME_2017_2770088
crossref_primary_10_1371_journal_pone_0162810
crossref_primary_10_1016_j_jmr_2014_01_016
crossref_primary_10_1002_mrm_30276
crossref_primary_10_1002_mrm_26130
crossref_primary_10_1137_15M1042280
crossref_primary_10_1002_mrm_27980
crossref_primary_10_1002_nbm_4224
crossref_primary_10_1016_j_mri_2019_03_024
crossref_primary_10_1002_mrm_24399
crossref_primary_10_1016_j_neuroimage_2014_11_006
crossref_primary_10_1002_mrm_26019
crossref_primary_10_1002_mrm_26118
crossref_primary_10_1007_s00034_024_02937_2
crossref_primary_10_1002_mrm_24693
crossref_primary_10_1002_mrm_26537
crossref_primary_10_1002_mrm_25168
crossref_primary_10_1097_RMR_0b013e31821e568f
crossref_primary_10_1109_TMI_2019_2930586
crossref_primary_10_1016_j_ab_2017_01_007
crossref_primary_10_1371_journal_pone_0056098
crossref_primary_10_1002_mrm_25605
Cites_doi 10.1002/mrm.1129
10.1002/nbm.1025
10.1002/mrm.20079
10.1109/TCS.1975.1084118
10.1002/mrm.1910180208
10.1002/mrm.1910080308
10.1109/TMI.2007.898583
10.1002/mrm.1910300604
10.1002/mrm.1910400607
10.1002/jmri.1880010504
10.1109/42.79470
10.1002/mrm.21875
10.1002/mrm.20917
10.1002/mrm.1910350509
10.1109/TMI.2007.897385
10.1002/mrm.21522
10.1002/mrm.10444
10.3171/jns.2007.106.4.660
10.1002/cpa.20042
10.1002/mrm.20624
10.1109/TMI.2008.927344
10.1002/mrm.21536
10.1109/ISBI.2006.1625019
10.1016/S0730-725X(02)00645-8
10.1016/0167-2789(92)90242-F
10.1002/(SICI)1099-0534(2000)12:1<21::AID-CMR4>3.0.CO;2-R
10.1002/mrm.1910400606
10.1109/TIP.2007.909318
10.1109/78.558475
10.1006/jmre.1997.1114
10.1016/0022-2364(91)90106-4
10.1109/TMI.2007.895482
10.1016/j.jmr.2008.03.003
10.1002/mrm.21310
10.1002/mrm.21287
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2010.2046673
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1309
ExternalDocumentID 2717043331
20363676
10_1109_TMI_2010_2046673
5440903
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: UL1 RR024160
– fundername: NCRR NIH HHS
  grantid: U11RR024160
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c378t-74545d941909ed2cdcd84a53aa51a9500263c0a65abcc4183955a11c60a7e8bf3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278535800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Mon Oct 06 18:04:26 EDT 2025
Sat Sep 27 23:44:22 EDT 2025
Sun Nov 30 05:18:11 EST 2025
Wed Feb 19 01:46:26 EST 2025
Tue Nov 18 22:11:18 EST 2025
Sat Nov 29 05:13:25 EST 2025
Tue Aug 26 17:03:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-74545d941909ed2cdcd84a53aa51a9500263c0a65abcc4183955a11c60a7e8bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20363676
PQID 1027210429
PQPubID 85460
PageCount 13
ParticipantIDs crossref_primary_10_1109_TMI_2010_2046673
crossref_citationtrail_10_1109_TMI_2010_2046673
proquest_miscellaneous_746158994
proquest_miscellaneous_734030085
proquest_journals_1027210429
pubmed_primary_20363676
ieee_primary_5440903
PublicationCentury 2000
PublicationDate 2010-June
2010-6-00
2010-Jun
20100601
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
gonen (ref11) 2007; 28
ref2
ref1
ref39
ref17
ref38
ref16
fadili (ref7) 2006
ref19
ref18
eslami (ref6) 2009
ref24
ref26
ref25
ref20
ref22
liang (ref23) 2000
ref21
ref28
ref27
nocedal (ref29) 2006
ref8
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref37
  doi: 10.1002/mrm.1129
– ident: ref24
  doi: 10.1002/nbm.1025
– year: 2009
  ident: ref6
  article-title: correction of b0 field inhomogeneity distortion in magnetic resonance spectroscopic imaging
  publication-title: IEEE Int Conf Acoustics Speech Signal Process
– ident: ref38
  doi: 10.1002/mrm.20079
– ident: ref30
  doi: 10.1109/TCS.1975.1084118
– ident: ref35
  doi: 10.1002/mrm.1910180208
– ident: ref17
  doi: 10.1002/mrm.1910080308
– ident: ref20
  doi: 10.1109/TMI.2007.898583
– ident: ref32
  doi: 10.1002/mrm.1910300604
– ident: ref36
  doi: 10.1002/mrm.1910400607
– ident: ref9
  doi: 10.1002/jmri.1880010504
– year: 2000
  ident: ref23
  publication-title: Principles of Magnetic Resonance Imaging A Signal Processing Perspective
– ident: ref22
  doi: 10.1109/42.79470
– ident: ref25
  doi: 10.1002/mrm.21875
– ident: ref2
  doi: 10.1002/mrm.20917
– ident: ref14
  doi: 10.1002/mrm.1910350509
– ident: ref21
  doi: 10.1109/TMI.2007.897385
– ident: ref15
  doi: 10.1002/mrm.21522
– ident: ref4
  doi: 10.1002/mrm.10444
– year: 2006
  ident: ref29
  publication-title: Numerical Optimization
– ident: ref26
  doi: 10.3171/jns.2007.106.4.660
– ident: ref3
  doi: 10.1002/cpa.20042
– ident: ref33
  doi: 10.1002/mrm.20624
– ident: ref18
  doi: 10.1109/TMI.2008.927344
– ident: ref13
  doi: 10.1002/mrm.21536
– ident: ref19
  doi: 10.1109/ISBI.2006.1625019
– ident: ref5
  doi: 10.1016/S0730-725X(02)00645-8
– ident: ref34
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref27
  doi: 10.1002/(SICI)1099-0534(2000)12:1<21::AID-CMR4>3.0.CO;2-R
– ident: ref40
  doi: 10.1002/mrm.1910400606
– ident: ref8
  doi: 10.1109/TIP.2007.909318
– year: 2006
  ident: ref7
  article-title: sparse representation-based image deconvolution by iterative thresholding
  publication-title: Data Analysis in Astronomy IV
– volume: 28
  start-page: 267
  year: 2007
  ident: ref11
  article-title: reproducibility of three whole-brain n-acetylaspartate decline cohorts in relapsing-remitting multiple sclerosis
  publication-title: Am J Neuroradiol
– ident: ref12
  doi: 10.1109/78.558475
– ident: ref28
  doi: 10.1006/jmre.1997.1114
– ident: ref39
  doi: 10.1016/0022-2364(91)90106-4
– ident: ref1
  doi: 10.1109/TMI.2007.895482
– ident: ref16
  doi: 10.1016/j.jmr.2008.03.003
– ident: ref10
  doi: 10.1002/mrm.21310
– ident: ref31
  doi: 10.1002/mrm.21287
SSID ssj0014509
Score 2.1636825
Snippet We introduce a novel algorithm to address the challenges in magnetic resonance (MR) spectroscopic imaging. In contrast to classical sequential data processing...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1297
