A modified multi-agent proximal policy optimization algorithm for multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem
This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload....
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 140; S. 109688 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.01.2025
|
| Schlagworte: | |
| ISSN: | 0952-1976 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload. Despite advancements in applying deep reinforcement learning to dynamic workshop scheduling, current methods face challenges in training scheduling policies for partial-re-entrant processing constraints and multiple manufacturing objectives. To solve the MDPR-HFSP, we propose a modified multi-agent proximal policy optimization (MMAPPO) algorithm, which employs a routing agent (RA) for machine assignment and a sequencing agent (SA) for job selection. Four machine assignment rules and four job selection rules are integrated to choose optimum actions for RA and SA at rescheduling points. In addition, reward signals are created by combining objective weight vectors with reward vectors, and training parameters under each weight vector are saved to flexibly optimize three objectives. Furthermore, we design an adaptive trust region clipping method to improve the constraint of the proximal policy optimization algorithm on the differences between new and old policies by introducing the Wasserstein distance. Moreover, we conduct comprehensive numerical experiments to compare the proposed MMAPPO algorithm with nine composite scheduling rules and the basic multi-agent proximal policy optimization algorithm. The results demonstrate that the proposed MMAPPO algorithm is more effective in solving the MDPR-HFSP and achieves superior convergence and diversity in solutions. Finally, a semiconductor wafer manufacturing case is resolved by the MMAPPO, and the scheduling solution meets the responsive requirement.
•Consider partial-re-entrant flows, dynamic events, and multiple objectives in HFSP.•A novel multi-agent DRL scheme is developed for dynamic scheduling.•Adaptive trust region clipping is proposed to improve the constraint of policies.•Comprehensive experiments verify superiority in solutions quality and efficiency. |
|---|---|
| AbstractList | This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload. Despite advancements in applying deep reinforcement learning to dynamic workshop scheduling, current methods face challenges in training scheduling policies for partial-re-entrant processing constraints and multiple manufacturing objectives. To solve the MDPR-HFSP, we propose a modified multi-agent proximal policy optimization (MMAPPO) algorithm, which employs a routing agent (RA) for machine assignment and a sequencing agent (SA) for job selection. Four machine assignment rules and four job selection rules are integrated to choose optimum actions for RA and SA at rescheduling points. In addition, reward signals are created by combining objective weight vectors with reward vectors, and training parameters under each weight vector are saved to flexibly optimize three objectives. Furthermore, we design an adaptive trust region clipping method to improve the constraint of the proximal policy optimization algorithm on the differences between new and old policies by introducing the Wasserstein distance. Moreover, we conduct comprehensive numerical experiments to compare the proposed MMAPPO algorithm with nine composite scheduling rules and the basic multi-agent proximal policy optimization algorithm. The results demonstrate that the proposed MMAPPO algorithm is more effective in solving the MDPR-HFSP and achieves superior convergence and diversity in solutions. Finally, a semiconductor wafer manufacturing case is resolved by the MMAPPO, and the scheduling solution meets the responsive requirement.
•Consider partial-re-entrant flows, dynamic events, and multiple objectives in HFSP.•A novel multi-agent DRL scheme is developed for dynamic scheduling.•Adaptive trust region clipping is proposed to improve the constraint of policies.•Comprehensive experiments verify superiority in solutions quality and efficiency. |
| ArticleNumber | 109688 |
| Author | Wu, Jiawei Liu, Yong |
| Author_xml | – sequence: 1 givenname: Jiawei surname: Wu fullname: Wu, Jiawei email: wujiaweigo@163.com – sequence: 2 givenname: Yong surname: Liu fullname: Liu, Yong email: liuyong.seu@163.com |
| BookMark | eNqFkM1KAzEURrOoYFt9BckLTJ1kamYGXFiKfyC40XXIJDftLZnJkEnV-hQ-sqnVjZuuAoFzLt-ZkFHnOyDkguUzljNxuZlBt1J9r3DGcz5Pn7WoqhEZ5_UVz1hdilMyGYZNnudFNRdj8rWgrTdoEQxtty5iplbQRdoH_4GtcrT3DvWO-j5ii58qou-ocisfMK5ban34xXyzAR3xDajZdapFTXsVIiqXBciSMahkXe-agIZa59_psPY9HfQazNZht9pfbBy0Z-TEKjfA-e87Ja93ty_Lh-zp-f5xuXjKdFFWMSu5tZoJq8vCcmvMVcWAa17UlRJzI0DXqm7mDErRWCVswStlmkIz1tQ6TefFlIiDVwc_DAGs7EMaHHaS5XLfUm7kX0u5bykPLRN4_Q_UGH-6pI3ojuM3BxzSuDeEIAeN0GkwGFJAaTweU3wDNcKerA |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121837 crossref_primary_10_1080_00207543_2025_2550454 crossref_primary_10_3390_math13172790 crossref_primary_10_1007_s11227_025_07581_4 crossref_primary_10_1002_sys_70006 crossref_primary_10_20965_jaciii_2025_p0606 crossref_primary_10_1016_j_swevo_2025_101932 crossref_primary_10_1016_j_cie_2025_111533 crossref_primary_10_1080_00207543_2025_2555532 crossref_primary_10_1016_j_swevo_2025_101973 crossref_primary_10_1016_j_swevo_2025_102158 |
| Cites_doi | 10.1016/j.cie.2018.05.036 10.1016/j.ins.2021.12.122 10.1016/j.swevo.2024.101479 10.1109/4235.996017 10.1016/j.jmsy.2022.03.011 10.1007/BF01158930 10.1007/s10845-015-1078-9 10.3390/machines10111078 10.1016/j.cie.2017.02.010 10.1016/j.engappai.2024.108487 10.1007/978-981-33-4859-2_29 10.1016/j.eswa.2020.114282 10.1016/j.apm.2013.10.061 10.1016/j.eswa.2022.117796 10.1002/int.23090 10.2507/IJSIMM20-2-CO7 10.1016/j.asoc.2023.110596 10.1016/j.eswa.2022.119151 10.3390/make3030029 10.1016/j.rcim.2022.102478 10.1016/j.ijpe.2013.01.028 10.1109/TASE.2021.3104716 10.1016/j.cor.2020.105044 10.1016/S0377-2217(96)90070-3 10.1007/s10462-021-10061-9 10.1016/j.eswa.2023.121570 10.1016/j.eswa.2022.118278 10.1631/FITEE.1900533 10.1016/j.asoc.2022.109717 10.1371/journal.pone.0252754 10.1016/j.eswa.2024.123970 10.1016/j.cor.2023.106360 10.1109/TETCI.2020.3022372 10.1016/j.engappai.2023.106317 10.1109/TNNLS.2021.3121870 10.1109/ACCESS.2020.2982570 10.1007/s12525-021-00475-2 10.1109/4235.797969 10.1016/j.ejor.2022.08.009 10.3390/pr10122475 10.1016/j.knosys.2023.110335 10.3390/su16083234 10.1109/TSMC.2023.3305089 10.3390/s23073762 10.1007/s10951-005-1640-y 10.1016/j.asoc.2024.111259 10.1016/j.engappai.2024.108221 10.1109/MSP.2017.2695801 10.1016/j.procir.2019.03.041 10.1016/j.jmsy.2024.01.011 10.1007/s10710-005-6164-x 10.1080/00207543.2022.2058432 10.1016/j.cie.2023.109802 10.1109/TSMC.2023.3287655 10.1007/s10951-008-0090-8 10.1016/j.jmsy.2022.11.001 10.1007/s10732-019-09425-w 10.1016/j.engappai.2023.107790 10.1016/j.asoc.2012.01.011 10.1146/annurev-statistics-030718-104938 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.109688 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2024_109688 S0952197624018463 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- 29G 9DU AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 R2- SBC SET UHS WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c378t-72ffc16fc73f2fdd581e2c2398a64d6ec9a9b41e76bfa6f328adb3c11b9c03823 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001368774800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 03:41:22 EST 2025 Tue Nov 18 22:11:26 EST 2025 Sat Dec 21 15:58:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-agent Dynamic scheduling Deep reinforcement learning Proximal policy optimization Multi-objective optimization Partial-re-entrant hybrid flow shop |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-72ffc16fc73f2fdd581e2c2398a64d6ec9a9b41e76bfa6f328adb3c11b9c03823 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_109688 crossref_citationtrail_10_1016_j_engappai_2024_109688 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109688 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Yan, Wang (b66) 2022; 209 Wang, Wang (b63) 2021; 5 Burcin Ozsoydan, Sağir (b4) 2021; 125 He, Jiang, Zhang, Shao, Ji (b16) 2022; vol. 36 Kamali, Banirostam, Motameni, Teshnehlab (b21) 2023; 123 Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b29) 2022; 205 Ashraf, Mostafa, Sakr, Rashad (b2) 2021; 16 Usman, Lu, Gao (b57) 2023 Liu, Huang (b34) 2023; 53 Luo, Zhang, Fan (b40) 2022; 91 Han, Mulyana, Stankovic, Cheng (b14) 2023; 23 Kumar (b25) 1993; 13 Hu, Zhang, Zhang, Li, Tang (b18) 2024; 133 Chamnanlor, Sethanan, Gen, Chien (b6) 2017; 28 Luo, Du, Huang, Chen, Li (b38) 2013; 146 Wu, Yan, Guan, Wei (b65) 2024; 131 Han, Yang (b15) 2021; 20 Wang, He, Tan (b60) 2020; vol. 115 Lu, Wang, Kong, Wang, Tan, Song (b37) 2024; 133 Zhao, Luo, Zhang (b73) 2024; 187 Liao, Tjandradjaja, Chung (b33) 2012; 12 Yang, Leus (b69) 2021; 27 Li, Wang (b30) 2022; 589 Liu, Shen, Zhang, Sun (b36) 2023; 80 Ngasa, Jang, Tarimo, Woo, Shin (b42) 2024; 133 Rekabi, Goodarzian, Garjan, Zare, Muñuzuri, Ali (b49) 2023 Ouelhadj, Petrovic (b44) 2009; 12 Rekabi, Ghodratnama, Azaron (b48) 2022; 22 Liu, Piplani, Toro (b35) 2022; 60 Kuhnle, Schäfer, Stricker, Lanza (b24) 2019; 81 Chalil Madathil, Nambiar, Mason, Kurz (b5) 2021; 121 Li, Xue, Zhang, Chen, Zhou (b31) 2023; 159 Oğuz, Ercan (b45) 2005; 8 Cho, Jeong (b8) 2017; 106 Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6 Han, Deng, Gong, Zhang, Luo (b13) 2021; 168 Zhang, Shao, Shao, Chen, Pi (b72) 2024; 85 Joshi, Kale, Gandewar, Korate, Patwari, Patil (b20) 2021; 1311 Kong, Wang, Li, Wang, Fu, Liu (b23) 2020; 8 Yu, Zhang, Ge (b70) 2022; 37 Su, Zhang, Xia, Han, Wang, Chen, Xie (b54) 2023; 145 Zheng, Zhang, Tian, He (b74) 2023 Bello, Pham, Le, Norouzi, Bengio (b3) 2017 Coello, Cortés (b9) 2005; 6 Lei, Deng, Liao, Gao (b28) 2024; 251 Zhang, Li, Gen, Yang, Zhang (b71) 2024; 237 Serrano-Ruiz, Mula, Poler (b52) 2022; 63 Janiesch, Zschech, Heinrich (b19) 2021; 31 Pu, Li, Rahimifard (b47) 2024; 16 Wang, Cui, Zhao, Zhou, Song, Wang, Guo (b59) 2024; 153 Panaretos, Zemel (b46) 2019; 6 Zhu, Tao, Gui, Cai (b75) 2022; 10 Agarwal, Kakade, Lee, Mahajan (b1) 2021; 22 Luo, Wang, Yuan, Zhang, Li (b39) 2023 Kolouri, Park, Thorpe, Slepcev, Rohde (b22) 2017; 34 Li, Zhao, Tang, Yang, Lei, Wang (b32) 2024; 73 Xiang, Foo (b67) 2021; 3 Xu, Tang, Xun, Lan, Liu, Xing, Zhu, Wang, Pang (b68) 2022; 10 Sun, Yuan, Liu, Sun (b55) 2019 Wang, Liu, Zhang, Feng, Huang, Li, Zhang (b61) 2020; 21 Cunha, Madureira, Fonseca, Coelho (b10) 2020; 923 Schulman, Levine, Moritz, Jordan, Abbeel (b50) 2015 Zitzler, Thiele (b76) 1999; 3 Chen, Yao, McAuley, Zhou, Wang (b7) 2023; 264 Nguyen, Reddi (b43) 2023; 34 Schulman, Wolski, Dhariwal, Radford, Klimov (b51) 2017 Le, Rathour, Yamazaki, Luu, Savvides (b27) 2022; 55 Neufeld, Schulz, Buscher (b41) 2023; 309 Wang, Cheng, Liu, Zhang, Hu, Chen (b58) 2022; 131 Hoogeveen, Lenstra, Veltman (b17) 1996; 89 Sutton, McAllester, Singh, Mansour (b56) 1999; vol. 12 Lang, Behrendt, Lanzerath, Reggelin, Muller (b26) 2020 Wang, Ren, Bai, Chu, Lu, Weng, Li, Liang (b62) 2023; 54 Ebrahimi, Fatemi Ghomi, Karimi (b12) 2014; 38 (9–10) Shao, Shao, Pi (b53) 2023; 214 Wang, Zhang, Zhang, Cui, Zhang (b64) 2022; 65 Deb (10.1016/j.engappai.2024.109688_b11) 2002; 6 Ngasa (10.1016/j.engappai.2024.109688_b42) 2024; 133 Kamali (10.1016/j.engappai.2024.109688_b21) 2023; 123 Kumar (10.1016/j.engappai.2024.109688_b25) 1993; 13 Hu (10.1016/j.engappai.2024.109688_b18) 2024; 133 Zhao (10.1016/j.engappai.2024.109688_b73) 2024; 187 Li (10.1016/j.engappai.2024.109688_b31) 2023; 159 Wang (10.1016/j.engappai.2024.109688_b58) 2022; 131 Wu (10.1016/j.engappai.2024.109688_b65) 2024; 131 Rekabi (10.1016/j.engappai.2024.109688_b48) 2022; 22 Lei (10.1016/j.engappai.2024.109688_b28) 2024; 251 Liu (10.1016/j.engappai.2024.109688_b36) 2023; 80 Rekabi (10.1016/j.engappai.2024.109688_b49) 2023 Chalil Madathil (10.1016/j.engappai.2024.109688_b5) 2021; 121 Ashraf (10.1016/j.engappai.2024.109688_b2) 2021; 16 Kolouri (10.1016/j.engappai.2024.109688_b22) 2017; 34 He (10.1016/j.engappai.2024.109688_b16) 2022; vol. 36 Chamnanlor (10.1016/j.engappai.2024.109688_b6) 2017; 28 Ouelhadj (10.1016/j.engappai.2024.109688_b44) 2009; 12 Yang (10.1016/j.engappai.2024.109688_b69) 2021; 27 Janiesch (10.1016/j.engappai.2024.109688_b19) 2021; 31 Zheng (10.1016/j.engappai.2024.109688_b74) 2023 Han (10.1016/j.engappai.2024.109688_b15) 2021; 20 Bello (10.1016/j.engappai.2024.109688_b3) 2017 Luo (10.1016/j.engappai.2024.109688_b40) 2022; 91 Liu (10.1016/j.engappai.2024.109688_b34) 2023; 53 Wang (10.1016/j.engappai.2024.109688_b63) 2021; 5 Joshi (10.1016/j.engappai.2024.109688_b20) 2021; 1311 Kuhnle (10.1016/j.engappai.2024.109688_b24) 2019; 81 Zhang (10.1016/j.engappai.2024.109688_b72) 2024; 85 Serrano-Ruiz (10.1016/j.engappai.2024.109688_b52) 2022; 63 Nguyen (10.1016/j.engappai.2024.109688_b43) 2023; 34 Han (10.1016/j.engappai.2024.109688_b13) 2021; 168 Neufeld (10.1016/j.engappai.2024.109688_b41) 2023; 309 Wang (10.1016/j.engappai.2024.109688_b62) 2023; 54 Sutton (10.1016/j.engappai.2024.109688_b56) 1999; vol. 12 Liao (10.1016/j.engappai.2024.109688_b33) 2012; 12 Wang (10.1016/j.engappai.2024.109688_b64) 2022; 65 Burcin Ozsoydan (10.1016/j.engappai.2024.109688_b4) 2021; 125 Luo (10.1016/j.engappai.2024.109688_b38) 2013; 146 Panaretos (10.1016/j.engappai.2024.109688_b46) 2019; 6 Wang (10.1016/j.engappai.2024.109688_b61) 2020; 21 Zhang (10.1016/j.engappai.2024.109688_b71) 2024; 237 Luo (10.1016/j.engappai.2024.109688_b39) 2023 Wu (10.1016/j.engappai.2024.109688_b66) 2022; 209 Yu (10.1016/j.engappai.2024.109688_b70) 2022; 37 Li (10.1016/j.engappai.2024.109688_b32) 2024; 73 Schulman (10.1016/j.engappai.2024.109688_b51) 2017 Chen (10.1016/j.engappai.2024.109688_b7) 2023; 264 Agarwal (10.1016/j.engappai.2024.109688_b1) 2021; 22 Han (10.1016/j.engappai.2024.109688_b14) 2023; 23 Wang (10.1016/j.engappai.2024.109688_b59) 2024; 153 Sun (10.1016/j.engappai.2024.109688_b55) 2019 Usman (10.1016/j.engappai.2024.109688_b57) 2023 Ebrahimi (10.1016/j.engappai.2024.109688_b12) 2014; 38 (9–10) Hoogeveen (10.1016/j.engappai.2024.109688_b17) 1996; 89 Coello (10.1016/j.engappai.2024.109688_b9) 2005; 6 Cho (10.1016/j.engappai.2024.109688_b8) 2017; 106 Le (10.1016/j.engappai.2024.109688_b27) 2022; 55 Kong (10.1016/j.engappai.2024.109688_b23) 2020; 8 Lang (10.1016/j.engappai.2024.109688_b26) 2020 Pu (10.1016/j.engappai.2024.109688_b47) 2024; 16 Schulman (10.1016/j.engappai.2024.109688_b50) 2015 Liu (10.1016/j.engappai.2024.109688_b35) 2022; 60 Su (10.1016/j.engappai.2024.109688_b54) 2023; 145 Zitzler (10.1016/j.engappai.2024.109688_b76) 1999; 3 Wang (10.1016/j.engappai.2024.109688_b60) 2020; vol. 115 Li (10.1016/j.engappai.2024.109688_b30) 2022; 589 Lei (10.1016/j.engappai.2024.109688_b29) 2022; 205 Oğuz (10.1016/j.engappai.2024.109688_b45) 2005; 8 Cunha (10.1016/j.engappai.2024.109688_b10) 2020; 923 Xu (10.1016/j.engappai.2024.109688_b68) 2022; 10 Zhu (10.1016/j.engappai.2024.109688_b75) 2022; 10 Lu (10.1016/j.engappai.2024.109688_b37) 2024; 133 Xiang (10.1016/j.engappai.2024.109688_b67) 2021; 3 Shao (10.1016/j.engappai.2024.109688_b53) 2023; 214 |
| References_xml | – volume: 589 start-page: 478 year: 2022 end-page: 496 ident: b30 article-title: A review of green shop scheduling problem publication-title: Inform. Sci. – volume: vol. 36 start-page: 6884 year: 2022 end-page: 6892 ident: b16 article-title: Wasserstein unsupervised reinforcement learning publication-title: Proceedings of the 36th AAAI Conference on Artificial Intelligence – volume: 12 start-page: 1755 year: 2012 ident: b33 article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. – start-page: 1889 year: 2015 end-page: 1897 ident: b50 article-title: Trust region policy optimization publication-title: 32nd International Conference on Machine Learning – volume: 159 year: 2023 ident: b31 article-title: Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-II publication-title: Comput. Oper. Res. – volume: 205 year: 2022 ident: b29 article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem publication-title: Expert Syst. Appl. – start-page: 3057 year: 2020 end-page: 3068 ident: b26 article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production publication-title: Proceedings - Winter Simulation Conference, 2020-December – volume: 146 start-page: 423 year: 2013 end-page: 439 ident: b38 article-title: Hybrid flow shop scheduling considering machine electricity consumption cost publication-title: Int. J. Prod. Econ. – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: b19 article-title: Machine learning and deep learning publication-title: Electron. Mark. – volume: 131 start-page: 107790 year: 2024 end-page: 107803 ident: b65 article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time publication-title: Eng. Appl. Artif. – volume: 214 year: 2023 ident: b53 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Syst. Appl. – volume: 209 year: 2022 ident: b66 article-title: Optimizing job release and scheduling jointly in a reentrant hybrid flow shop publication-title: Expert Syst. Appl. – volume: 133 year: 2024 ident: b18 article-title: Matheuristic and learning-oriented multi-objective artificial bee colony algorithm for energy-aware flexible assembly job shop scheduling problem publication-title: Eng. Appl. Artif. – volume: 22 start-page: 4159 year: 2022 end-page: 4219 ident: b48 article-title: Designing pharmaceutical supply chain networks with perishable items considering congestion publication-title: Oper. Res. Ger. – year: 2023 ident: b49 article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach – volume: 65 start-page: 694 year: 2022 end-page: 708 ident: b64 article-title: Independent double DQN-based multi-agent reinforcement learning approach for online two-stage hybrid flow shop scheduling with batch machines publication-title: J. Manuf. Syst. – volume: 63 start-page: 185 year: 2022 end-page: 202 ident: b52 article-title: Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the industry 4.0 perspective publication-title: J. Manuf. Syst. – volume: 21 start-page: 1726 year: 2020 end-page: 1744 ident: b61 article-title: Deep reinforcement learning: a survey publication-title: Front. Inf. Technol. Electron. Eng. – volume: vol. 115 start-page: 113 year: 2020 end-page: 122 ident: b60 article-title: Truly proximal policy optimization publication-title: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference – volume: 60 start-page: 4049 year: 2022 end-page: 4069 ident: b35 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: Int. J. Prod. Res. – volume: 12 start-page: 417 year: 2009 end-page: 431 ident: b44 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: J. Sched. – volume: 131 year: 2022 ident: b58 article-title: Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events publication-title: Appl. Soft Comput. – volume: 34 start-page: 3779 year: 2023 end-page: 3795 ident: b43 article-title: Deep reinforcement learning for cyber security publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 80 year: 2023 ident: b36 article-title: Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors publication-title: Robot. Comput.-Integr. Manuf. – volume: 38 (9–10) start-page: 2490 year: 2014 end-page: 2504 ident: b12 article-title: Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates publication-title: Appl. Math. Model. – volume: 264 start-page: 11035 year: 2023 end-page: 11053 ident: b7 article-title: Deep reinforcement learning in recommender systems: A survey and new perspectives publication-title: Knowl. Based Syst. – start-page: 1 year: 2023 end-page: 29 ident: b74 article-title: A cooperative adaptive genetic algorithm for reentrant hybrid flow shop scheduling with sequence-dependent setup time and limited buffers publication-title: Complex Intell. Syst. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b76 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 187 year: 2024 ident: b73 article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem publication-title: Comput. Ind. Eng. – start-page: 1 year: 2017 end-page: 15 ident: b3 article-title: Neural combinatorial optimization with reinforcement learning publication-title: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings – year: 2023 ident: b57 article-title: Flexible job-shop scheduling with limited flexible workers using an improved multiobjective discrete teaching–learning based optimization algorithm publication-title: Optim. Eng. – volume: 37 start-page: 12335 year: 2022 end-page: 12366 ident: b70 article-title: An adaptive multiobjective evolutionary algorithm for dynamic multiobjective flexible scheduling problem publication-title: Int. J. Intell. Syst. – volume: 73 start-page: 170 year: 2024 end-page: 191 ident: b32 article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation publication-title: J. Manuf. Syst. – volume: 16 start-page: 1 year: 2021 end-page: 24 ident: b2 article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm publication-title: PLoS One – volume: 28 start-page: 1915 year: 2017 end-page: 1931 ident: b6 article-title: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints publication-title: J. Intell. Manuf. – volume: 923 start-page: 351 year: 2020 end-page: 359 ident: b10 article-title: Deep reinforcement learning as a job shop scheduling solver: A literature review publication-title: Adv. Intell. Syst. Comput. – volume: 55 start-page: 2733 year: 2022 end-page: 2819 ident: b27 article-title: Deep reinforcement learning in computer vision: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 5 start-page: 947 year: 2021 end-page: 961 ident: b63 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 106 start-page: 174 year: 2017 ident: b8 article-title: A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops publication-title: Comput. Ind. Eng. – volume: 27 start-page: 133 year: 2021 end-page: 158 ident: b69 article-title: Scheduling hybrid flow shops with time windows publication-title: J. Heuristics – volume: 81 start-page: 234 year: 2019 end-page: 239 ident: b24 article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems publication-title: Procedia CIRP – volume: 10 start-page: 1078 year: 2022 end-page: 1092 ident: b75 article-title: Research on an adaptive real-time scheduling method of dynamic job-shop based on reinforcement learning publication-title: Machines – volume: 251 year: 2024 ident: b28 article-title: Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers publication-title: Expert Syst. Appl. – volume: 6 start-page: 405 year: 2019 end-page: 431 ident: b46 article-title: Statistical aspects of wasserstein distances publication-title: Annu. Rev. Stat. Appl. – volume: 145 year: 2023 ident: b54 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Appl. Soft Comput. – volume: 91 start-page: 3020 year: 2022 end-page: 3038 ident: b40 article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 23 start-page: 3762 year: 2023 end-page: 3796 ident: b14 article-title: A survey on deep reinforcement learning algorithms for robotic manipulation publication-title: Sensors – volume: 121 start-page: 177 year: 2021 end-page: 188 ident: b5 article-title: On scheduling a photolithography area containing cluster tools publication-title: Comput. Ind. Eng. – volume: 6 start-page: 163 year: 2005 end-page: 190 ident: b9 article-title: Solving multiobjective optimization problems using an artificial immune system publication-title: Genet. Program. Evol. Mach. – volume: 85 year: 2024 ident: b72 article-title: MRLM: A meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects publication-title: Swarm Evol. Comput. – volume: 13 start-page: 87 year: 1993 end-page: 110 ident: b25 article-title: Re-entrant lines publication-title: Queueing Syst. – volume: 133 start-page: 108221 year: 2024 end-page: 108237 ident: b42 article-title: Diffusion-based wasserstein generative adversarial network for blood cell image augmentation publication-title: Eng. Appl. Artif. – volume: 133 start-page: 108487 year: 2024 end-page: 108508 ident: b37 article-title: A double deep Q-network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions publication-title: Eng. Appl. Artif. – volume: vol. 12 start-page: 1057 year: 1999 end-page: 1063 ident: b56 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Advances in Neural Information Processing Systems – volume: 89 start-page: 1 year: 1996 end-page: 5 ident: b17 article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard publication-title: European J. Oper. Res. – volume: 54 start-page: 365 year: 2023 end-page: 378 ident: b62 article-title: Hybrid flow shop scheduling with learning effects and release dates to minimize the makespan publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 4736 year: 2019 end-page: 4740 ident: b55 article-title: Model-based reinforcement learning via proximal policy optimization publication-title: 2019 Chinese Automation Congress – volume: 10 start-page: 2475 year: 2022 end-page: 2490 ident: b68 article-title: Research on green reentrant hybrid flow shop scheduling problem based on improved moth-flame optimization algorithm publication-title: Processes – volume: 123 start-page: 106317 year: 2023 end-page: 106331 ident: b21 article-title: An immune-based multi-agent system for flexible job shop scheduling problem in dynamic and multi-objective environments publication-title: Eng. Appl. Artif. – volume: 53 start-page: 6836 year: 2023 end-page: 6848 ident: b34 article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. – volume: 237 year: 2024 ident: b71 article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem publication-title: Expert Syst. Appl. – volume: 22 start-page: 1 year: 2021 end-page: 76 ident: b1 article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2017 end-page: 12 ident: b51 article-title: Proximal policy optimization algorithms – volume: 153 year: 2024 ident: b59 article-title: A deep reinforcement learning-based active suspension control algorithm considering deterministic experience tracing for autonomous vehicle publication-title: Appl. Soft Comput. – volume: 168 year: 2021 ident: b13 article-title: Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint publication-title: Expert Syst. Appl. – volume: 8 start-page: 323 year: 2005 end-page: 351 ident: b45 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. – volume: 1311 start-page: 297 year: 2021 end-page: 308 ident: b20 article-title: Reinforcement learning: A survey publication-title: Adv. Intell. Syst. Comput. – volume: 34 start-page: 43 year: 2017 end-page: 59 ident: b22 article-title: Optimal mass transport: Signal processing and machine-learning applications publication-title: IEEE Signal Process. Mag. – volume: 8 start-page: 79998 year: 2020 end-page: 80009 ident: b23 article-title: A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines publication-title: IEEE Access – volume: 125 year: 2021 ident: b4 article-title: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: A case study at a manufacturing plant publication-title: Comput. Oper. Res. – start-page: 1642 year: 2023 end-page: 1645 ident: b39 article-title: Deep reinforcement learning for solving hybrid flow shop scheduling problem with unrelated parallel machines publication-title: 2023 8th International Conference on Intelligent Computing and Signal Processing - ICSP 2023 – volume: 16 year: 2024 ident: b47 article-title: Multi-agent reinforcement learning for job shop scheduling in dynamic environments publication-title: Sustainability – volume: 20 start-page: 375 year: 2021 end-page: 386 ident: b15 article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem publication-title: Int. J. Simul. Model. – volume: 309 start-page: 1 year: 2023 end-page: 23 ident: b41 article-title: A systematic review of multi-objective hybrid flow shop scheduling publication-title: European J. Oper. Res. – volume: 3 start-page: 554 year: 2021 end-page: 581 ident: b67 article-title: Recent advances in deep reinforcement learning applications for solving partially observable Markov decision processes (POMDP) problems: Part 1—Fundamentals and applications in games, robotics and natural language processing publication-title: Mach. Learn. Knowl. Extr. – volume: vol. 12 start-page: 1057 year: 1999 ident: 10.1016/j.engappai.2024.109688_b56 article-title: Policy gradient methods for reinforcement learning with function approximation – volume: 121 start-page: 177 year: 2021 ident: 10.1016/j.engappai.2024.109688_b5 article-title: On scheduling a photolithography area containing cluster tools publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.05.036 – volume: 589 start-page: 478 year: 2022 ident: 10.1016/j.engappai.2024.109688_b30 article-title: A review of green shop scheduling problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.12.122 – volume: 85 year: 2024 ident: 10.1016/j.engappai.2024.109688_b72 article-title: MRLM: A meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101479 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.engappai.2024.109688_b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 63 start-page: 185 year: 2022 ident: 10.1016/j.engappai.2024.109688_b52 article-title: Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the industry 4.0 perspective publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.03.011 – volume: 13 start-page: 87 issue: 1-3 year: 1993 ident: 10.1016/j.engappai.2024.109688_b25 article-title: Re-entrant lines publication-title: Queueing Syst. doi: 10.1007/BF01158930 – volume: 28 start-page: 1915 issue: 8 year: 2017 ident: 10.1016/j.engappai.2024.109688_b6 article-title: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1078-9 – volume: 10 start-page: 1078 issue: 11 year: 2022 ident: 10.1016/j.engappai.2024.109688_b75 article-title: Research on an adaptive real-time scheduling method of dynamic job-shop based on reinforcement learning publication-title: Machines doi: 10.3390/machines10111078 – volume: 133 year: 2024 ident: 10.1016/j.engappai.2024.109688_b18 article-title: Matheuristic and learning-oriented multi-objective artificial bee colony algorithm for energy-aware flexible assembly job shop scheduling problem publication-title: Eng. Appl. Artif. – volume: 106 start-page: 174 year: 2017 ident: 10.1016/j.engappai.2024.109688_b8 article-title: A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.02.010 – volume: 133 start-page: 108487 year: 2024 ident: 10.1016/j.engappai.2024.109688_b37 article-title: A double deep Q-network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions publication-title: Eng. Appl. Artif. doi: 10.1016/j.engappai.2024.108487 – volume: 1311 start-page: 297 year: 2021 ident: 10.1016/j.engappai.2024.109688_b20 article-title: Reinforcement learning: A survey publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-981-33-4859-2_29 – year: 2023 ident: 10.1016/j.engappai.2024.109688_b49 – volume: 168 year: 2021 ident: 10.1016/j.engappai.2024.109688_b13 article-title: Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114282 – start-page: 4736 year: 2019 ident: 10.1016/j.engappai.2024.109688_b55 article-title: Model-based reinforcement learning via proximal policy optimization – volume: 38 (9–10) start-page: 2490 year: 2014 ident: 10.1016/j.engappai.2024.109688_b12 article-title: Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.10.061 – volume: 205 year: 2022 ident: 10.1016/j.engappai.2024.109688_b29 article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117796 – volume: 37 start-page: 12335 issue: 12 year: 2022 ident: 10.1016/j.engappai.2024.109688_b70 article-title: An adaptive multiobjective evolutionary algorithm for dynamic multiobjective flexible scheduling problem publication-title: Int. J. Intell. Syst. doi: 10.1002/int.23090 – volume: 20 start-page: 375 issue: 2 year: 2021 ident: 10.1016/j.engappai.2024.109688_b15 article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem publication-title: Int. J. Simul. Model. doi: 10.2507/IJSIMM20-2-CO7 – volume: 145 year: 2023 ident: 10.1016/j.engappai.2024.109688_b54 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110596 – start-page: 1642 year: 2023 ident: 10.1016/j.engappai.2024.109688_b39 article-title: Deep reinforcement learning for solving hybrid flow shop scheduling problem with unrelated parallel machines – volume: 214 year: 2023 ident: 10.1016/j.engappai.2024.109688_b53 article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119151 – start-page: 1 year: 2017 ident: 10.1016/j.engappai.2024.109688_b51 – volume: 3 start-page: 554 issue: 3 year: 2021 ident: 10.1016/j.engappai.2024.109688_b67 article-title: Recent advances in deep reinforcement learning applications for solving partially observable Markov decision processes (POMDP) problems: Part 1—Fundamentals and applications in games, robotics and natural language processing publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make3030029 – volume: 80 year: 2023 ident: 10.1016/j.engappai.2024.109688_b36 article-title: Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102478 – volume: 146 start-page: 423 issue: 2 year: 2013 ident: 10.1016/j.engappai.2024.109688_b38 article-title: Hybrid flow shop scheduling considering machine electricity consumption cost publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2013.01.028 – start-page: 1 year: 2023 ident: 10.1016/j.engappai.2024.109688_b74 article-title: A cooperative adaptive genetic algorithm for reentrant hybrid flow shop scheduling with sequence-dependent setup time and limited buffers publication-title: Complex Intell. Syst. – volume: 22 start-page: 4159 year: 2022 ident: 10.1016/j.engappai.2024.109688_b48 article-title: Designing pharmaceutical supply chain networks with perishable items considering congestion publication-title: Oper. Res. Ger. – volume: 91 start-page: 3020 year: 2022 ident: 10.1016/j.engappai.2024.109688_b40 article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3104716 – volume: 125 year: 2021 ident: 10.1016/j.engappai.2024.109688_b4 article-title: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: A case study at a manufacturing plant publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.105044 – volume: 89 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.engappai.2024.109688_b17 article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(96)90070-3 – volume: 55 start-page: 2733 issue: 4 year: 2022 ident: 10.1016/j.engappai.2024.109688_b27 article-title: Deep reinforcement learning in computer vision: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10061-9 – volume: 237 year: 2024 ident: 10.1016/j.engappai.2024.109688_b71 article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121570 – volume: 22 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2024.109688_b1 article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift publication-title: J. Mach. Learn. Res. – volume: 923 start-page: 351 year: 2020 ident: 10.1016/j.engappai.2024.109688_b10 article-title: Deep reinforcement learning as a job shop scheduling solver: A literature review publication-title: Adv. Intell. Syst. Comput. – start-page: 3057 year: 2020 ident: 10.1016/j.engappai.2024.109688_b26 article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production – volume: 209 year: 2022 ident: 10.1016/j.engappai.2024.109688_b66 article-title: Optimizing job release and scheduling jointly in a reentrant hybrid flow shop publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118278 – volume: vol. 115 start-page: 113 year: 2020 ident: 10.1016/j.engappai.2024.109688_b60 article-title: Truly proximal policy optimization – volume: 21 start-page: 1726 issue: 12 year: 2020 ident: 10.1016/j.engappai.2024.109688_b61 article-title: Deep reinforcement learning: a survey publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1900533 – volume: 131 year: 2022 ident: 10.1016/j.engappai.2024.109688_b58 article-title: Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109717 – volume: 16 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.engappai.2024.109688_b2 article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0252754 – volume: 251 year: 2024 ident: 10.1016/j.engappai.2024.109688_b28 article-title: Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123970 – volume: 159 year: 2023 ident: 10.1016/j.engappai.2024.109688_b31 article-title: Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-II publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106360 – volume: 5 start-page: 947 issue: 6 year: 2021 ident: 10.1016/j.engappai.2024.109688_b63 article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2020.3022372 – volume: 123 start-page: 106317 year: 2023 ident: 10.1016/j.engappai.2024.109688_b21 article-title: An immune-based multi-agent system for flexible job shop scheduling problem in dynamic and multi-objective environments publication-title: Eng. Appl. Artif. doi: 10.1016/j.engappai.2023.106317 – volume: 34 start-page: 3779 issue: 8 year: 2023 ident: 10.1016/j.engappai.2024.109688_b43 article-title: Deep reinforcement learning for cyber security publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3121870 – start-page: 1 year: 2017 ident: 10.1016/j.engappai.2024.109688_b3 article-title: Neural combinatorial optimization with reinforcement learning – volume: vol. 36 start-page: 6884 year: 2022 ident: 10.1016/j.engappai.2024.109688_b16 article-title: Wasserstein unsupervised reinforcement learning – volume: 8 start-page: 79998 year: 2020 ident: 10.1016/j.engappai.2024.109688_b23 article-title: A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982570 – start-page: 1889 year: 2015 ident: 10.1016/j.engappai.2024.109688_b50 article-title: Trust region policy optimization – volume: 31 start-page: 685 issue: 3 year: 2021 ident: 10.1016/j.engappai.2024.109688_b19 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.engappai.2024.109688_b76 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 309 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.engappai.2024.109688_b41 article-title: A systematic review of multi-objective hybrid flow shop scheduling publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2022.08.009 – volume: 10 start-page: 2475 issue: 12 year: 2022 ident: 10.1016/j.engappai.2024.109688_b68 article-title: Research on green reentrant hybrid flow shop scheduling problem based on improved moth-flame optimization algorithm publication-title: Processes doi: 10.3390/pr10122475 – volume: 264 start-page: 11035 year: 2023 ident: 10.1016/j.engappai.2024.109688_b7 article-title: Deep reinforcement learning in recommender systems: A survey and new perspectives publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110335 – volume: 16 issue: 8 year: 2024 ident: 10.1016/j.engappai.2024.109688_b47 article-title: Multi-agent reinforcement learning for job shop scheduling in dynamic environments publication-title: Sustainability doi: 10.3390/su16083234 – volume: 54 start-page: 365 issue: 1 year: 2023 ident: 10.1016/j.engappai.2024.109688_b62 article-title: Hybrid flow shop scheduling with learning effects and release dates to minimize the makespan publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2023.3305089 – volume: 23 start-page: 3762 issue: 7 year: 2023 ident: 10.1016/j.engappai.2024.109688_b14 article-title: A survey on deep reinforcement learning algorithms for robotic manipulation publication-title: Sensors doi: 10.3390/s23073762 – volume: 8 start-page: 323 issue: 4 year: 2005 ident: 10.1016/j.engappai.2024.109688_b45 article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks publication-title: J. Sched. doi: 10.1007/s10951-005-1640-y – volume: 153 year: 2024 ident: 10.1016/j.engappai.2024.109688_b59 article-title: A deep reinforcement learning-based active suspension control algorithm considering deterministic experience tracing for autonomous vehicle publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111259 – volume: 133 start-page: 108221 year: 2024 ident: 10.1016/j.engappai.2024.109688_b42 article-title: Diffusion-based wasserstein generative adversarial network for blood cell image augmentation publication-title: Eng. Appl. Artif. doi: 10.1016/j.engappai.2024.108221 – year: 2023 ident: 10.1016/j.engappai.2024.109688_b57 article-title: Flexible job-shop scheduling with limited flexible workers using an improved multiobjective discrete teaching–learning based optimization algorithm publication-title: Optim. Eng. – volume: 34 start-page: 43 issue: 4 year: 2017 ident: 10.1016/j.engappai.2024.109688_b22 article-title: Optimal mass transport: Signal processing and machine-learning applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2695801 – volume: 81 start-page: 234 year: 2019 ident: 10.1016/j.engappai.2024.109688_b24 article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.041 – volume: 73 start-page: 170 year: 2024 ident: 10.1016/j.engappai.2024.109688_b32 article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.01.011 – volume: 6 start-page: 163 year: 2005 ident: 10.1016/j.engappai.2024.109688_b9 article-title: Solving multiobjective optimization problems using an artificial immune system publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-005-6164-x – volume: 60 start-page: 4049 issue: 13 year: 2022 ident: 10.1016/j.engappai.2024.109688_b35 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2022.2058432 – volume: 187 year: 2024 ident: 10.1016/j.engappai.2024.109688_b73 article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109802 – volume: 53 start-page: 6836 issue: 11 year: 2023 ident: 10.1016/j.engappai.2024.109688_b34 article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2023.3287655 – volume: 12 start-page: 417 issue: 4 year: 2009 ident: 10.1016/j.engappai.2024.109688_b44 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: J. Sched. doi: 10.1007/s10951-008-0090-8 – volume: 65 start-page: 694 year: 2022 ident: 10.1016/j.engappai.2024.109688_b64 article-title: Independent double DQN-based multi-agent reinforcement learning approach for online two-stage hybrid flow shop scheduling with batch machines publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.11.001 – volume: 27 start-page: 133 year: 2021 ident: 10.1016/j.engappai.2024.109688_b69 article-title: Scheduling hybrid flow shops with time windows publication-title: J. Heuristics doi: 10.1007/s10732-019-09425-w – volume: 131 start-page: 107790 year: 2024 ident: 10.1016/j.engappai.2024.109688_b65 article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time publication-title: Eng. Appl. Artif. doi: 10.1016/j.engappai.2023.107790 – volume: 12 start-page: 1755 issue: 6 year: 2012 ident: 10.1016/j.engappai.2024.109688_b33 article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.01.011 – volume: 6 start-page: 405 year: 2019 ident: 10.1016/j.engappai.2024.109688_b46 article-title: Statistical aspects of wasserstein distances publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-030718-104938 |
| SSID | ssj0003846 |
| Score | 2.4954646 |
| Snippet | This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109688 |
| SubjectTerms | Deep reinforcement learning Dynamic scheduling Multi-agent Multi-objective optimization Partial-re-entrant hybrid flow shop Proximal policy optimization |
| Title | A modified multi-agent proximal policy optimization algorithm for multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.109688 |
| Volume | 140 |
| WOSCitedRecordID | wos001368774800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3qjlpT1wsxaytuPHMUJFgFCFRJHCyVqvvY2jxI6ctE37K_jJzOzDMW2lghAXK1pp1pbny-zMeL4ZQt7gDG2eSEwvlYKFXEmWS18wlcLhMh5JlRa6u_6X-OgomU7Tr4PBpePCnC3iuk6223T1X1UNa6BspM7-hbq7TWEBfoPS4Qpqh-sfKX6C020qha6lrhZkAtlTWIi1rZbIu9KdgL0GbMXSkjA9sThp2mozW-qqQyPW5HNjDL3CTK33Vng3sWBtyXROGHadXSDjy1OL5txbz5qVB8EyHF6W465n1fyW-991P_T6n851NUKry5b0EJFen9Du1DjVgKvEeVl1VUSVXvzR2OPXZi98LBRkhr9pUmqOVrOrYTK5SZ_x1AyG6cy0aet0zeSb7MP8bVmfwIOLCmJ-P8QuWZGZF3ilnfY33Bz3BlcGotsouEP2_HicJkOyN_l0OP3cneNBYmhe7mF6_PKb73aza9NzV44fkvs2zqATg49HZFDWj8kDG3NQa9HXsOTGeri1J-TnhDoE0R6CqEMQNQiifQTRDkEUEESvIIhaBNHrCKIGQRQRRBFBdIcgahH0lHz_cHj8_iOzgzuYDOJkw2JfKcmRRRYoXxXFGAyBL7HTpIjCIiplKtI85GUc5UpEKvATUeSB5DxP5Qg_TD8jw7qpy31CeSE4NjgKeJiHMuZ5LEZqLJKRKLiAWOSAjN07z6Ttao_DVRaZK1-cZ05XGeoqM7o6IO86uZXp63KrROpUmlnv1HidGSDxFtnn_yD7gtzb_XFekuGmPS1fkbvybFOt29cWtL8AIFLDmg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+multi-agent+proximal+policy+optimization+algorithm+for+multi-objective+dynamic+partial-re-entrant+hybrid+flow+shop+scheduling+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wu%2C+Jiawei&rft.au=Liu%2C+Yong&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=140&rft_id=info:doi/10.1016%2Fj.engappai.2024.109688&rft.externalDocID=S0952197624018463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |