Adsorption and sensing performances of transition metal (Pd, Pt, Ag and Au) doped MoTe2 monolayer upon NO2: A DFT study
•Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism. Usi...
Gespeichert in:
| Veröffentlicht in: | Physics letters. A Jg. 391; S. 127117 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
05.03.2021
|
| Schlagworte: | |
| ISSN: | 0375-9601, 1873-2429 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism.
Using density functional theory (DFT), the Pd, Pt, Ag and Au dopants are selected as the representatives to study the transition metal (TM)-doping behavior on the pristine MoTe2 monolayer and related NO2 sensing behavior. It is found that Pd and Pt adatoms prefer to be trapped through the TMo site, while Ag and Au dopants prefer to the TH site. The NO2 molecule behaves as electron-acceptor withdrawing charges from the TM-MoTe2 monolayer, based on the Hirshfeld analysis, and NO2 adsorption causes p-doping for Pd- and Pt-doped MoTe2 monolayer, and causes n-doping for Ag- and Au-doped MoTe2 monolayer, which decreases the bandgaps in the former two systems and increase the bandgaps in the latter two systems. Our calculations not only give an insight into the physicochemical property of TM-MoTe2 monolayer, but also elucidate their promising potential as novel NO2 sensors. |
|---|---|
| AbstractList | •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are considered to understand the charge-transfer behavior.•DOS, BS and FMO are used to understand the electronic behavior and sensing mechanism.
Using density functional theory (DFT), the Pd, Pt, Ag and Au dopants are selected as the representatives to study the transition metal (TM)-doping behavior on the pristine MoTe2 monolayer and related NO2 sensing behavior. It is found that Pd and Pt adatoms prefer to be trapped through the TMo site, while Ag and Au dopants prefer to the TH site. The NO2 molecule behaves as electron-acceptor withdrawing charges from the TM-MoTe2 monolayer, based on the Hirshfeld analysis, and NO2 adsorption causes p-doping for Pd- and Pt-doped MoTe2 monolayer, and causes n-doping for Ag- and Au-doped MoTe2 monolayer, which decreases the bandgaps in the former two systems and increase the bandgaps in the latter two systems. Our calculations not only give an insight into the physicochemical property of TM-MoTe2 monolayer, but also elucidate their promising potential as novel NO2 sensors. |
| ArticleNumber | 127117 |
| Author | Liu, Tun Liu, Yun Si, Quanlong Shi, Ting |
| Author_xml | – sequence: 1 givenname: Yun surname: Liu fullname: Liu, Yun organization: College of Artificial Intelligence, Southwest University, Chongqing 400715, China – sequence: 2 givenname: Ting surname: Shi fullname: Shi, Ting organization: Institute of Railway Telecommunications, Hunan Technical College of Railway High-Speed, Hengyang 421002, China – sequence: 3 givenname: Quanlong surname: Si fullname: Si, Quanlong organization: Institute of Railway Mechatronics, Hunan Technical College of Railway High-Speed, Hengyang 421002, China – sequence: 4 givenname: Tun surname: Liu fullname: Liu, Tun email: liutuncsu@csu.edu.cn organization: School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China |
| BookMark | eNqFkE1PwkAQhjdGEwH9C2aPmlDcj9IP48EGRU1QOOB5s-1OcUnpNrtF03_vAnrxwmmSmXlm8j59dFqbGhC6omRECY1u16Pms3MVtHLECPNNFlMan6AeTWIesJClp6hHeDwO0ojQc9R3bk2IJ0naQ9-ZcsY2rTY1lrXCDmqn6xVuwJbGbmRdgMOmxK2VfrBf2_hPFb5eqCFetEOcrfZgtr3ByjSg8JtZAsMbU5tKdmDxtvHQ-5zd4Qw_TpfYtVvVXaCzUlYOLn_rAH1Mn5aTl2A2f36dZLOg4HHSBlEONFRhThIWjiEKU55HLMyZlD5WAiTKx5yXrCjzMi0pJBxyOmbcR4u45HHBByg63C2scc5CKRqrN9J2ghKx0yfW4k-f2OkTB30evP8HFrqVOwFeha6O4w8HHHy4Lw1WuEKDt6m0haIVyuhjJ34ALA2RsQ |
| CitedBy_id | crossref_primary_10_1016_j_actamat_2024_119951 crossref_primary_10_1016_j_surfin_2022_102111 crossref_primary_10_1007_s11224_024_02396_0 crossref_primary_10_1016_j_apsusc_2022_153167 crossref_primary_10_1016_j_cplett_2023_140821 crossref_primary_10_3389_fchem_2022_950974 crossref_primary_10_1155_2021_3264737 crossref_primary_10_1016_j_comptc_2024_114586 crossref_primary_10_1016_j_surfin_2022_101816 crossref_primary_10_1016_j_inoche_2023_111928 crossref_primary_10_1016_j_susmat_2023_e00776 crossref_primary_10_3389_fnano_2025_1623625 crossref_primary_10_1016_j_comptc_2023_114149 crossref_primary_10_3390_app132312559 crossref_primary_10_1016_j_mssp_2024_108848 crossref_primary_10_1016_j_mssp_2025_109318 crossref_primary_10_1016_j_jallcom_2022_166355 crossref_primary_10_1002_bio_70273 crossref_primary_10_1016_j_seppur_2023_126182 crossref_primary_10_1016_j_teac_2023_e00215 crossref_primary_10_1002_pssa_202400633 crossref_primary_10_1016_j_colsurfa_2025_137289 crossref_primary_10_1016_j_nxmate_2024_100418 crossref_primary_10_1007_s00894_022_05195_8 crossref_primary_10_1016_j_susc_2021_121964 crossref_primary_10_1002_adts_202100611 crossref_primary_10_1016_j_colsurfa_2025_137846 crossref_primary_10_1002_pssb_202200070 crossref_primary_10_1016_j_apsusc_2023_157525 crossref_primary_10_1088_1361_6528_ac800f crossref_primary_10_1016_j_diamond_2023_110560 crossref_primary_10_1016_j_cplett_2022_139977 crossref_primary_10_1109_JSEN_2024_3387912 crossref_primary_10_1016_j_surfin_2025_106579 crossref_primary_10_1016_j_surfin_2022_101883 crossref_primary_10_1007_s13204_022_02567_7 crossref_primary_10_3390_molecules27103176 crossref_primary_10_1016_j_cej_2023_145480 crossref_primary_10_1140_epjb_s10051_025_00948_9 crossref_primary_10_1016_j_comptc_2022_113796 crossref_primary_10_1080_00268976_2025_2518074 crossref_primary_10_1016_j_sna_2023_114673 crossref_primary_10_1109_JSEN_2024_3360965 crossref_primary_10_1016_j_molliq_2024_125648 crossref_primary_10_3390_chemosensors10070279 crossref_primary_10_1002_pssr_202300367 crossref_primary_10_1016_j_cej_2022_137156 crossref_primary_10_3390_cryst12050662 crossref_primary_10_1016_j_physe_2022_115568 crossref_primary_10_1016_j_sna_2024_115062 crossref_primary_10_1002_ppsc_202400156 crossref_primary_10_1016_j_comptc_2024_114716 crossref_primary_10_1016_j_surfin_2024_105097 crossref_primary_10_1016_j_comptc_2024_114757 crossref_primary_10_1016_j_mtchem_2022_101069 crossref_primary_10_1016_j_susc_2021_121981 crossref_primary_10_1016_j_jece_2025_117095 |
| Cites_doi | 10.1039/C8NA00233A 10.1109/JSEN.2019.2899966 10.1016/j.apsusc.2019.07.218 10.1016/j.snb.2018.06.044 10.1103/PhysRevB.69.075414 10.1063/1.3213194 10.1016/j.commatsci.2017.06.029 10.1016/j.snb.2017.06.063 10.1016/j.apsusc.2020.147242 10.1016/j.apsusc.2017.01.264 10.1016/j.apsusc.2018.05.116 10.1016/j.snb.2015.12.075 10.1109/LED.2018.2859258 10.1039/D0TC00549E 10.1016/j.apsusc.2020.145863 10.1016/j.apsusc.2018.03.232 10.1021/jp4055445 10.1039/C7CP04021K 10.1016/j.apsusc.2018.04.157 10.1016/j.apsusc.2016.04.171 10.1063/1.1316015 10.1021/nl502557g 10.1186/1556-276X-8-425 10.1109/TED.2018.2882236 10.1016/j.snb.2017.03.108 10.1016/j.snb.2017.07.173 10.1021/cr500567r 10.1103/PhysRevB.66.155125 10.1088/2053-1583/aa57fe 10.1016/j.physe.2019.113877 10.1016/j.apsusc.2020.145759 10.1016/j.apsusc.2018.09.096 10.1016/j.apsusc.2018.11.230 10.1002/advs.201500101 10.1039/C7TA07001B 10.1021/acsnano.5b04343 10.1039/c1cp21159e 10.1039/c2nr31077e 10.1049/hve.2019.0130 10.1021/acs.jpcc.5b05770 10.1016/j.apsusc.2015.12.142 10.1021/acssensors.9b01044 10.1016/j.snb.2018.03.159 10.1039/C3NR06084E 10.1109/JSEN.2018.2876637 10.1016/j.matchemphys.2020.123006 10.3390/s131115159 10.1088/0031-8949/89/6/065803 10.1016/j.apsusc.2018.05.208 10.1109/JSEN.2018.2801865 10.1016/j.snb.2015.07.070 10.1021/acsnano.5b05556 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.physleta.2020.127117 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2429 |
| ExternalDocumentID | 10_1016_j_physleta_2020_127117 S0375960120309841 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ 9DU A6W AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HMV HVGLF HZ~ K-O MVM NDZJH R2- SEW WUQ XOL YYP ZCG ~HD |
| ID | FETCH-LOGICAL-c378t-6be14d4b08245e6493b624b2aa4298e06b533f2cfbf9f1e83eb152360963a37c3 |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612184400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0375-9601 |
| IngestDate | Tue Nov 18 22:23:46 EST 2025 Sat Nov 29 07:20:23 EST 2025 Fri Feb 23 02:48:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MoTe2 monolayer DFT method TM doping NO2 gas sensors |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-6be14d4b08245e6493b624b2aa4298e06b533f2cfbf9f1e83eb152360963a37c3 |
| ParticipantIDs | crossref_primary_10_1016_j_physleta_2020_127117 crossref_citationtrail_10_1016_j_physleta_2020_127117 elsevier_sciencedirect_doi_10_1016_j_physleta_2020_127117 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-05 |
| PublicationDateYYYYMMDD | 2021-03-05 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Physics letters. A |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sun, Yang, Meng, Tan, Liang, Jiang, Ye, Chen (br0500) 2017; 404 Cui, Liu, Zhang, Zhang (br0080) 2019; 19 Cui, Zhang, Zhang, Zhang (br0180) 2019; 4 Giovanni, Poh, Ambrosi, Zhao, Sofer, Šaněk, Khezri, Webster, Pumera (br0520) 2012; 4 Chen, Zhang, Tang, Cui, Li, Zhang, Yang (br0480) 2019; 465 Chen, Zhang, Tang, Cui, Cui, Pi (br0370) 2018; 39 Panigrahi, Hussain, Karton, Ahuja (br0400) 2019; 4 Yang, Cao, You, Shi, Qian (br0150) 2020; 118 Yuwen, Xu, Xue, Luo, Zhang, Bao, Su, Weng, Huang, Wang (br0270) 2014; 6 Wang, Wang, Yang, Chu, Lv, Liu, Rong (br0250) 2017 Bhimanapati, Lin, Meunier, Jung, Cha, Das, Xiao, Son, Strano, Cooper (br0130) 2015; 9 Shi, Yang, Cao, You, Zhang, Qi, Zhang, Qian (br0120) 2020; 8 Chatterjee, Chatterjee, Ray, Chakraborty (br0030) 2015; 221 Cui, Zhang, Li, Chen, Zhang (br0090) 2019; 494 Zhang, Dai, Wei, Liang, Wu (br0040) 2013; 13 Cui, Jia, Peng, Li (br0380) 2020; 249 Wu, Yin, Li, Cheng, Huang (br0390) 2017; 19 Dong, Cho, Kim, Choe, Sung, Kan, Kang, Hwang, Kim, Yang (br0460) 2015; 11 Lin, Ye, Johnson, Hua (br0290) 2013; 117 Cui, Zhang, Zhang, Tang (br0050) 2019; 2019 Ma, Dai, Guo, Niu, Lu, Huang (br0220) 2011; 13 Guo, Zhang, Wu, Liu, Zhou (br0430) 2018; 455 Delley (br0330) 2000; 113 Cui, Chen, Zhang, Zhang (br0210) 2019; 20 Ma, Ju, Li, Zhang, He, Ma, Tang, Lu, Yang (br0450) 2016; 364 Chen, Zhang, Tang, Li, Cui, Zhou (br0060) 2019; 66 Ma, Ju, Li, Zhang, He, Ma, Lu, Yang (br0260) 2016; 383 Zhang, Dai, Chen, Tang (br0020) 2014; 89 Cui, Jia, Peng (br0170) 2020; 513 Cui, Zhang, Zhang, Tang (br0140) 2019; 470 Ruppert, Aslan, Heinz (br0470) 2014; 14 Cui, Zhang, Chen, Tang (br0340) 2018; 447 Ou, Ge, Carey, Daeneke, Rotbart, Shan, Wang, Fu, Chrimes, Wlodarski (br0160) 2015; 9 Feng, Xie, Chen, Yu, Zheng, Zhang, Li, Chen, Sun, Zhang (br0240) 2017; 4 Delley (br0350) 2002; 66 Su, Ao, Ji, Li, An (br0440) 2018; 450 Zhou, Lee, Xu, Yoon (br0010) 2015; 115 Zhang, Yu, Wu, Hu (br0070) 2015; 2 Tkatchenko, Ra, Head-Gordon, Scheffler (br0360) 2009; 131 Chen, Tang, Zhang, Li, Liu (br0410) 2019; 19 Cui, Yan, Jia, Cao (br0110) 2020; 512 Jing, Ao, Teng, Wang, Yi, An (br0420) 2018; 16 Zhang, Jiang, Wu (br0310) 2018; 273 Ma, Zhang, Li, He, Lu, Lu, Yang, Wang (br0100) 2018; 266 Islam, Hussain, Rao, Panigrahi, Ahuja (br0540) 2016; 228 Fan, Zhang, Qiu, Zhu, Zhang, Hu (br0510) 2017; 138 Zhang, Sun, Jiang, Yao, Wang, Zhang (br0320) 2017; 253 Guo, Chen, Wu, Liu, Zhou (br0530) 2018; 455 Yagi, Briere, Sluiter, Kumar, Farajian, Kawazoe (br0280) 2004; 69 Zhang, Chang, Sun, Jiang, Yao, Zhang (br0300) 2017; 252 Qu, Shao, Chang, Li (br0490) 2013; 8 Sharma, Anu, Khan, Husain, Khan, Srivastava (br0550) 2018 Zhang, Jiang, Liu, Cao (br0190) 2017; 247 Cui, Zhu, Jia (br0560) 2020; 530 Zhang, Wu, Li, Cao (br0200) 2017; 5 Zhou, Reed (br0230) 2015; 119 Zhang (10.1016/j.physleta.2020.127117_br0300) 2017; 252 Cui (10.1016/j.physleta.2020.127117_br0080) 2019; 19 Chen (10.1016/j.physleta.2020.127117_br0060) 2019; 66 Zhang (10.1016/j.physleta.2020.127117_br0320) 2017; 253 Ma (10.1016/j.physleta.2020.127117_br0260) 2016; 383 Guo (10.1016/j.physleta.2020.127117_br0530) 2018; 455 Cui (10.1016/j.physleta.2020.127117_br0110) 2020; 512 Chen (10.1016/j.physleta.2020.127117_br0410) 2019; 19 Ma (10.1016/j.physleta.2020.127117_br0220) 2011; 13 Cui (10.1016/j.physleta.2020.127117_br0380) 2020; 249 Qu (10.1016/j.physleta.2020.127117_br0490) 2013; 8 Wang (10.1016/j.physleta.2020.127117_br0250) 2017 Delley (10.1016/j.physleta.2020.127117_br0350) 2002; 66 Panigrahi (10.1016/j.physleta.2020.127117_br0400) 2019; 4 Islam (10.1016/j.physleta.2020.127117_br0540) 2016; 228 Su (10.1016/j.physleta.2020.127117_br0440) 2018; 450 Cui (10.1016/j.physleta.2020.127117_br0560) 2020; 530 Sun (10.1016/j.physleta.2020.127117_br0500) 2017; 404 Delley (10.1016/j.physleta.2020.127117_br0330) 2000; 113 Zhang (10.1016/j.physleta.2020.127117_br0020) 2014; 89 Yuwen (10.1016/j.physleta.2020.127117_br0270) 2014; 6 Bhimanapati (10.1016/j.physleta.2020.127117_br0130) 2015; 9 Lin (10.1016/j.physleta.2020.127117_br0290) 2013; 117 Cui (10.1016/j.physleta.2020.127117_br0140) 2019; 470 Wu (10.1016/j.physleta.2020.127117_br0390) 2017; 19 Zhang (10.1016/j.physleta.2020.127117_br0040) 2013; 13 Yang (10.1016/j.physleta.2020.127117_br0150) 2020; 118 Chatterjee (10.1016/j.physleta.2020.127117_br0030) 2015; 221 Cui (10.1016/j.physleta.2020.127117_br0050) 2019; 2019 Cui (10.1016/j.physleta.2020.127117_br0090) 2019; 494 Sharma (10.1016/j.physleta.2020.127117_br0550) 2018 Ou (10.1016/j.physleta.2020.127117_br0160) 2015; 9 Guo (10.1016/j.physleta.2020.127117_br0430) 2018; 455 Shi (10.1016/j.physleta.2020.127117_br0120) 2020; 8 Zhang (10.1016/j.physleta.2020.127117_br0190) 2017; 247 Jing (10.1016/j.physleta.2020.127117_br0420) 2018; 16 Zhou (10.1016/j.physleta.2020.127117_br0010) 2015; 115 Ma (10.1016/j.physleta.2020.127117_br0450) 2016; 364 Cui (10.1016/j.physleta.2020.127117_br0210) 2019; 20 Dong (10.1016/j.physleta.2020.127117_br0460) 2015; 11 Chen (10.1016/j.physleta.2020.127117_br0370) 2018; 39 Feng (10.1016/j.physleta.2020.127117_br0240) 2017; 4 Zhang (10.1016/j.physleta.2020.127117_br0070) 2015; 2 Zhou (10.1016/j.physleta.2020.127117_br0230) 2015; 119 Tkatchenko (10.1016/j.physleta.2020.127117_br0360) 2009; 131 Chen (10.1016/j.physleta.2020.127117_br0480) 2019; 465 Fan (10.1016/j.physleta.2020.127117_br0510) 2017; 138 Cui (10.1016/j.physleta.2020.127117_br0180) 2019; 4 Giovanni (10.1016/j.physleta.2020.127117_br0520) 2012; 4 Zhang (10.1016/j.physleta.2020.127117_br0310) 2018; 273 Ma (10.1016/j.physleta.2020.127117_br0100) 2018; 266 Zhang (10.1016/j.physleta.2020.127117_br0200) 2017; 5 Yagi (10.1016/j.physleta.2020.127117_br0280) 2004; 69 Cui (10.1016/j.physleta.2020.127117_br0340) 2018; 447 Ruppert (10.1016/j.physleta.2020.127117_br0470) 2014; 14 Cui (10.1016/j.physleta.2020.127117_br0170) 2020; 513 |
| References_xml | – volume: 115 start-page: 7944 year: 2015 end-page: 8000 ident: br0010 article-title: Recent progress on the development of chemosensors for gases publication-title: Chem. Rev. – volume: 530 year: 2020 ident: br0560 article-title: Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: a first-principles study publication-title: Appl. Surf. Sci. – volume: 19 start-page: 5249 year: 2019 end-page: 5255 ident: br0080 article-title: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory publication-title: IEEE Sens. J. – volume: 455 start-page: 106 year: 2018 end-page: 114 ident: br0430 article-title: Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study publication-title: Appl. Surf. Sci. – volume: 8 start-page: 425 year: 2013 ident: br0490 article-title: Adsorption of gas molecules on monolayer MoS2 and effect of applied; electric field publication-title: Nanoscale Res. Lett. – volume: 4 start-page: 242 year: 2019 end-page: 258 ident: br0180 article-title: Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices publication-title: High Volt. – volume: 273 start-page: 176 year: 2018 end-page: 184 ident: br0310 article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing publication-title: Sens. Actuators B, Chem. – volume: 66 year: 2002 ident: br0350 article-title: Hardness conserving semilocal pseudopotentials publication-title: Phys. Rev. B, Condens. Matter – volume: 247 start-page: 875 year: 2017 end-page: 882 ident: br0190 article-title: Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly publication-title: Sens. Actuators B, Chem. – volume: 5 start-page: 20666 year: 2017 end-page: 20677 ident: br0200 article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation publication-title: J. Mater. Chem. A – volume: 253 year: 2017 ident: br0320 article-title: Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties publication-title: Sens. Actuators B, Chem. – volume: 470 start-page: 1035 year: 2019 end-page: 1042 ident: br0140 article-title: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method publication-title: Appl. Surf. Sci. – volume: 11 year: 2015 ident: br0460 article-title: Bandgap opening in few-layered monoclinic MoTe2 publication-title: Nat. Phys. – volume: 14 start-page: 6231 year: 2014 ident: br0470 article-title: Optical properties and band gap of single- and few-layer MoTe2 crystals publication-title: Nano Lett. – volume: 16 year: 2018 ident: br0420 article-title: Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications publication-title: Sustainable Mater. Technol. – volume: 221 start-page: 1170 year: 2015 end-page: 1181 ident: br0030 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B, Chem. – volume: 249 year: 2020 ident: br0380 article-title: Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study publication-title: Mater. Chem. Phys. – volume: 13 start-page: 15159 year: 2013 end-page: 15171 ident: br0040 article-title: Theoretical calculation of the gas-sensing properties of Pt-decorated carbon nanotubes publication-title: Sensors – volume: 119 year: 2015 ident: br0230 article-title: Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules publication-title: J. Phys. Chem. C – volume: 455 start-page: 484 year: 2018 end-page: 491 ident: br0530 article-title: Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded publication-title: Appl. Surf. Sci. – volume: 8 year: 2020 ident: br0120 article-title: Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations publication-title: J. Mater. Chem. C – volume: 117 start-page: 17319 year: 2013 end-page: 17326 ident: br0290 article-title: First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation publication-title: J. Phys. Chem. C – volume: 494 start-page: 859 year: 2019 end-page: 866 ident: br0090 article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger publication-title: Appl. Surf. Sci. – volume: 4 year: 2017 ident: br0240 article-title: Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing publication-title: 2D Mater. – volume: 19 start-page: 39 year: 2019 end-page: 46 ident: br0410 article-title: Detecting decompositions of sulfur hexafluoride using MoS2 monolayer as gas sensor publication-title: IEEE Sens. J. – volume: 4 start-page: 5002 year: 2012 end-page: 5008 ident: br0520 article-title: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis publication-title: Nanoscale – volume: 512 year: 2020 ident: br0110 article-title: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study publication-title: Appl. Surf. Sci. – volume: 404 start-page: 291 year: 2017 end-page: 299 ident: br0500 article-title: Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study publication-title: Appl. Surf. Sci. – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: br0330 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. – volume: 2 start-page: 612 year: 2015 ident: br0070 article-title: Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene publication-title: Adv. Sci. – volume: 9 start-page: 11509 year: 2015 end-page: 11539 ident: br0130 article-title: Recent advances in two-dimensional materials beyond graphene publication-title: ACS Nano – volume: 131 start-page: 171 year: 2009 ident: br0360 article-title: Dispersion-corrected Møller-Plesset second-order perturbation theory publication-title: J. Chem. Phys. – volume: 6 start-page: 5762 year: 2014 end-page: 5769 ident: br0270 article-title: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation publication-title: Nanoscale – year: 2017 ident: br0250 article-title: MoTe2: a promising candidate for SF6 decomposition gas sensors with high sensitivity and selectivity publication-title: IEEE Electron Device Lett. – volume: 39 start-page: 1405 year: 2018 end-page: 1408 ident: br0370 article-title: Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions publication-title: IEEE Electron Device Lett. – volume: 13 year: 2011 ident: br0220 article-title: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers publication-title: PCCP, Phys. Chem. Chem. Phys. – volume: 465 start-page: 93 year: 2019 end-page: 102 ident: br0480 article-title: Density functional theory study of small Ag cluster adsorbed on graphyne publication-title: Appl. Surf. Sci. – volume: 66 start-page: 689 year: 2019 end-page: 695 ident: br0060 article-title: Using single-layer HfS2 as prospective sensing device toward typical partial discharge gas in SF6-based gas-insulated switchgear publication-title: IEEE Trans. Electron Devices – volume: 118 year: 2020 ident: br0150 article-title: Intrinsic carrier mobility of monolayer GeS and GeSe: first-principles calculation publication-title: Physica E, Low-Dimens. Syst. Nanostruct. – volume: 266 start-page: 664 year: 2018 end-page: 673 ident: br0100 article-title: C3N monolayers as promising candidates for NO2 sensors publication-title: Sens. Actuators B, Chem. – volume: 364 start-page: 181 year: 2016 end-page: 189 ident: br0450 article-title: Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals publication-title: Appl. Surf. Sci. – volume: 383 start-page: 98 year: 2016 end-page: 105 ident: br0260 article-title: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study publication-title: Appl. Surf. Sci. – volume: 450 start-page: 484 year: 2018 end-page: 491 ident: br0440 article-title: Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation publication-title: Appl. Surf. Sci. – year: 2018 ident: br0550 article-title: Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study publication-title: IEEE Sens. J. – volume: 228 start-page: 317 year: 2016 end-page: 321 ident: br0540 article-title: Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants publication-title: Sens. Actuators B, Chem. – volume: 69 year: 2004 ident: br0280 article-title: Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study publication-title: Phys. Rev. B – volume: 2019 start-page: 772 year: 2019 end-page: 780 ident: br0050 article-title: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study publication-title: Nanoscale Adv. – volume: 89 year: 2014 ident: br0020 article-title: A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes publication-title: Phys. Scr. – volume: 138 start-page: 255 year: 2017 end-page: 266 ident: br0510 article-title: A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption publication-title: Comput. Mater. Sci. – volume: 252 start-page: 624 year: 2017 end-page: 632 ident: br0300 article-title: Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature publication-title: Sens. Actuators B, Chem. – volume: 447 start-page: 594 year: 2018 end-page: 598 ident: br0340 article-title: Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study publication-title: Appl. Surf. Sci. – volume: 19 year: 2017 ident: br0390 article-title: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study publication-title: Phys. Chem. Chem. Phys. – volume: 20 year: 2019 ident: br0210 article-title: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory publication-title: Sustainable Mater. Technol. – volume: 4 start-page: 2646 year: 2019 end-page: 2653 ident: br0400 article-title: Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): implications for enhanced gas sensing publication-title: ACS Sensors – volume: 513 year: 2020 ident: br0170 article-title: Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study publication-title: Appl. Surf. Sci. – volume: 9 year: 2015 ident: br0160 article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing publication-title: ACS Nano – volume: 2019 start-page: 772 issue: 1 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0050 article-title: Rh-doped MoSe2 as toxic gas scavenger: a first-principles study publication-title: Nanoscale Adv. doi: 10.1039/C8NA00233A – volume: 19 start-page: 5249 issue: 13 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0080 article-title: Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2899966 – volume: 494 start-page: 859 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0090 article-title: First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.218 – volume: 273 start-page: 176 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0310 article-title: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2018.06.044 – volume: 69 issue: 7 year: 2004 ident: 10.1016/j.physleta.2020.127117_br0280 article-title: Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.075414 – volume: 131 start-page: 171 issue: 9 year: 2009 ident: 10.1016/j.physleta.2020.127117_br0360 article-title: Dispersion-corrected Møller-Plesset second-order perturbation theory publication-title: J. Chem. Phys. doi: 10.1063/1.3213194 – volume: 138 start-page: 255 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0510 article-title: A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.06.029 – volume: 20 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0210 article-title: Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory publication-title: Sustainable Mater. Technol. – volume: 252 start-page: 624 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0300 article-title: Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2017.06.063 – volume: 530 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0560 article-title: Adsorption and sensing of SO2 and SOF2 molecule by Pt-doped HfSe2 monolayer: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147242 – volume: 404 start-page: 291 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0500 article-title: Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.01.264 – volume: 455 start-page: 106 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0430 article-title: Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.116 – volume: 228 start-page: 317 year: 2016 ident: 10.1016/j.physleta.2020.127117_br0540 article-title: Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2015.12.075 – volume: 39 start-page: 1405 issue: 9 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0370 article-title: Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2859258 – volume: 8 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0120 article-title: Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00549E – volume: 513 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0170 article-title: Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145863 – volume: 447 start-page: 594 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0340 article-title: Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.232 – volume: 117 start-page: 17319 issue: 33 year: 2013 ident: 10.1016/j.physleta.2020.127117_br0290 article-title: First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation publication-title: J. Phys. Chem. C doi: 10.1021/jp4055445 – volume: 16 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0420 article-title: Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications publication-title: Sustainable Mater. Technol. – volume: 19 issue: 31 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0390 article-title: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP04021K – volume: 450 start-page: 484 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0440 article-title: Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: a DFT investigation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.157 – volume: 383 start-page: 98 year: 2016 ident: 10.1016/j.physleta.2020.127117_br0260 article-title: The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.171 – volume: 113 start-page: 7756 issue: 18 year: 2000 ident: 10.1016/j.physleta.2020.127117_br0330 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 14 start-page: 6231 issue: 11 year: 2014 ident: 10.1016/j.physleta.2020.127117_br0470 article-title: Optical properties and band gap of single- and few-layer MoTe2 crystals publication-title: Nano Lett. doi: 10.1021/nl502557g – volume: 8 start-page: 425 issue: 1 year: 2013 ident: 10.1016/j.physleta.2020.127117_br0490 article-title: Adsorption of gas molecules on monolayer MoS2 and effect of applied; electric field publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-425 – volume: 66 start-page: 689 issue: 1 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0060 article-title: Using single-layer HfS2 as prospective sensing device toward typical partial discharge gas in SF6-based gas-insulated switchgear publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2882236 – year: 2017 ident: 10.1016/j.physleta.2020.127117_br0250 article-title: MoTe2: a promising candidate for SF6 decomposition gas sensors with high sensitivity and selectivity publication-title: IEEE Electron Device Lett. – volume: 247 start-page: 875 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0190 article-title: Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2017.03.108 – volume: 253 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0320 article-title: Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2017.07.173 – volume: 115 start-page: 7944 issue: 15 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0010 article-title: Recent progress on the development of chemosensors for gases publication-title: Chem. Rev. doi: 10.1021/cr500567r – volume: 66 issue: 15 year: 2002 ident: 10.1016/j.physleta.2020.127117_br0350 article-title: Hardness conserving semilocal pseudopotentials publication-title: Phys. Rev. B, Condens. Matter doi: 10.1103/PhysRevB.66.155125 – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0240 article-title: Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing publication-title: 2D Mater. doi: 10.1088/2053-1583/aa57fe – volume: 118 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0150 article-title: Intrinsic carrier mobility of monolayer GeS and GeSe: first-principles calculation publication-title: Physica E, Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.113877 – volume: 512 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0110 article-title: Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145759 – volume: 465 start-page: 93 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0480 article-title: Density functional theory study of small Ag cluster adsorbed on graphyne publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.09.096 – volume: 470 start-page: 1035 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0140 article-title: Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.230 – volume: 2 start-page: 612 issue: 11 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0070 article-title: Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene publication-title: Adv. Sci. doi: 10.1002/advs.201500101 – volume: 5 start-page: 20666 issue: 39 year: 2017 ident: 10.1016/j.physleta.2020.127117_br0200 article-title: Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07001B – volume: 9 issue: 10 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0160 article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing publication-title: ACS Nano doi: 10.1021/acsnano.5b04343 – volume: 13 issue: 34 year: 2011 ident: 10.1016/j.physleta.2020.127117_br0220 article-title: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers publication-title: PCCP, Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21159e – volume: 4 start-page: 5002 issue: 16 year: 2012 ident: 10.1016/j.physleta.2020.127117_br0520 article-title: Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis publication-title: Nanoscale doi: 10.1039/c2nr31077e – volume: 4 start-page: 242 issue: 4 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0180 article-title: Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices publication-title: High Volt. doi: 10.1049/hve.2019.0130 – volume: 119 issue: 37 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0230 article-title: Structural phase stability control of monolayer MoTe2 with adsorbed atoms and molecules publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05770 – volume: 364 start-page: 181 year: 2016 ident: 10.1016/j.physleta.2020.127117_br0450 article-title: Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.142 – volume: 11 issue: 6 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0460 article-title: Bandgap opening in few-layered monoclinic MoTe2 publication-title: Nat. Phys. – volume: 4 start-page: 2646 issue: 10 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0400 article-title: Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): implications for enhanced gas sensing publication-title: ACS Sensors doi: 10.1021/acssensors.9b01044 – volume: 266 start-page: 664 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0100 article-title: C3N monolayers as promising candidates for NO2 sensors publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2018.03.159 – volume: 6 start-page: 5762 issue: 11 year: 2014 ident: 10.1016/j.physleta.2020.127117_br0270 article-title: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation publication-title: Nanoscale doi: 10.1039/C3NR06084E – volume: 19 start-page: 39 issue: 1 year: 2019 ident: 10.1016/j.physleta.2020.127117_br0410 article-title: Detecting decompositions of sulfur hexafluoride using MoS2 monolayer as gas sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2876637 – volume: 249 year: 2020 ident: 10.1016/j.physleta.2020.127117_br0380 article-title: Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123006 – volume: 13 start-page: 15159 issue: 11 year: 2013 ident: 10.1016/j.physleta.2020.127117_br0040 article-title: Theoretical calculation of the gas-sensing properties of Pt-decorated carbon nanotubes publication-title: Sensors doi: 10.3390/s131115159 – volume: 89 issue: 6 year: 2014 ident: 10.1016/j.physleta.2020.127117_br0020 article-title: A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes publication-title: Phys. Scr. doi: 10.1088/0031-8949/89/6/065803 – volume: 455 start-page: 484 year: 2018 ident: 10.1016/j.physleta.2020.127117_br0530 article-title: Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.208 – year: 2018 ident: 10.1016/j.physleta.2020.127117_br0550 article-title: Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2801865 – volume: 221 start-page: 1170 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0030 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B, Chem. doi: 10.1016/j.snb.2015.07