SubjectTerms Algorithms
B_{0} inhomogeneity compensation
Biopolymers - metabolism
Brain - anatomy & histology
Brain - metabolism
Data processing
ell _{1} -minimization
fat leakage
field map
High-resolution imaging
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image reconstruction
Image resolution
Integrated approach
Magnetic fields
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
magnetic resonance spectroscopic imaging (MRSI)
Magnetic Resonance Spectroscopy - methods
Pattern Recognition, Automated - methods
Polynomials
Reproducibility of Results
Robustness
Sensitivity and Specificity
sparsity
Spectroscopy
Studies
Subtraction Technique
total variation
Title Robust Reconstruction of MRSI Data Using a Sparse Spectral Model and High Resolution MRI Priors
URI https://ieeexplore.ieee.org/document/5440903
https://www.ncbi.nlm.nih.gov/pubmed/20363676
https://www.proquest.com/docview/1027210429
https://www.proquest.com/docview/734030085
https://www.proquest.com/docview/746158994
Volume 29
WOSCitedRecordID wos000278535800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8RADA4qIvrgfdSLefBFsG6PmU77KB64DyviAftW5loQpJXtrr_fpO1WBRV8a2mmHZrMJF-SSQBOwthoVBTWD7nVPtfG-ZkToY_Kllvc_RItRnWzCXl3lw6H2f0cnHVnYZxzdfKZO6fLOpZvSzMlV1lPcE5uhXmYlzJpzmp1EQMumnSOiCrGBkk0C0kGWe9p0G9yuCIEg4mk1jkUfqNaZd-0Ud1e5XdLs9Y4N2v_m-s6rLaWJbtoRGED5lyxCStf6g1uwtKgjaRvQf5Q6mk1YQQ_P4vIsnLEBg-PfXalJorV6QRMscc3RL-OUat68osw6p_2ylRhGWWJMIoANPKLY_vsfvxSjqtteL65frq89dtmC76JZTrxJUdbymYcDYTM2chYY1OuRKyUCFUmCKvFJlCJUNoYTnaVECoMTRIo6VI9indgoSgLtwcM76S1qPRipxBtWsVDbmxgpdZpxBPtQW_203PTViKnhhiveY1IgixHjuXEsbzlmAen3Yi3pgrHH7RbxI2OrmWEB4czvubtMq3wHREiYNLJHrDuMS4wipqowpXTKpcxx40QLdM_SDjahQhcuQe7jcR0X58J2v7PszqA5SYdgdw6h7CA7HZHsGjeJy_V-BjlfJge13L-ARPP9Ng
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ttxWUQ0t5lLQUfOgFibB52HkcKyhiBbtCsEjcLL9WQkIJ2uzy-5lJsqFIgNSbo9iJ5Rl75psZzwD8DmOjUVBYP-RW-1wb5-dOhD4KW27x9Eu0mNbFJtLxOLu9zS97cNjdhXHO1cFn7oiatS_flmZBprKB4JzMCh_gI7aioLmt1fkMuGgCOiLKGRsk0dIpGeSDyWjYRHFFCAeTlIrnkAOOspW9kEd1gZW3dc1a5px-_b_ZrsOXVrdkfxpm-AY9V2zA2j8ZBzdgZdT60jdBXpV6Uc0ZAdDnNLKsnLLR1fWQnai5YnVAAVPs-gHxr2NUrJ4sI4wqqN0zVVhGcSKMfAANB-PYIbuc3ZWzagtuTv9Ojs_8ttyCb-I0m_spR23K5hxVhNzZyFhjM65ErJQIVS4IrcUmUIlQ2hhOmpUQKgxNEqjUZXoab0O_KAu3AwyfUmtR7MVOId60iofc2MCmWmcRT7QHg-WiS9PmIqeSGPeyxiRBLpFikigmW4p5cNCNeGjycLzTd5Oo0fVrCeHB7pKust2oFX4jQgxMUtkD1r3GLUZ-E1W4clHJNOZ4FKJu-k4XjpohQlfuwfeGY7q_Lxntx-uz2ofVs8noQl4Mx-c_4XMTnEBGnl3oI-ndL_hkHud31Wyv5vYnMH33Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Reconstruction+of+MRSI+Data+Using+a+Sparse+Spectral+Model+and+High+Resolution+MRI+Priors&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Eslami%2C+Ramin&rft.au=Jacob%2C+Mathews&rft.date=2010-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=29&rft.issue=6&rft.spage=1297&rft_id=info:doi/10.1109%2FTMI.2010.2046673&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2717043331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon