A modified multi-agent proximal policy optimization algorithm for multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem

This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 140; S. 109688
Hauptverfasser: Wu, Jiawei, Liu, Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.01.2025
Schlagworte:
ISSN:0952-1976
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload. Despite advancements in applying deep reinforcement learning to dynamic workshop scheduling, current methods face challenges in training scheduling policies for partial-re-entrant processing constraints and multiple manufacturing objectives. To solve the MDPR-HFSP, we propose a modified multi-agent proximal policy optimization (MMAPPO) algorithm, which employs a routing agent (RA) for machine assignment and a sequencing agent (SA) for job selection. Four machine assignment rules and four job selection rules are integrated to choose optimum actions for RA and SA at rescheduling points. In addition, reward signals are created by combining objective weight vectors with reward vectors, and training parameters under each weight vector are saved to flexibly optimize three objectives. Furthermore, we design an adaptive trust region clipping method to improve the constraint of the proximal policy optimization algorithm on the differences between new and old policies by introducing the Wasserstein distance. Moreover, we conduct comprehensive numerical experiments to compare the proposed MMAPPO algorithm with nine composite scheduling rules and the basic multi-agent proximal policy optimization algorithm. The results demonstrate that the proposed MMAPPO algorithm is more effective in solving the MDPR-HFSP and achieves superior convergence and diversity in solutions. Finally, a semiconductor wafer manufacturing case is resolved by the MMAPPO, and the scheduling solution meets the responsive requirement. •Consider partial-re-entrant flows, dynamic events, and multiple objectives in HFSP.•A novel multi-agent DRL scheme is developed for dynamic scheduling.•Adaptive trust region clipping is proposed to improve the constraint of policies.•Comprehensive experiments verify superiority in solutions quality and efficiency.
AbstractList This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem (MDPR-HFSP). The model considers partial-re-entrant processing, dynamic disturbance events, green manufacturing demand, and machine workload. Despite advancements in applying deep reinforcement learning to dynamic workshop scheduling, current methods face challenges in training scheduling policies for partial-re-entrant processing constraints and multiple manufacturing objectives. To solve the MDPR-HFSP, we propose a modified multi-agent proximal policy optimization (MMAPPO) algorithm, which employs a routing agent (RA) for machine assignment and a sequencing agent (SA) for job selection. Four machine assignment rules and four job selection rules are integrated to choose optimum actions for RA and SA at rescheduling points. In addition, reward signals are created by combining objective weight vectors with reward vectors, and training parameters under each weight vector are saved to flexibly optimize three objectives. Furthermore, we design an adaptive trust region clipping method to improve the constraint of the proximal policy optimization algorithm on the differences between new and old policies by introducing the Wasserstein distance. Moreover, we conduct comprehensive numerical experiments to compare the proposed MMAPPO algorithm with nine composite scheduling rules and the basic multi-agent proximal policy optimization algorithm. The results demonstrate that the proposed MMAPPO algorithm is more effective in solving the MDPR-HFSP and achieves superior convergence and diversity in solutions. Finally, a semiconductor wafer manufacturing case is resolved by the MMAPPO, and the scheduling solution meets the responsive requirement. •Consider partial-re-entrant flows, dynamic events, and multiple objectives in HFSP.•A novel multi-agent DRL scheme is developed for dynamic scheduling.•Adaptive trust region clipping is proposed to improve the constraint of policies.•Comprehensive experiments verify superiority in solutions quality and efficiency.
ArticleNumber 109688
Author Wu, Jiawei
Liu, Yong
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Wu
  fullname: Wu, Jiawei
  email: wujiaweigo@163.com
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: liuyong.seu@163.com
BookMark eNqFkM1KAzEURrOoYFt9BckLTJ1kamYGXFiKfyC40XXIJDftLZnJkEnV-hQ-sqnVjZuuAoFzLt-ZkFHnOyDkguUzljNxuZlBt1J9r3DGcz5Pn7WoqhEZ5_UVz1hdilMyGYZNnudFNRdj8rWgrTdoEQxtty5iplbQRdoH_4GtcrT3DvWO-j5ii58qou-ocisfMK5ban34xXyzAR3xDajZdapFTXsVIiqXBciSMahkXe-agIZa59_psPY9HfQazNZht9pfbBy0Z-TEKjfA-e87Ja93ty_Lh-zp-f5xuXjKdFFWMSu5tZoJq8vCcmvMVcWAa17UlRJzI0DXqm7mDErRWCVswStlmkIz1tQ6TefFlIiDVwc_DAGs7EMaHHaS5XLfUm7kX0u5bykPLRN4_Q_UGH-6pI3ojuM3BxzSuDeEIAeN0GkwGFJAaTweU3wDNcKerA
CitedBy_id crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_1080_00207543_2025_2550454
crossref_primary_10_3390_math13172790
crossref_primary_10_1007_s11227_025_07581_4
crossref_primary_10_1002_sys_70006
crossref_primary_10_20965_jaciii_2025_p0606
crossref_primary_10_1016_j_swevo_2025_101932
crossref_primary_10_1016_j_cie_2025_111533
crossref_primary_10_1080_00207543_2025_2555532
crossref_primary_10_1016_j_swevo_2025_101973
crossref_primary_10_1016_j_swevo_2025_102158
Cites_doi 10.1016/j.cie.2018.05.036
10.1016/j.ins.2021.12.122
10.1016/j.swevo.2024.101479
10.1109/4235.996017
10.1016/j.jmsy.2022.03.011
10.1007/BF01158930
10.1007/s10845-015-1078-9
10.3390/machines10111078
10.1016/j.cie.2017.02.010
10.1016/j.engappai.2024.108487
10.1007/978-981-33-4859-2_29
10.1016/j.eswa.2020.114282
10.1016/j.apm.2013.10.061
10.1016/j.eswa.2022.117796
10.1002/int.23090
10.2507/IJSIMM20-2-CO7
10.1016/j.asoc.2023.110596
10.1016/j.eswa.2022.119151
10.3390/make3030029
10.1016/j.rcim.2022.102478
10.1016/j.ijpe.2013.01.028
10.1109/TASE.2021.3104716
10.1016/j.cor.2020.105044
10.1016/S0377-2217(96)90070-3
10.1007/s10462-021-10061-9
10.1016/j.eswa.2023.121570
10.1016/j.eswa.2022.118278
10.1631/FITEE.1900533
10.1016/j.asoc.2022.109717
10.1371/journal.pone.0252754
10.1016/j.eswa.2024.123970
10.1016/j.cor.2023.106360
10.1109/TETCI.2020.3022372
10.1016/j.engappai.2023.106317
10.1109/TNNLS.2021.3121870
10.1109/ACCESS.2020.2982570
10.1007/s12525-021-00475-2
10.1109/4235.797969
10.1016/j.ejor.2022.08.009
10.3390/pr10122475
10.1016/j.knosys.2023.110335
10.3390/su16083234
10.1109/TSMC.2023.3305089
10.3390/s23073762
10.1007/s10951-005-1640-y
10.1016/j.asoc.2024.111259
10.1016/j.engappai.2024.108221
10.1109/MSP.2017.2695801
10.1016/j.procir.2019.03.041
10.1016/j.jmsy.2024.01.011
10.1007/s10710-005-6164-x
10.1080/00207543.2022.2058432
10.1016/j.cie.2023.109802
10.1109/TSMC.2023.3287655
10.1007/s10951-008-0090-8
10.1016/j.jmsy.2022.11.001
10.1007/s10732-019-09425-w
10.1016/j.engappai.2023.107790
10.1016/j.asoc.2012.01.011
10.1146/annurev-statistics-030718-104938
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.109688
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_109688
S0952197624018463
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
SBC
SET
UHS
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c378t-72ffc16fc73f2fdd581e2c2398a64d6ec9a9b41e76bfa6f328adb3c11b9c03823
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001368774800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:22 EST 2025
Tue Nov 18 22:11:26 EST 2025
Sat Dec 21 15:58:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-agent
Dynamic scheduling
Deep reinforcement learning
Proximal policy optimization
Multi-objective optimization
Partial-re-entrant hybrid flow shop
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-72ffc16fc73f2fdd581e2c2398a64d6ec9a9b41e76bfa6f328adb3c11b9c03823
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_109688
crossref_citationtrail_10_1016_j_engappai_2024_109688
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109688
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Yan, Wang (b66) 2022; 209
Wang, Wang (b63) 2021; 5
Burcin Ozsoydan, Sağir (b4) 2021; 125
He, Jiang, Zhang, Shao, Ji (b16) 2022; vol. 36
Kamali, Banirostam, Motameni, Teshnehlab (b21) 2023; 123
Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b29) 2022; 205
Ashraf, Mostafa, Sakr, Rashad (b2) 2021; 16
Usman, Lu, Gao (b57) 2023
Liu, Huang (b34) 2023; 53
Luo, Zhang, Fan (b40) 2022; 91
Han, Mulyana, Stankovic, Cheng (b14) 2023; 23
Kumar (b25) 1993; 13
Hu, Zhang, Zhang, Li, Tang (b18) 2024; 133
Chamnanlor, Sethanan, Gen, Chien (b6) 2017; 28
Luo, Du, Huang, Chen, Li (b38) 2013; 146
Wu, Yan, Guan, Wei (b65) 2024; 131
Han, Yang (b15) 2021; 20
Wang, He, Tan (b60) 2020; vol. 115
Lu, Wang, Kong, Wang, Tan, Song (b37) 2024; 133
Zhao, Luo, Zhang (b73) 2024; 187
Liao, Tjandradjaja, Chung (b33) 2012; 12
Yang, Leus (b69) 2021; 27
Li, Wang (b30) 2022; 589
Liu, Shen, Zhang, Sun (b36) 2023; 80
Ngasa, Jang, Tarimo, Woo, Shin (b42) 2024; 133
Rekabi, Goodarzian, Garjan, Zare, Muñuzuri, Ali (b49) 2023
Ouelhadj, Petrovic (b44) 2009; 12
Rekabi, Ghodratnama, Azaron (b48) 2022; 22
Liu, Piplani, Toro (b35) 2022; 60
Kuhnle, Schäfer, Stricker, Lanza (b24) 2019; 81
Chalil Madathil, Nambiar, Mason, Kurz (b5) 2021; 121
Li, Xue, Zhang, Chen, Zhou (b31) 2023; 159
Oğuz, Ercan (b45) 2005; 8
Cho, Jeong (b8) 2017; 106
Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6
Han, Deng, Gong, Zhang, Luo (b13) 2021; 168
Zhang, Shao, Shao, Chen, Pi (b72) 2024; 85
Joshi, Kale, Gandewar, Korate, Patwari, Patil (b20) 2021; 1311
Kong, Wang, Li, Wang, Fu, Liu (b23) 2020; 8
Yu, Zhang, Ge (b70) 2022; 37
Su, Zhang, Xia, Han, Wang, Chen, Xie (b54) 2023; 145
Zheng, Zhang, Tian, He (b74) 2023
Bello, Pham, Le, Norouzi, Bengio (b3) 2017
Coello, Cortés (b9) 2005; 6
Lei, Deng, Liao, Gao (b28) 2024; 251
Zhang, Li, Gen, Yang, Zhang (b71) 2024; 237
Serrano-Ruiz, Mula, Poler (b52) 2022; 63
Janiesch, Zschech, Heinrich (b19) 2021; 31
Pu, Li, Rahimifard (b47) 2024; 16
Wang, Cui, Zhao, Zhou, Song, Wang, Guo (b59) 2024; 153
Panaretos, Zemel (b46) 2019; 6
Zhu, Tao, Gui, Cai (b75) 2022; 10
Agarwal, Kakade, Lee, Mahajan (b1) 2021; 22
Luo, Wang, Yuan, Zhang, Li (b39) 2023
Kolouri, Park, Thorpe, Slepcev, Rohde (b22) 2017; 34
Li, Zhao, Tang, Yang, Lei, Wang (b32) 2024; 73
Xiang, Foo (b67) 2021; 3
Xu, Tang, Xun, Lan, Liu, Xing, Zhu, Wang, Pang (b68) 2022; 10
Sun, Yuan, Liu, Sun (b55) 2019
Wang, Liu, Zhang, Feng, Huang, Li, Zhang (b61) 2020; 21
Cunha, Madureira, Fonseca, Coelho (b10) 2020; 923
Schulman, Levine, Moritz, Jordan, Abbeel (b50) 2015
Zitzler, Thiele (b76) 1999; 3
Chen, Yao, McAuley, Zhou, Wang (b7) 2023; 264
Nguyen, Reddi (b43) 2023; 34
Schulman, Wolski, Dhariwal, Radford, Klimov (b51) 2017
Le, Rathour, Yamazaki, Luu, Savvides (b27) 2022; 55
Neufeld, Schulz, Buscher (b41) 2023; 309
Wang, Cheng, Liu, Zhang, Hu, Chen (b58) 2022; 131
Hoogeveen, Lenstra, Veltman (b17) 1996; 89
Sutton, McAllester, Singh, Mansour (b56) 1999; vol. 12
Lang, Behrendt, Lanzerath, Reggelin, Muller (b26) 2020
Wang, Ren, Bai, Chu, Lu, Weng, Li, Liang (b62) 2023; 54
Ebrahimi, Fatemi Ghomi, Karimi (b12) 2014; 38 (9–10)
Shao, Shao, Pi (b53) 2023; 214
Wang, Zhang, Zhang, Cui, Zhang (b64) 2022; 65
Deb (10.1016/j.engappai.2024.109688_b11) 2002; 6
Ngasa (10.1016/j.engappai.2024.109688_b42) 2024; 133
Kamali (10.1016/j.engappai.2024.109688_b21) 2023; 123
Kumar (10.1016/j.engappai.2024.109688_b25) 1993; 13
Hu (10.1016/j.engappai.2024.109688_b18) 2024; 133
Zhao (10.1016/j.engappai.2024.109688_b73) 2024; 187
Li (10.1016/j.engappai.2024.109688_b31) 2023; 159
Wang (10.1016/j.engappai.2024.109688_b58) 2022; 131
Wu (10.1016/j.engappai.2024.109688_b65) 2024; 131
Rekabi (10.1016/j.engappai.2024.109688_b48) 2022; 22
Lei (10.1016/j.engappai.2024.109688_b28) 2024; 251
Liu (10.1016/j.engappai.2024.109688_b36) 2023; 80
Rekabi (10.1016/j.engappai.2024.109688_b49) 2023
Chalil Madathil (10.1016/j.engappai.2024.109688_b5) 2021; 121
Ashraf (10.1016/j.engappai.2024.109688_b2) 2021; 16
Kolouri (10.1016/j.engappai.2024.109688_b22) 2017; 34
He (10.1016/j.engappai.2024.109688_b16) 2022; vol. 36
Chamnanlor (10.1016/j.engappai.2024.109688_b6) 2017; 28
Ouelhadj (10.1016/j.engappai.2024.109688_b44) 2009; 12
Yang (10.1016/j.engappai.2024.109688_b69) 2021; 27
Janiesch (10.1016/j.engappai.2024.109688_b19) 2021; 31
Zheng (10.1016/j.engappai.2024.109688_b74) 2023
Han (10.1016/j.engappai.2024.109688_b15) 2021; 20
Bello (10.1016/j.engappai.2024.109688_b3) 2017
Luo (10.1016/j.engappai.2024.109688_b40) 2022; 91
Liu (10.1016/j.engappai.2024.109688_b34) 2023; 53
Wang (10.1016/j.engappai.2024.109688_b63) 2021; 5
Joshi (10.1016/j.engappai.2024.109688_b20) 2021; 1311
Kuhnle (10.1016/j.engappai.2024.109688_b24) 2019; 81
Zhang (10.1016/j.engappai.2024.109688_b72) 2024; 85
Serrano-Ruiz (10.1016/j.engappai.2024.109688_b52) 2022; 63
Nguyen (10.1016/j.engappai.2024.109688_b43) 2023; 34
Han (10.1016/j.engappai.2024.109688_b13) 2021; 168
Neufeld (10.1016/j.engappai.2024.109688_b41) 2023; 309
Wang (10.1016/j.engappai.2024.109688_b62) 2023; 54
Sutton (10.1016/j.engappai.2024.109688_b56) 1999; vol. 12
Liao (10.1016/j.engappai.2024.109688_b33) 2012; 12
Wang (10.1016/j.engappai.2024.109688_b64) 2022; 65
Burcin Ozsoydan (10.1016/j.engappai.2024.109688_b4) 2021; 125
Luo (10.1016/j.engappai.2024.109688_b38) 2013; 146
Panaretos (10.1016/j.engappai.2024.109688_b46) 2019; 6
Wang (10.1016/j.engappai.2024.109688_b61) 2020; 21
Zhang (10.1016/j.engappai.2024.109688_b71) 2024; 237
Luo (10.1016/j.engappai.2024.109688_b39) 2023
Wu (10.1016/j.engappai.2024.109688_b66) 2022; 209
Yu (10.1016/j.engappai.2024.109688_b70) 2022; 37
Li (10.1016/j.engappai.2024.109688_b32) 2024; 73
Schulman (10.1016/j.engappai.2024.109688_b51) 2017
Chen (10.1016/j.engappai.2024.109688_b7) 2023; 264
Agarwal (10.1016/j.engappai.2024.109688_b1) 2021; 22
Han (10.1016/j.engappai.2024.109688_b14) 2023; 23
Wang (10.1016/j.engappai.2024.109688_b59) 2024; 153
Sun (10.1016/j.engappai.2024.109688_b55) 2019
Usman (10.1016/j.engappai.2024.109688_b57) 2023
Ebrahimi (10.1016/j.engappai.2024.109688_b12) 2014; 38 (9–10)
Hoogeveen (10.1016/j.engappai.2024.109688_b17) 1996; 89
Coello (10.1016/j.engappai.2024.109688_b9) 2005; 6
Cho (10.1016/j.engappai.2024.109688_b8) 2017; 106
Le (10.1016/j.engappai.2024.109688_b27) 2022; 55
Kong (10.1016/j.engappai.2024.109688_b23) 2020; 8
Lang (10.1016/j.engappai.2024.109688_b26) 2020
Pu (10.1016/j.engappai.2024.109688_b47) 2024; 16
Schulman (10.1016/j.engappai.2024.109688_b50) 2015
Liu (10.1016/j.engappai.2024.109688_b35) 2022; 60
Su (10.1016/j.engappai.2024.109688_b54) 2023; 145
Zitzler (10.1016/j.engappai.2024.109688_b76) 1999; 3
Wang (10.1016/j.engappai.2024.109688_b60) 2020; vol. 115
Li (10.1016/j.engappai.2024.109688_b30) 2022; 589
Lei (10.1016/j.engappai.2024.109688_b29) 2022; 205
Oğuz (10.1016/j.engappai.2024.109688_b45) 2005; 8
Cunha (10.1016/j.engappai.2024.109688_b10) 2020; 923
Xu (10.1016/j.engappai.2024.109688_b68) 2022; 10
Zhu (10.1016/j.engappai.2024.109688_b75) 2022; 10
Lu (10.1016/j.engappai.2024.109688_b37) 2024; 133
Xiang (10.1016/j.engappai.2024.109688_b67) 2021; 3
Shao (10.1016/j.engappai.2024.109688_b53) 2023; 214
References_xml – volume: 589
  start-page: 478
  year: 2022
  end-page: 496
  ident: b30
  article-title: A review of green shop scheduling problem
  publication-title: Inform. Sci.
– volume: vol. 36
  start-page: 6884
  year: 2022
  end-page: 6892
  ident: b16
  article-title: Wasserstein unsupervised reinforcement learning
  publication-title: Proceedings of the 36th AAAI Conference on Artificial Intelligence
– volume: 12
  start-page: 1755
  year: 2012
  ident: b33
  article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
– start-page: 1889
  year: 2015
  end-page: 1897
  ident: b50
  article-title: Trust region policy optimization
  publication-title: 32nd International Conference on Machine Learning
– volume: 159
  year: 2023
  ident: b31
  article-title: Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-II
  publication-title: Comput. Oper. Res.
– volume: 205
  year: 2022
  ident: b29
  article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
– start-page: 3057
  year: 2020
  end-page: 3068
  ident: b26
  article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production
  publication-title: Proceedings - Winter Simulation Conference, 2020-December
– volume: 146
  start-page: 423
  year: 2013
  end-page: 439
  ident: b38
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: b19
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
– volume: 131
  start-page: 107790
  year: 2024
  end-page: 107803
  ident: b65
  article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time
  publication-title: Eng. Appl. Artif.
– volume: 214
  year: 2023
  ident: b53
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 209
  year: 2022
  ident: b66
  article-title: Optimizing job release and scheduling jointly in a reentrant hybrid flow shop
  publication-title: Expert Syst. Appl.
– volume: 133
  year: 2024
  ident: b18
  article-title: Matheuristic and learning-oriented multi-objective artificial bee colony algorithm for energy-aware flexible assembly job shop scheduling problem
  publication-title: Eng. Appl. Artif.
– volume: 22
  start-page: 4159
  year: 2022
  end-page: 4219
  ident: b48
  article-title: Designing pharmaceutical supply chain networks with perishable items considering congestion
  publication-title: Oper. Res. Ger.
– year: 2023
  ident: b49
  article-title: A data-driven mathematical model to design a responsive-sustainable pharmaceutical supply chain network: a Benders decomposition approach
– volume: 65
  start-page: 694
  year: 2022
  end-page: 708
  ident: b64
  article-title: Independent double DQN-based multi-agent reinforcement learning approach for online two-stage hybrid flow shop scheduling with batch machines
  publication-title: J. Manuf. Syst.
– volume: 63
  start-page: 185
  year: 2022
  end-page: 202
  ident: b52
  article-title: Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the industry 4.0 perspective
  publication-title: J. Manuf. Syst.
– volume: 21
  start-page: 1726
  year: 2020
  end-page: 1744
  ident: b61
  article-title: Deep reinforcement learning: a survey
  publication-title: Front. Inf. Technol. Electron. Eng.
– volume: vol. 115
  start-page: 113
  year: 2020
  end-page: 122
  ident: b60
  article-title: Truly proximal policy optimization
  publication-title: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference
– volume: 60
  start-page: 4049
  year: 2022
  end-page: 4069
  ident: b35
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: Int. J. Prod. Res.
– volume: 12
  start-page: 417
  year: 2009
  end-page: 431
  ident: b44
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
– volume: 131
  year: 2022
  ident: b58
  article-title: Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 3779
  year: 2023
  end-page: 3795
  ident: b43
  article-title: Deep reinforcement learning for cyber security
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 80
  year: 2023
  ident: b36
  article-title: Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 38 (9–10)
  start-page: 2490
  year: 2014
  end-page: 2504
  ident: b12
  article-title: Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates
  publication-title: Appl. Math. Model.
– volume: 264
  start-page: 11035
  year: 2023
  end-page: 11053
  ident: b7
  article-title: Deep reinforcement learning in recommender systems: A survey and new perspectives
  publication-title: Knowl. Based Syst.
– start-page: 1
  year: 2023
  end-page: 29
  ident: b74
  article-title: A cooperative adaptive genetic algorithm for reentrant hybrid flow shop scheduling with sequence-dependent setup time and limited buffers
  publication-title: Complex Intell. Syst.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b76
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 187
  year: 2024
  ident: b73
  article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem
  publication-title: Comput. Ind. Eng.
– start-page: 1
  year: 2017
  end-page: 15
  ident: b3
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings
– year: 2023
  ident: b57
  article-title: Flexible job-shop scheduling with limited flexible workers using an improved multiobjective discrete teaching–learning based optimization algorithm
  publication-title: Optim. Eng.
– volume: 37
  start-page: 12335
  year: 2022
  end-page: 12366
  ident: b70
  article-title: An adaptive multiobjective evolutionary algorithm for dynamic multiobjective flexible scheduling problem
  publication-title: Int. J. Intell. Syst.
– volume: 73
  start-page: 170
  year: 2024
  end-page: 191
  ident: b32
  article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation
  publication-title: J. Manuf. Syst.
– volume: 16
  start-page: 1
  year: 2021
  end-page: 24
  ident: b2
  article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
  publication-title: PLoS One
– volume: 28
  start-page: 1915
  year: 2017
  end-page: 1931
  ident: b6
  article-title: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints
  publication-title: J. Intell. Manuf.
– volume: 923
  start-page: 351
  year: 2020
  end-page: 359
  ident: b10
  article-title: Deep reinforcement learning as a job shop scheduling solver: A literature review
  publication-title: Adv. Intell. Syst. Comput.
– volume: 55
  start-page: 2733
  year: 2022
  end-page: 2819
  ident: b27
  article-title: Deep reinforcement learning in computer vision: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 5
  start-page: 947
  year: 2021
  end-page: 961
  ident: b63
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 106
  start-page: 174
  year: 2017
  ident: b8
  article-title: A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops
  publication-title: Comput. Ind. Eng.
– volume: 27
  start-page: 133
  year: 2021
  end-page: 158
  ident: b69
  article-title: Scheduling hybrid flow shops with time windows
  publication-title: J. Heuristics
– volume: 81
  start-page: 234
  year: 2019
  end-page: 239
  ident: b24
  article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems
  publication-title: Procedia CIRP
– volume: 10
  start-page: 1078
  year: 2022
  end-page: 1092
  ident: b75
  article-title: Research on an adaptive real-time scheduling method of dynamic job-shop based on reinforcement learning
  publication-title: Machines
– volume: 251
  year: 2024
  ident: b28
  article-title: Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 405
  year: 2019
  end-page: 431
  ident: b46
  article-title: Statistical aspects of wasserstein distances
  publication-title: Annu. Rev. Stat. Appl.
– volume: 145
  year: 2023
  ident: b54
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 91
  start-page: 3020
  year: 2022
  end-page: 3038
  ident: b40
  article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 23
  start-page: 3762
  year: 2023
  end-page: 3796
  ident: b14
  article-title: A survey on deep reinforcement learning algorithms for robotic manipulation
  publication-title: Sensors
– volume: 121
  start-page: 177
  year: 2021
  end-page: 188
  ident: b5
  article-title: On scheduling a photolithography area containing cluster tools
  publication-title: Comput. Ind. Eng.
– volume: 6
  start-page: 163
  year: 2005
  end-page: 190
  ident: b9
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genet. Program. Evol. Mach.
– volume: 85
  year: 2024
  ident: b72
  article-title: MRLM: A meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects
  publication-title: Swarm Evol. Comput.
– volume: 13
  start-page: 87
  year: 1993
  end-page: 110
  ident: b25
  article-title: Re-entrant lines
  publication-title: Queueing Syst.
– volume: 133
  start-page: 108221
  year: 2024
  end-page: 108237
  ident: b42
  article-title: Diffusion-based wasserstein generative adversarial network for blood cell image augmentation
  publication-title: Eng. Appl. Artif.
– volume: 133
  start-page: 108487
  year: 2024
  end-page: 108508
  ident: b37
  article-title: A double deep Q-network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions
  publication-title: Eng. Appl. Artif.
– volume: vol. 12
  start-page: 1057
  year: 1999
  end-page: 1063
  ident: b56
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Advances in Neural Information Processing Systems
– volume: 89
  start-page: 1
  year: 1996
  end-page: 5
  ident: b17
  article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard
  publication-title: European J. Oper. Res.
– volume: 54
  start-page: 365
  year: 2023
  end-page: 378
  ident: b62
  article-title: Hybrid flow shop scheduling with learning effects and release dates to minimize the makespan
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 4736
  year: 2019
  end-page: 4740
  ident: b55
  article-title: Model-based reinforcement learning via proximal policy optimization
  publication-title: 2019 Chinese Automation Congress
– volume: 10
  start-page: 2475
  year: 2022
  end-page: 2490
  ident: b68
  article-title: Research on green reentrant hybrid flow shop scheduling problem based on improved moth-flame optimization algorithm
  publication-title: Processes
– volume: 123
  start-page: 106317
  year: 2023
  end-page: 106331
  ident: b21
  article-title: An immune-based multi-agent system for flexible job shop scheduling problem in dynamic and multi-objective environments
  publication-title: Eng. Appl. Artif.
– volume: 53
  start-page: 6836
  year: 2023
  end-page: 6848
  ident: b34
  article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 237
  year: 2024
  ident: b71
  article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 1
  year: 2021
  end-page: 76
  ident: b1
  article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2017
  end-page: 12
  ident: b51
  article-title: Proximal policy optimization algorithms
– volume: 153
  year: 2024
  ident: b59
  article-title: A deep reinforcement learning-based active suspension control algorithm considering deterministic experience tracing for autonomous vehicle
  publication-title: Appl. Soft Comput.
– volume: 168
  year: 2021
  ident: b13
  article-title: Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 323
  year: 2005
  end-page: 351
  ident: b45
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
– volume: 1311
  start-page: 297
  year: 2021
  end-page: 308
  ident: b20
  article-title: Reinforcement learning: A survey
  publication-title: Adv. Intell. Syst. Comput.
– volume: 34
  start-page: 43
  year: 2017
  end-page: 59
  ident: b22
  article-title: Optimal mass transport: Signal processing and machine-learning applications
  publication-title: IEEE Signal Process. Mag.
– volume: 8
  start-page: 79998
  year: 2020
  end-page: 80009
  ident: b23
  article-title: A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines
  publication-title: IEEE Access
– volume: 125
  year: 2021
  ident: b4
  article-title: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: A case study at a manufacturing plant
  publication-title: Comput. Oper. Res.
– start-page: 1642
  year: 2023
  end-page: 1645
  ident: b39
  article-title: Deep reinforcement learning for solving hybrid flow shop scheduling problem with unrelated parallel machines
  publication-title: 2023 8th International Conference on Intelligent Computing and Signal Processing - ICSP 2023
– volume: 16
  year: 2024
  ident: b47
  article-title: Multi-agent reinforcement learning for job shop scheduling in dynamic environments
  publication-title: Sustainability
– volume: 20
  start-page: 375
  year: 2021
  end-page: 386
  ident: b15
  article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem
  publication-title: Int. J. Simul. Model.
– volume: 309
  start-page: 1
  year: 2023
  end-page: 23
  ident: b41
  article-title: A systematic review of multi-objective hybrid flow shop scheduling
  publication-title: European J. Oper. Res.
– volume: 3
  start-page: 554
  year: 2021
  end-page: 581
  ident: b67
  article-title: Recent advances in deep reinforcement learning applications for solving partially observable Markov decision processes (POMDP) problems: Part 1—Fundamentals and applications in games, robotics and natural language processing
  publication-title: Mach. Learn. Knowl. Extr.
– volume: vol. 12
  start-page: 1057
  year: 1999
  ident: 10.1016/j.engappai.2024.109688_b56
  article-title: Policy gradient methods for reinforcement learning with function approximation
– volume: 121
  start-page: 177
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b5
  article-title: On scheduling a photolithography area containing cluster tools
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.05.036
– volume: 589
  start-page: 478
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b30
  article-title: A review of green shop scheduling problem
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.12.122
– volume: 85
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b72
  article-title: MRLM: A meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101479
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2024.109688_b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 63
  start-page: 185
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b52
  article-title: Development of a multidimensional conceptual model for job shop smart manufacturing scheduling from the industry 4.0 perspective
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.03.011
– volume: 13
  start-page: 87
  issue: 1-3
  year: 1993
  ident: 10.1016/j.engappai.2024.109688_b25
  article-title: Re-entrant lines
  publication-title: Queueing Syst.
  doi: 10.1007/BF01158930
– volume: 28
  start-page: 1915
  issue: 8
  year: 2017
  ident: 10.1016/j.engappai.2024.109688_b6
  article-title: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1078-9
– volume: 10
  start-page: 1078
  issue: 11
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b75
  article-title: Research on an adaptive real-time scheduling method of dynamic job-shop based on reinforcement learning
  publication-title: Machines
  doi: 10.3390/machines10111078
– volume: 133
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b18
  article-title: Matheuristic and learning-oriented multi-objective artificial bee colony algorithm for energy-aware flexible assembly job shop scheduling problem
  publication-title: Eng. Appl. Artif.
– volume: 106
  start-page: 174
  year: 2017
  ident: 10.1016/j.engappai.2024.109688_b8
  article-title: A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.02.010
– volume: 133
  start-page: 108487
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b37
  article-title: A double deep Q-network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions
  publication-title: Eng. Appl. Artif.
  doi: 10.1016/j.engappai.2024.108487
– volume: 1311
  start-page: 297
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b20
  article-title: Reinforcement learning: A survey
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-981-33-4859-2_29
– year: 2023
  ident: 10.1016/j.engappai.2024.109688_b49
– volume: 168
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b13
  article-title: Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114282
– start-page: 4736
  year: 2019
  ident: 10.1016/j.engappai.2024.109688_b55
  article-title: Model-based reinforcement learning via proximal policy optimization
– volume: 38 (9–10)
  start-page: 2490
  year: 2014
  ident: 10.1016/j.engappai.2024.109688_b12
  article-title: Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.10.061
– volume: 205
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b29
  article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117796
– volume: 37
  start-page: 12335
  issue: 12
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b70
  article-title: An adaptive multiobjective evolutionary algorithm for dynamic multiobjective flexible scheduling problem
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.23090
– volume: 20
  start-page: 375
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b15
  article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem
  publication-title: Int. J. Simul. Model.
  doi: 10.2507/IJSIMM20-2-CO7
– volume: 145
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b54
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110596
– start-page: 1642
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b39
  article-title: Deep reinforcement learning for solving hybrid flow shop scheduling problem with unrelated parallel machines
– volume: 214
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b53
  article-title: Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119151
– start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2024.109688_b51
– volume: 3
  start-page: 554
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b67
  article-title: Recent advances in deep reinforcement learning applications for solving partially observable Markov decision processes (POMDP) problems: Part 1—Fundamentals and applications in games, robotics and natural language processing
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make3030029
– volume: 80
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b36
  article-title: Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102478
– volume: 146
  start-page: 423
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2024.109688_b38
  article-title: Hybrid flow shop scheduling considering machine electricity consumption cost
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2013.01.028
– start-page: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b74
  article-title: A cooperative adaptive genetic algorithm for reentrant hybrid flow shop scheduling with sequence-dependent setup time and limited buffers
  publication-title: Complex Intell. Syst.
– volume: 22
  start-page: 4159
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b48
  article-title: Designing pharmaceutical supply chain networks with perishable items considering congestion
  publication-title: Oper. Res. Ger.
– volume: 91
  start-page: 3020
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b40
  article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3104716
– volume: 125
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b4
  article-title: Iterated greedy algorithms enhanced by hyper-heuristic based learning for hybrid flexible flowshop scheduling problem with sequence dependent setup times: A case study at a manufacturing plant
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105044
– volume: 89
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.engappai.2024.109688_b17
  article-title: Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(96)90070-3
– volume: 55
  start-page: 2733
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b27
  article-title: Deep reinforcement learning in computer vision: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10061-9
– volume: 237
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b71
  article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121570
– volume: 22
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b1
  article-title: On the theory of policy gradient methods: Optimality, approximation, and distribution shift
  publication-title: J. Mach. Learn. Res.
– volume: 923
  start-page: 351
  year: 2020
  ident: 10.1016/j.engappai.2024.109688_b10
  article-title: Deep reinforcement learning as a job shop scheduling solver: A literature review
  publication-title: Adv. Intell. Syst. Comput.
– start-page: 3057
  year: 2020
  ident: 10.1016/j.engappai.2024.109688_b26
  article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production
– volume: 209
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b66
  article-title: Optimizing job release and scheduling jointly in a reentrant hybrid flow shop
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118278
– volume: vol. 115
  start-page: 113
  year: 2020
  ident: 10.1016/j.engappai.2024.109688_b60
  article-title: Truly proximal policy optimization
– volume: 21
  start-page: 1726
  issue: 12
  year: 2020
  ident: 10.1016/j.engappai.2024.109688_b61
  article-title: Deep reinforcement learning: a survey
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900533
– volume: 131
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b58
  article-title: Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109717
– volume: 16
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b2
  article-title: Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0252754
– volume: 251
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b28
  article-title: Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123970
– volume: 159
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b31
  article-title: Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-II
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106360
– volume: 5
  start-page: 947
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b63
  article-title: A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2020.3022372
– volume: 123
  start-page: 106317
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b21
  article-title: An immune-based multi-agent system for flexible job shop scheduling problem in dynamic and multi-objective environments
  publication-title: Eng. Appl. Artif.
  doi: 10.1016/j.engappai.2023.106317
– volume: 34
  start-page: 3779
  issue: 8
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b43
  article-title: Deep reinforcement learning for cyber security
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3121870
– start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2024.109688_b3
  article-title: Neural combinatorial optimization with reinforcement learning
– volume: vol. 36
  start-page: 6884
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b16
  article-title: Wasserstein unsupervised reinforcement learning
– volume: 8
  start-page: 79998
  year: 2020
  ident: 10.1016/j.engappai.2024.109688_b23
  article-title: A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982570
– start-page: 1889
  year: 2015
  ident: 10.1016/j.engappai.2024.109688_b50
  article-title: Trust region policy optimization
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b19
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.engappai.2024.109688_b76
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 309
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b41
  article-title: A systematic review of multi-objective hybrid flow shop scheduling
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2022.08.009
– volume: 10
  start-page: 2475
  issue: 12
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b68
  article-title: Research on green reentrant hybrid flow shop scheduling problem based on improved moth-flame optimization algorithm
  publication-title: Processes
  doi: 10.3390/pr10122475
– volume: 264
  start-page: 11035
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b7
  article-title: Deep reinforcement learning in recommender systems: A survey and new perspectives
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110335
– volume: 16
  issue: 8
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b47
  article-title: Multi-agent reinforcement learning for job shop scheduling in dynamic environments
  publication-title: Sustainability
  doi: 10.3390/su16083234
– volume: 54
  start-page: 365
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b62
  article-title: Hybrid flow shop scheduling with learning effects and release dates to minimize the makespan
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2023.3305089
– volume: 23
  start-page: 3762
  issue: 7
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b14
  article-title: A survey on deep reinforcement learning algorithms for robotic manipulation
  publication-title: Sensors
  doi: 10.3390/s23073762
– volume: 8
  start-page: 323
  issue: 4
  year: 2005
  ident: 10.1016/j.engappai.2024.109688_b45
  article-title: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks
  publication-title: J. Sched.
  doi: 10.1007/s10951-005-1640-y
– volume: 153
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b59
  article-title: A deep reinforcement learning-based active suspension control algorithm considering deterministic experience tracing for autonomous vehicle
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111259
– volume: 133
  start-page: 108221
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b42
  article-title: Diffusion-based wasserstein generative adversarial network for blood cell image augmentation
  publication-title: Eng. Appl. Artif.
  doi: 10.1016/j.engappai.2024.108221
– year: 2023
  ident: 10.1016/j.engappai.2024.109688_b57
  article-title: Flexible job-shop scheduling with limited flexible workers using an improved multiobjective discrete teaching–learning based optimization algorithm
  publication-title: Optim. Eng.
– volume: 34
  start-page: 43
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.109688_b22
  article-title: Optimal mass transport: Signal processing and machine-learning applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2695801
– volume: 81
  start-page: 234
  year: 2019
  ident: 10.1016/j.engappai.2024.109688_b24
  article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.041
– volume: 73
  start-page: 170
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b32
  article-title: Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.01.011
– volume: 6
  start-page: 163
  year: 2005
  ident: 10.1016/j.engappai.2024.109688_b9
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-005-6164-x
– volume: 60
  start-page: 4049
  issue: 13
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b35
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2022.2058432
– volume: 187
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b73
  article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109802
– volume: 53
  start-page: 6836
  issue: 11
  year: 2023
  ident: 10.1016/j.engappai.2024.109688_b34
  article-title: Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2023.3287655
– volume: 12
  start-page: 417
  issue: 4
  year: 2009
  ident: 10.1016/j.engappai.2024.109688_b44
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0090-8
– volume: 65
  start-page: 694
  year: 2022
  ident: 10.1016/j.engappai.2024.109688_b64
  article-title: Independent double DQN-based multi-agent reinforcement learning approach for online two-stage hybrid flow shop scheduling with batch machines
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.11.001
– volume: 27
  start-page: 133
  year: 2021
  ident: 10.1016/j.engappai.2024.109688_b69
  article-title: Scheduling hybrid flow shops with time windows
  publication-title: J. Heuristics
  doi: 10.1007/s10732-019-09425-w
– volume: 131
  start-page: 107790
  year: 2024
  ident: 10.1016/j.engappai.2024.109688_b65
  article-title: A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time
  publication-title: Eng. Appl. Artif.
  doi: 10.1016/j.engappai.2023.107790
– volume: 12
  start-page: 1755
  issue: 6
  year: 2012
  ident: 10.1016/j.engappai.2024.109688_b33
  article-title: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.01.011
– volume: 6
  start-page: 405
  year: 2019
  ident: 10.1016/j.engappai.2024.109688_b46
  article-title: Statistical aspects of wasserstein distances
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-030718-104938
SSID ssj0003846
Score 2.4954646
Snippet This paper extends a novel model for modern flexible manufacturing systems: the multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109688
SubjectTerms Deep reinforcement learning
Dynamic scheduling
Multi-agent
Multi-objective optimization
Partial-re-entrant hybrid flow shop
Proximal policy optimization
Title A modified multi-agent proximal policy optimization algorithm for multi-objective dynamic partial-re-entrant hybrid flow shop scheduling problem
URI https://dx.doi.org/10.1016/j.engappai.2024.109688
Volume 140
WOSCitedRecordID wos001368774800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3qjlpT1wsxaytuPHMUJFgFCFRJHCyVqvvY2jxI6ctE37K_jJzOzDMW2lghAXK1pp1pbny-zMeL4ZQt7gDG2eSEwvlYKFXEmWS18wlcLhMh5JlRa6u_6X-OgomU7Tr4PBpePCnC3iuk6223T1X1UNa6BspM7-hbq7TWEBfoPS4Qpqh-sfKX6C020qha6lrhZkAtlTWIi1rZbIu9KdgL0GbMXSkjA9sThp2mozW-qqQyPW5HNjDL3CTK33Vng3sWBtyXROGHadXSDjy1OL5txbz5qVB8EyHF6W465n1fyW-991P_T6n851NUKry5b0EJFen9Du1DjVgKvEeVl1VUSVXvzR2OPXZi98LBRkhr9pUmqOVrOrYTK5SZ_x1AyG6cy0aet0zeSb7MP8bVmfwIOLCmJ-P8QuWZGZF3ilnfY33Bz3BlcGotsouEP2_HicJkOyN_l0OP3cneNBYmhe7mF6_PKb73aza9NzV44fkvs2zqATg49HZFDWj8kDG3NQa9HXsOTGeri1J-TnhDoE0R6CqEMQNQiifQTRDkEUEESvIIhaBNHrCKIGQRQRRBFBdIcgahH0lHz_cHj8_iOzgzuYDOJkw2JfKcmRRRYoXxXFGAyBL7HTpIjCIiplKtI85GUc5UpEKvATUeSB5DxP5Qg_TD8jw7qpy31CeSE4NjgKeJiHMuZ5LEZqLJKRKLiAWOSAjN07z6Ttao_DVRaZK1-cZ05XGeoqM7o6IO86uZXp63KrROpUmlnv1HidGSDxFtnn_yD7gtzb_XFekuGmPS1fkbvybFOt29cWtL8AIFLDmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+multi-agent+proximal+policy+optimization+algorithm+for+multi-objective+dynamic+partial-re-entrant+hybrid+flow+shop+scheduling+problem&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wu%2C+Jiawei&rft.au=Liu%2C+Yong&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=140&rft_id=info:doi/10.1016%2Fj.engappai.2024.109688&rft.externalDocID=S0952197624018463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon