Adsorption and sensing performances of transition metal (Pd, Pt, Ag and Au) doped MoTe2 monolayer upon NO2: A DFT study

•Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism. Usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A Jg. 391; S. 127117
Hauptverfasser: Liu, Yun, Shi, Ting, Si, Quanlong, Liu, Tun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 05.03.2021
Schlagworte:
ISSN:0375-9601, 1873-2429
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism. Using density functional theory (DFT), the Pd, Pt, Ag and Au dopants are selected as the representatives to study the transition metal (TM)-doping behavior on the pristine MoTe2 monolayer and related NO2 sensing behavior. It is found that Pd and Pt adatoms prefer to be trapped through the TMo site, while Ag and Au dopants prefer to the TH site. The NO2 molecule behaves as electron-acceptor withdrawing charges from the TM-MoTe2 monolayer, based on the Hirshfeld analysis, and NO2 adsorption causes p-doping for Pd- and Pt-doped MoTe2 monolayer, and causes n-doping for Ag- and Au-doped MoTe2 monolayer, which decreases the bandgaps in the former two systems and increase the bandgaps in the latter two systems. Our calculations not only give an insight into the physicochemical property of TM-MoTe2 monolayer, but also elucidate their promising potential as novel NO2 sensors.
AbstractList •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism. Using density functional theory (DFT), the Pd, Pt, Ag and Au dopants are selected as the representatives to study the transition metal (TM)-doping behavior on the pristine MoTe2 monolayer and related NO2 sensing behavior. It is found that Pd and Pt adatoms prefer to be trapped through the TMo site, while Ag and Au dopants prefer to the TH site. The NO2 molecule behaves as electron-acceptor withdrawing charges from the TM-MoTe2 monolayer, based on the Hirshfeld analysis, and NO2 adsorption causes p-doping for Pd- and Pt-doped MoTe2 monolayer, and causes n-doping for Ag- and Au-doped MoTe2 monolayer, which decreases the bandgaps in the former two systems and increase the bandgaps in the latter two systems. Our calculations not only give an insight into the physicochemical property of TM-MoTe2 monolayer, but also elucidate their promising potential as novel NO2 sensors.
ArticleNumber 127117
Author Liu, Tun
Liu, Yun
Si, Quanlong
Shi, Ting
Author_xml – sequence: 1
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
  organization: College of Artificial Intelligence, Southwest University, Chongqing 400715, China
– sequence: 2
  givenname: Ting
  surname: Shi
  fullname: Shi, Ting
  organization: Institute of Railway Telecommunications, Hunan Technical College of Railway High-Speed, Hengyang 421002, China
– sequence: 3
  givenname: Quanlong
  surname: Si
  fullname: Si, Quanlong
  organization: Institute of Railway Mechatronics, Hunan Technical College of Railway High-Speed, Hengyang 421002, China
– sequence: 4
  givenname: Tun
  surname: Liu
  fullname: Liu, Tun
  email: liutuncsu@csu.edu.cn
  organization: School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China
BookMark eNqFkE1PwkAQhjdGEwH9C2aPmlDcj9IP48EGRU1QOOB5s-1OcUnpNrtF03_vAnrxwmmSmXlm8j59dFqbGhC6omRECY1u16Pms3MVtHLECPNNFlMan6AeTWIesJClp6hHeDwO0ojQc9R3bk2IJ0naQ9-ZcsY2rTY1lrXCDmqn6xVuwJbGbmRdgMOmxK2VfrBf2_hPFb5eqCFetEOcrfZgtr3ByjSg8JtZAsMbU5tKdmDxtvHQ-5zd4Qw_TpfYtVvVXaCzUlYOLn_rAH1Mn5aTl2A2f36dZLOg4HHSBlEONFRhThIWjiEKU55HLMyZlD5WAiTKx5yXrCjzMi0pJBxyOmbcR4u45HHBByg63C2scc5CKRqrN9J2ghKx0yfW4k-f2OkTB30evP8HFrqVOwFeha6O4w8HHHy4Lw1WuEKDt6m0haIVyuhjJ34ALA2RsQ
CitedBy_id crossref_primary_10_1016_j_actamat_2024_119951
crossref_primary_10_1016_j_surfin_2022_102111
crossref_primary_10_1007_s11224_024_02396_0
crossref_primary_10_1016_j_apsusc_2022_153167
crossref_primary_10_1016_j_cplett_2023_140821
crossref_primary_10_3389_fchem_2022_950974
crossref_primary_10_1155_2021_3264737
crossref_primary_10_1016_j_comptc_2024_114586
crossref_primary_10_1016_j_surfin_2022_101816
crossref_primary_10_1016_j_inoche_2023_111928
crossref_primary_10_1016_j_susmat_2023_e00776
crossref_primary_10_3389_fnano_2025_1623625
crossref_primary_10_1016_j_comptc_2023_114149
crossref_primary_10_3390_app132312559
crossref_primary_10_1016_j_mssp_2024_108848
crossref_primary_10_1016_j_mssp_2025_109318
crossref_primary_10_1016_j_jallcom_2022_166355
crossref_primary_10_1002_bio_70273
crossref_primary_10_1016_j_seppur_2023_126182
crossref_primary_10_1016_j_teac_2023_e00215
crossref_primary_10_1002_pssa_202400633
crossref_primary_10_1016_j_colsurfa_2025_137289
crossref_primary_10_1016_j_nxmate_2024_100418
crossref_primary_10_1007_s00894_022_05195_8
crossref_primary_10_1016_j_susc_2021_121964
crossref_primary_10_1002_adts_202100611
crossref_primary_10_1016_j_colsurfa_2025_137846
crossref_primary_10_1002_pssb_202200070
crossref_primary_10_1016_j_apsusc_2023_157525
crossref_primary_10_1088_1361_6528_ac800f
crossref_primary_10_1016_j_diamond_2023_110560
crossref_primary_10_1016_j_cplett_2022_139977
crossref_primary_10_1109_JSEN_2024_3387912
crossref_primary_10_1016_j_surfin_2025_106579
crossref_primary_10_1016_j_surfin_2022_101883
crossref_primary_10_1007_s13204_022_02567_7
crossref_primary_10_3390_molecules27103176
crossref_primary_10_1016_j_cej_2023_145480
crossref_primary_10_1140_epjb_s10051_025_00948_9
crossref_primary_10_1016_j_comptc_2022_113796
crossref_primary_10_1080_00268976_2025_2518074
crossref_primary_10_1016_j_sna_2023_114673
crossref_primary_10_1109_JSEN_2024_3360965
crossref_primary_10_1016_j_molliq_2024_125648
crossref_primary_10_3390_chemosensors10070279
crossref_primary_10_1002_pssr_202300367
crossref_primary_10_1016_j_cej_2022_137156
crossref_primary_10_3390_cryst12050662
crossref_primary_10_1016_j_physe_2022_115568
crossref_primary_10_1016_j_sna_2024_115062
crossref_primary_10_1002_ppsc_202400156
crossref_primary_10_1016_j_comptc_2024_114716
crossref_primary_10_1016_j_surfin_2024_105097
crossref_primary_10_1016_j_comptc_2024_114757
crossref_primary_10_1016_j_mtchem_2022_101069
crossref_primary_10_1016_j_susc_2021_121981
crossref_primary_10_1016_j_jece_2025_117095
Cites_doi 10.1039/C8NA00233A
10.1109/JSEN.2019.2899966
10.1016/j.apsusc.2019.07.218
10.1016/j.snb.2018.06.044
10.1103/PhysRevB.69.075414
10.1063/1.3213194
10.1016/j.commatsci.2017.06.029
10.1016/j.snb.2017.06.063
10.1016/j.apsusc.2020.147242
10.1016/j.apsusc.2017.01.264
10.1016/j.apsusc.2018.05.116
10.1016/j.snb.2015.12.075
10.1109/LED.2018.2859258
10.1039/D0TC00549E
10.1016/j.apsusc.2020.145863
10.1016/j.apsusc.2018.03.232
10.1021/jp4055445
10.1039/C7CP04021K
10.1016/j.apsusc.2018.04.157
10.1016/j.apsusc.2016.04.171
10.1063/1.1316015
10.1021/nl502557g
10.1186/1556-276X-8-425
10.1109/TED.2018.2882236
10.1016/j.snb.2017.03.108
10.1016/j.snb.2017.07.173
10.1021/cr500567r
10.1103/PhysRevB.66.155125
10.1088/2053-1583/aa57fe
10.1016/j.physe.2019.113877
10.1016/j.apsusc.2020.145759
10.1016/j.apsusc.2018.09.096
10.1016/j.apsusc.2018.11.230
10.1002/advs.201500101
10.1039/C7TA07001B
10.1021/acsnano.5b04343
10.1039/c1cp21159e
10.1039/c2nr31077e
10.1049/hve.2019.0130
10.1021/acs.jpcc.5b05770
10.1016/j.apsusc.2015.12.142
10.1021/acssensors.9b01044
10.1016/j.snb.2018.03.159
10.1039/C3NR06084E
10.1109/JSEN.2018.2876637
10.1016/j.matchemphys.2020.123006
10.3390/s131115159
10.1088/0031-8949/89/6/065803
10.1016/j.apsusc.2018.05.208
10.1109/JSEN.2018.2801865
10.1016/j.snb.2015.07.070
10.1021/acsnano.5b05556
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2020.127117
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
ExternalDocumentID 10_1016_j_physleta_2020_127117
S0375960120309841
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
9DU
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
K-O
MVM
NDZJH
R2-
SEW
WUQ
XOL
YYP
ZCG
~HD
ID FETCH-LOGICAL-c378t-6be14d4b08245e6493b624b2aa4298e06b533f2cfbf9f1e83eb152360963a37c3
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612184400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0375-9601
IngestDate Tue Nov 18 22:23:46 EST 2025
Sat Nov 29 07:20:23 EST 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MoTe2 monolayer
DFT method
TM doping
NO2 gas sensors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-6be14d4b08245e6493b624b2aa4298e06b533f2cfbf9f1e83eb152360963a37c3
ParticipantIDs crossref_primary_10_1016_j_physleta_2020_127117
crossref_citationtrail_10_1016_j_physleta_2020_127117
elsevier_sciencedirect_doi_10_1016_j_physleta_2020_127117
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationTitle Physics letters. A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Yang, Meng, Tan, Liang, Jiang, Ye, Chen (br0500) 2017; 404
Cui, Liu, Zhang, Zhang (br0080) 2019; 19
Cui, Zhang, Zhang, Zhang (br0180) 2019; 4
Giovanni, Poh, Ambrosi, Zhao, Sofer, Šaněk, Khezri, Webster, Pumera (br0520) 2012; 4
Chen, Zhang, Tang, Cui, Li, Zhang, Yang (br0480) 2019; 465
Chen, Zhang, Tang, Cui, Cui, Pi (br0370) 2018; 39
Panigrahi, Hussain, Karton, Ahuja (br0400) 2019; 4
Yang, Cao, You, Shi, Qian (br0150) 2020; 118
Yuwen, Xu, Xue, Luo, Zhang, Bao, Su, Weng, Huang, Wang (br0270) 2014; 6
Wang, Wang, Yang, Chu, Lv, Liu, Rong (br0250) 2017
Bhimanapati, Lin, Meunier, Jung, Cha, Das, Xiao, Son, Strano, Cooper (br0130) 2015; 9
Shi, Yang, Cao, You, Zhang, Qi, Zhang, Qian (br0120) 2020; 8
Chatterjee, Chatterjee, Ray, Chakraborty (br0030) 2015; 221
Cui, Zhang, Li, Chen, Zhang (br0090) 2019; 494
Zhang, Dai, Wei, Liang, Wu (br0040) 2013; 13
Cui, Jia, Peng, Li (br0380) 2020; 249
Wu, Yin, Li, Cheng, Huang (br0390) 2017; 19
Dong, Cho, Kim, Choe, Sung, Kan, Kang, Hwang, Kim, Yang (br0460) 2015; 11
Lin, Ye, Johnson, Hua (br0290) 2013; 117
Cui, Zhang, Zhang, Tang (br0050) 2019; 2019
Ma, Dai, Guo, Niu, Lu, Huang (br0220) 2011; 13
Guo, Zhang, Wu, Liu, Zhou (br0430) 2018; 455
Delley (br0330) 2000; 113
Cui, Chen, Zhang, Zhang (br0210) 2019; 20
Ma, Ju, Li, Zhang, He, Ma, Tang, Lu, Yang (br0450) 2016; 364
Chen, Zhang, Tang, Li, Cui, Zhou (br0060) 2019; 66
Ma, Ju, Li, Zhang, He, Ma, Lu, Yang (br0260) 2016; 383
Zhang, Dai, Chen, Tang (br0020) 2014; 89
Cui, Jia, Peng (br0170) 2020; 513
Cui, Zhang, Zhang, Tang (br0140) 2019; 470
Ruppert, Aslan, Heinz (br0470) 2014; 14
Cui, Zhang, Chen, Tang (br0340) 2018; 447
Ou, Ge, Carey, Daeneke, Rotbart, Shan, Wang, Fu, Chrimes, Wlodarski (br0160) 2015; 9
Feng, Xie, Chen, Yu, Zheng, Zhang, Li, Chen, Sun, Zhang (br0240) 2017; 4
Delley (br0350) 2002; 66
Su, Ao, Ji, Li, An (br0440) 2018; 450
Zhou, Lee, Xu, Yoon (br0010) 2015; 115
Zhang, Yu, Wu, Hu (br0070) 2015; 2
Tkatchenko, Ra, Head-Gordon, Scheffler (br0360) 2009; 131
Chen, Tang, Zhang, Li, Liu (br0410) 2019; 19
Cui, Yan, Jia, Cao (br0110) 2020; 512
Jing, Ao, Teng, Wang, Yi, An (br0420) 2018; 16
Zhang, Jiang, Wu (br0310) 2018; 273
Ma, Zhang, Li, He, Lu, Lu, Yang, Wang (br0100) 2018; 266
Islam, Hussain, Rao, Panigrahi, Ahuja (br0540) 2016; 228
Fan, Zhang, Qiu, Zhu, Zhang, Hu (br0510) 2017; 138
Zhang, Sun, Jiang, Yao, Wang, Zhang (br0320) 2017; 253
Guo, Chen, Wu, Liu, Zhou (br0530) 2018; 455
Yagi, Briere, Sluiter, Kumar, Farajian, Kawazoe (br0280) 2004; 69
Zhang, Chang, Sun, Jiang, Yao, Zhang (br0300) 2017; 252
Qu, Shao, Chang, Li (br0490) 2013; 8
Sharma, Anu, Khan, Husain, Khan, Srivastava (br0550) 2018
Zhang, Jiang, Liu, Cao (br0190) 2017; 247
Cui, Zhu, Jia (br0560) 2020; 530
Zhang, Wu, Li, Cao (br0200) 2017; 5
Zhou, Reed (br0230) 2015; 119
Zhang (10.1016/j.physleta.2020.127117_br0300) 2017; 252
Cui (10.1016/j.physleta.2020.127117_br0080) 2019; 19
Chen (10.1016/j.physleta.2020.127117_br0060) 2019; 66
Zhang (10.1016/j.physleta.2020.127117_br0320) 2017; 253
Ma (10.1016/j.physleta.2020.127117_br0260) 2016; 383
Guo (10.1016/j.physleta.2020.127117_br0530) 2018; 455
Cui (10.1016/j.physleta.2020.127117_br0110) 2020; 512
Chen (10.1016/j.physleta.2020.127117_br0410) 2019; 19
Ma (10.1016/j.physleta.2020.127117_br0220) 2011; 13
Cui (10.1016/j.physleta.2020.127117_br0380) 2020; 249
Qu (10.1016/j.physleta.2020.127117_br0490) 2013; 8
Wang (10.1016/j.physleta.2020.127117_br0250) 2017
Delley (10.1016/j.physleta.2020.127117_br0350) 2002; 66
Panigrahi (10.1016/j.physleta.2020.127117_br0400) 2019; 4
Islam (10.1016/j.physleta.2020.127117_br0540) 2016; 228
Su (10.1016/j.physleta.2020.127117_br0440) 2018; 450
Cui (10.1016/j.physleta.2020.127117_br0560) 2020; 530
Sun (10.1016/j.physleta.2020.127117_br0500) 2017; 404
Delley (10.1016/j.physleta.2020.127117_br0330) 2000; 113
Zhang (10.1016/j.physleta.2020.127117_br0020) 2014; 89
Yuwen (10.1016/j.physleta.2020.127117_br0270) 2014; 6
Bhimanapati (10.1016/j.physleta.2020.127117_br0130) 2015; 9
Lin (10.1016/j.physleta.2020.127117_br0290) 2013; 117
Cui (10.1016/j.physleta.2020.127117_br0140) 2019; 470
Wu (10.1016/j.physleta.2020.127117_br0390) 2017; 19
Zhang (10.1016/j.physleta.2020.127117_br0040) 2013; 13
Yang (10.1016/j.physleta.2020.127117_br0150) 2020; 118
Chatterjee (10.1016/j.physleta.2020.127117_br0030) 2015; 221
Cui (10.1016/j.physleta.2020.127117_br0050) 2019; 2019
Cui (10.1016/j.physleta.2020.127117_br0090) 2019; 494
Sharma (10.1016/j.physleta.2020.127117_br0550) 2018
Ou (10.1016/j.physleta.2020.127117_br0160) 2015; 9
Guo (10.1016/j.physleta.2020.127117_br0430) 2018; 455
Shi (10.1016/j.physleta.2020.127117_br0120) 2020; 8
Zhang (10.1016/j.physleta.2020.127117_br0190) 2017; 247
Jing (10.1016/j.physleta.2020.127117_br0420) 2018; 16
Zhou (10.1016/j.physleta.2020.127117_br0010) 2015; 115
Ma (10.1016/j.physleta.2020.127117_br0450) 2016; 364
Cui (10.1016/j.physleta.2020.127117_br0210) 2019; 20
Dong (10.1016/j.physleta.2020.127117_br0460) 2015; 11
Chen (10.1016/j.physleta.2020.127117_br0370) 2018; 39
Feng (10.1016/j.physleta.2020.127117_br0240) 2017; 4
Zhang (10.1016/j.physleta.2020.127117_br0070) 2015; 2
Zhou (10.1016/j.physleta.2020.127117_br0230) 2015; 119
Tkatchenko (10.1016/j.physleta.2020.127117_br0360) 2009; 131
Chen (10.1016/j.physleta.2020.127117_br0480) 2019; 465
Fan (10.1016/j.physleta.2020.127117_br0510) 2017; 138
Cui (10.1016/j.physleta.2020.127117_br0180) 2019; 4
Giovanni (10.1016/j.physleta.2020.127117_br0520) 2012; 4
Zhang (10.1016/j.physleta.2020.127117_br0310) 2018; 273
Ma (10.1016/j.physleta.2020.127117_br0100) 2018; 266
Zhang (10.1016/j.physleta.2020.127117_br0200) 2017; 5
Yagi (10.1016/j.physleta.2020.127117_br0280) 2004; 69
Cui (10.1016/j.physleta.2020.127117_br0340) 2018; 447
Ruppert (10.1016/j.physleta.2020.127117_br0470) 2014; 14
Cui (10.1016/j.physleta.2020.127117_br0170) 2020; 513
References_xml – volume: 115
  start-page: 7944
  year: 2015
  end-page: 8000
  ident: br0010
  article-title: Recent progress on the development of chemosensors for gases
  publication-title: Chem. Rev.
– volume: 530
  year: 2020
  ident: br0560
  article-title: Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 5249
  year: 2019
  end-page: 5255
  ident: br0080
  article-title: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory
  publication-title: IEEE Sens. J.
– volume: 455
  start-page: 106
  year: 2018
  end-page: 114
  ident: br0430
  article-title: Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 425
  year: 2013
  ident: br0490
  article-title: Adsorption of gas molecules on monolayer MoS2 and effect of applied; electric field
  publication-title: Nanoscale Res. Lett.
– volume: 4
  start-page: 242
  year: 2019
  end-page: 258
  ident: br0180
  article-title: Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices
  publication-title: High Volt.
– volume: 273
  start-page: 176
  year: 2018
  end-page: 184
  ident: br0310
  article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing
  publication-title: Sens. Actuators B, Chem.
– volume: 66
  year: 2002
  ident: br0350
  article-title: Hardness conserving semilocal pseudopotentials
  publication-title: Phys. Rev. B, Condens. Matter
– volume: 247
  start-page: 875
  year: 2017
  end-page: 882
  ident: br0190
  article-title: Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly
  publication-title: Sens. Actuators B, Chem.
– volume: 5
  start-page: 20666
  year: 2017
  end-page: 20677
  ident: br0200
  article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation
  publication-title: J. Mater. Chem. A
– volume: 253
  year: 2017
  ident: br0320
  article-title: Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties
  publication-title: Sens. Actuators B, Chem.
– volume: 470
  start-page: 1035
  year: 2019
  end-page: 1042
  ident: br0140
  article-title: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method
  publication-title: Appl. Surf. Sci.
– volume: 11
  year: 2015
  ident: br0460
  article-title: Bandgap opening in few-layered monoclinic MoTe2
  publication-title: Nat. Phys.
– volume: 14
  start-page: 6231
  year: 2014
  ident: br0470
  article-title: Optical properties and band gap of single- and few-layer MoTe2 crystals
  publication-title: Nano Lett.
– volume: 16
  year: 2018
  ident: br0420
  article-title: Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications
  publication-title: Sustainable Mater. Technol.
– volume: 221
  start-page: 1170
  year: 2015
  end-page: 1181
  ident: br0030
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B, Chem.
– volume: 249
  year: 2020
  ident: br0380
  article-title: Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study
  publication-title: Mater. Chem. Phys.
– volume: 13
  start-page: 15159
  year: 2013
  end-page: 15171
  ident: br0040
  article-title: Theoretical calculation of the gas-sensing properties of Pt-decorated carbon nanotubes
  publication-title: Sensors
– volume: 119
  year: 2015
  ident: br0230
  article-title: Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules
  publication-title: J. Phys. Chem. C
– volume: 455
  start-page: 484
  year: 2018
  end-page: 491
  ident: br0530
  article-title: Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2020
  ident: br0120
  article-title: Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations
  publication-title: J. Mater. Chem. C
– volume: 117
  start-page: 17319
  year: 2013
  end-page: 17326
  ident: br0290
  article-title: First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation
  publication-title: J. Phys. Chem. C
– volume: 494
  start-page: 859
  year: 2019
  end-page: 866
  ident: br0090
  article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger
  publication-title: Appl. Surf. Sci.
– volume: 4
  year: 2017
  ident: br0240
  article-title: Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing
  publication-title: 2D Mater.
– volume: 19
  start-page: 39
  year: 2019
  end-page: 46
  ident: br0410
  article-title: Detecting decompositions of sulfur hexafluoride using MoS2 monolayer as gas sensor
  publication-title: IEEE Sens. J.
– volume: 4
  start-page: 5002
  year: 2012
  end-page: 5008
  ident: br0520
  article-title: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis
  publication-title: Nanoscale
– volume: 512
  year: 2020
  ident: br0110
  article-title: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
– volume: 404
  start-page: 291
  year: 2017
  end-page: 299
  ident: br0500
  article-title: Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study
  publication-title: Appl. Surf. Sci.
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: br0330
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 612
  year: 2015
  ident: br0070
  article-title: Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene
  publication-title: Adv. Sci.
– volume: 9
  start-page: 11509
  year: 2015
  end-page: 11539
  ident: br0130
  article-title: Recent advances in two-dimensional materials beyond graphene
  publication-title: ACS Nano
– volume: 131
  start-page: 171
  year: 2009
  ident: br0360
  article-title: Dispersion-corrected Møller-Plesset second-order perturbation theory
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 5762
  year: 2014
  end-page: 5769
  ident: br0270
  article-title: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation
  publication-title: Nanoscale
– year: 2017
  ident: br0250
  article-title: MoTe2: a promising candidate for SF6 decomposition gas sensors with high sensitivity and selectivity
  publication-title: IEEE Electron Device Lett.
– volume: 39
  start-page: 1405
  year: 2018
  end-page: 1408
  ident: br0370
  article-title: Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions
  publication-title: IEEE Electron Device Lett.
– volume: 13
  year: 2011
  ident: br0220
  article-title: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers
  publication-title: PCCP, Phys. Chem. Chem. Phys.
– volume: 465
  start-page: 93
  year: 2019
  end-page: 102
  ident: br0480
  article-title: Density functional theory study of small Ag cluster adsorbed on graphyne
  publication-title: Appl. Surf. Sci.
– volume: 66
  start-page: 689
  year: 2019
  end-page: 695
  ident: br0060
  article-title: Using single-layer HfS2 as prospective sensing device toward typical partial discharge gas in SF6-based gas-insulated switchgear
  publication-title: IEEE Trans. Electron Devices
– volume: 118
  year: 2020
  ident: br0150
  article-title: Intrinsic carrier mobility of monolayer GeS and GeSe: first-principles calculation
  publication-title: Physica E, Low-Dimens. Syst. Nanostruct.
– volume: 266
  start-page: 664
  year: 2018
  end-page: 673
  ident: br0100
  article-title: C3N monolayers as promising candidates for NO2 sensors
  publication-title: Sens. Actuators B, Chem.
– volume: 364
  start-page: 181
  year: 2016
  end-page: 189
  ident: br0450
  article-title: Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals
  publication-title: Appl. Surf. Sci.
– volume: 383
  start-page: 98
  year: 2016
  end-page: 105
  ident: br0260
  article-title: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study
  publication-title: Appl. Surf. Sci.
– volume: 450
  start-page: 484
  year: 2018
  end-page: 491
  ident: br0440
  article-title: Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation
  publication-title: Appl. Surf. Sci.
– year: 2018
  ident: br0550
  article-title: Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study
  publication-title: IEEE Sens. J.
– volume: 228
  start-page: 317
  year: 2016
  end-page: 321
  ident: br0540
  article-title: Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants
  publication-title: Sens. Actuators B, Chem.
– volume: 69
  year: 2004
  ident: br0280
  article-title: Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study
  publication-title: Phys. Rev. B
– volume: 2019
  start-page: 772
  year: 2019
  end-page: 780
  ident: br0050
  article-title: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study
  publication-title: Nanoscale Adv.
– volume: 89
  year: 2014
  ident: br0020
  article-title: A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes
  publication-title: Phys. Scr.
– volume: 138
  start-page: 255
  year: 2017
  end-page: 266
  ident: br0510
  article-title: A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption
  publication-title: Comput. Mater. Sci.
– volume: 252
  start-page: 624
  year: 2017
  end-page: 632
  ident: br0300
  article-title: Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature
  publication-title: Sens. Actuators B, Chem.
– volume: 447
  start-page: 594
  year: 2018
  end-page: 598
  ident: br0340
  article-title: Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study
  publication-title: Appl. Surf. Sci.
– volume: 19
  year: 2017
  ident: br0390
  article-title: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  year: 2019
  ident: br0210
  article-title: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory
  publication-title: Sustainable Mater. Technol.
– volume: 4
  start-page: 2646
  year: 2019
  end-page: 2653
  ident: br0400
  article-title: Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): implications for enhanced gas sensing
  publication-title: ACS Sensors
– volume: 513
  year: 2020
  ident: br0170
  article-title: Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
– volume: 9
  year: 2015
  ident: br0160
  article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing
  publication-title: ACS Nano
– volume: 2019
  start-page: 772
  issue: 1
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0050
  article-title: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00233A
– volume: 19
  start-page: 5249
  issue: 13
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0080
  article-title: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2899966
– volume: 494
  start-page: 859
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0090
  article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.218
– volume: 273
  start-page: 176
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0310
  article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2018.06.044
– volume: 69
  issue: 7
  year: 2004
  ident: 10.1016/j.physleta.2020.127117_br0280
  article-title: Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.075414
– volume: 131
  start-page: 171
  issue: 9
  year: 2009
  ident: 10.1016/j.physleta.2020.127117_br0360
  article-title: Dispersion-corrected Møller-Plesset second-order perturbation theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3213194
– volume: 138
  start-page: 255
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0510
  article-title: A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.06.029
– volume: 20
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0210
  article-title: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory
  publication-title: Sustainable Mater. Technol.
– volume: 252
  start-page: 624
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0300
  article-title: Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2017.06.063
– volume: 530
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0560
  article-title: Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147242
– volume: 404
  start-page: 291
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0500
  article-title: Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.01.264
– volume: 455
  start-page: 106
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0430
  article-title: Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.116
– volume: 228
  start-page: 317
  year: 2016
  ident: 10.1016/j.physleta.2020.127117_br0540
  article-title: Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2015.12.075
– volume: 39
  start-page: 1405
  issue: 9
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0370
  article-title: Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2859258
– volume: 8
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0120
  article-title: Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00549E
– volume: 513
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0170
  article-title: Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145863
– volume: 447
  start-page: 594
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0340
  article-title: Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.232
– volume: 117
  start-page: 17319
  issue: 33
  year: 2013
  ident: 10.1016/j.physleta.2020.127117_br0290
  article-title: First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4055445
– volume: 16
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0420
  article-title: Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications
  publication-title: Sustainable Mater. Technol.
– volume: 19
  issue: 31
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0390
  article-title: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP04021K
– volume: 450
  start-page: 484
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0440
  article-title: Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.157
– volume: 383
  start-page: 98
  year: 2016
  ident: 10.1016/j.physleta.2020.127117_br0260
  article-title: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.04.171
– volume: 113
  start-page: 7756
  issue: 18
  year: 2000
  ident: 10.1016/j.physleta.2020.127117_br0330
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 14
  start-page: 6231
  issue: 11
  year: 2014
  ident: 10.1016/j.physleta.2020.127117_br0470
  article-title: Optical properties and band gap of single- and few-layer MoTe2 crystals
  publication-title: Nano Lett.
  doi: 10.1021/nl502557g
– volume: 8
  start-page: 425
  issue: 1
  year: 2013
  ident: 10.1016/j.physleta.2020.127117_br0490
  article-title: Adsorption of gas molecules on monolayer MoS2 and effect of applied; electric field
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-425
– volume: 66
  start-page: 689
  issue: 1
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0060
  article-title: Using single-layer HfS2 as prospective sensing device toward typical partial discharge gas in SF6-based gas-insulated switchgear
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2882236
– year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0250
  article-title: MoTe2: a promising candidate for SF6 decomposition gas sensors with high sensitivity and selectivity
  publication-title: IEEE Electron Device Lett.
– volume: 247
  start-page: 875
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0190
  article-title: Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2017.03.108
– volume: 253
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0320
  article-title: Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2017.07.173
– volume: 115
  start-page: 7944
  issue: 15
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0010
  article-title: Recent progress on the development of chemosensors for gases
  publication-title: Chem. Rev.
  doi: 10.1021/cr500567r
– volume: 66
  issue: 15
  year: 2002
  ident: 10.1016/j.physleta.2020.127117_br0350
  article-title: Hardness conserving semilocal pseudopotentials
  publication-title: Phys. Rev. B, Condens. Matter
  doi: 10.1103/PhysRevB.66.155125
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0240
  article-title: Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa57fe
– volume: 118
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0150
  article-title: Intrinsic carrier mobility of monolayer GeS and GeSe: first-principles calculation
  publication-title: Physica E, Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.113877
– volume: 512
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0110
  article-title: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145759
– volume: 465
  start-page: 93
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0480
  article-title: Density functional theory study of small Ag cluster adsorbed on graphyne
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.09.096
– volume: 470
  start-page: 1035
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0140
  article-title: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.11.230
– volume: 2
  start-page: 612
  issue: 11
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0070
  article-title: Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500101
– volume: 5
  start-page: 20666
  issue: 39
  year: 2017
  ident: 10.1016/j.physleta.2020.127117_br0200
  article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07001B
– volume: 9
  issue: 10
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0160
  article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04343
– volume: 13
  issue: 34
  year: 2011
  ident: 10.1016/j.physleta.2020.127117_br0220
  article-title: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers
  publication-title: PCCP, Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21159e
– volume: 4
  start-page: 5002
  issue: 16
  year: 2012
  ident: 10.1016/j.physleta.2020.127117_br0520
  article-title: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis
  publication-title: Nanoscale
  doi: 10.1039/c2nr31077e
– volume: 4
  start-page: 242
  issue: 4
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0180
  article-title: Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices
  publication-title: High Volt.
  doi: 10.1049/hve.2019.0130
– volume: 119
  issue: 37
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0230
  article-title: Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05770
– volume: 364
  start-page: 181
  year: 2016
  ident: 10.1016/j.physleta.2020.127117_br0450
  article-title: Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.142
– volume: 11
  issue: 6
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0460
  article-title: Bandgap opening in few-layered monoclinic MoTe2
  publication-title: Nat. Phys.
– volume: 4
  start-page: 2646
  issue: 10
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0400
  article-title: Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): implications for enhanced gas sensing
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.9b01044
– volume: 266
  start-page: 664
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0100
  article-title: C3N monolayers as promising candidates for NO2 sensors
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2018.03.159
– volume: 6
  start-page: 5762
  issue: 11
  year: 2014
  ident: 10.1016/j.physleta.2020.127117_br0270
  article-title: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation
  publication-title: Nanoscale
  doi: 10.1039/C3NR06084E
– volume: 19
  start-page: 39
  issue: 1
  year: 2019
  ident: 10.1016/j.physleta.2020.127117_br0410
  article-title: Detecting decompositions of sulfur hexafluoride using MoS2 monolayer as gas sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2876637
– volume: 249
  year: 2020
  ident: 10.1016/j.physleta.2020.127117_br0380
  article-title: Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123006
– volume: 13
  start-page: 15159
  issue: 11
  year: 2013
  ident: 10.1016/j.physleta.2020.127117_br0040
  article-title: Theoretical calculation of the gas-sensing properties of Pt-decorated carbon nanotubes
  publication-title: Sensors
  doi: 10.3390/s131115159
– volume: 89
  issue: 6
  year: 2014
  ident: 10.1016/j.physleta.2020.127117_br0020
  article-title: A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/89/6/065803
– volume: 455
  start-page: 484
  year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0530
  article-title: Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.208
– year: 2018
  ident: 10.1016/j.physleta.2020.127117_br0550
  article-title: Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2801865
– volume: 221
  start-page: 1170
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0030
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B, Chem.
  doi: 10.1016/j.snb.2015.07.070
– volume: 9
  start-page: 11509
  issue: 12
  year: 2015
  ident: 10.1016/j.physleta.2020.127117_br0130
  article-title: Recent advances in two-dimensional materials beyond graphene
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05556
SSID ssj0001609
Score 2.58398
Snippet •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127117
SubjectTerms DFT method
MoTe2 monolayer
NO2 gas sensors
TM doping
Title Adsorption and sensing performances of transition metal (Pd, Pt, Ag and Au) doped MoTe2 monolayer upon NO2: A DFT study
URI https://dx.doi.org/10.1016/j.physleta.2020.127117
Volume 391
WOSCitedRecordID wos000612184400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6FFiReKk61HNU88ABKXeJdn32zoBWgEoIwKG-Wd22jVpEdJXbbn8FP7uzho1BR-sCLFa0062O-zH4zmoOQVzygxcSxheXg8W85nIVWmnnCkuOOFIWdqOTxH8f-dBrM5-FsNPrV1sKcLfyyDC4uwuV_VTWuobJl6ewt1N1tigv4G5WOV1Q7Xv9J8VG2rlbaEKiguMxQlxXnfYWAyt6o5SGl8rXkFGlUFFLNmSaVuhOBrl2MGhk3yKolEtPPVZzTMb4IusPI1MfNEoWnX6iubn9_FA-a1Rq-qxJMxXq8UFVD6_0-dHp80ijz33To_KbmCyN6zGEql9TK1yYtF1W_akRjI2piFlQnbbkD08Z810LfyR7aYabHdhlLalPf1lWdfxh5HW843ZexH3x82T2KyjYZrcDVrtq_nXZdDmKb3naatPskcp9E73OHbFLfDdFObkYfD-efutPd9nTaUPsGg6rz65_oesIzIDHxA7JlvA-INGoeklFePiL3jJIek_MeO4DKB4MdGGIHqgJ67IDCDryeZXswq_cg-qkEo-YNKMyAwgx0mAGJGUDMHEAEiBhQiHlCvh8dxu8-WGYyhyWYH9SWx3PbyRyO_NFxc88JGfeow2maIr0J8onH0YsoqCh4ERZ2HjBkBC5l-Ok8ljJfsKdko6zKfJsA9TPqCeTJAj1bxwt4mBapzzIu0DXAe-wQt_18iTBt6-X0lEXydwXukLed3FI3brlRImy1kxj6qWllgsC7QfbZre_2nNzv_xkvyEa9avKX5K44q0_Wq12DuksA-6Sp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+sensing+performances+of+transition+metal+%28Pd%2C+Pt%2C+Ag+and+Au%29+doped+MoTe2+monolayer+upon+NO2%3A+A+DFT+study&rft.jtitle=Physics+letters.+A&rft.au=Liu%2C+Yun&rft.au=Shi%2C+Ting&rft.au=Si%2C+Quanlong&rft.au=Liu%2C+Tun&rft.date=2021-03-05&rft.issn=0375-9601&rft.volume=391&rft.spage=127117&rft_id=info:doi/10.1016%2Fj.physleta.2020.127117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2020_127117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon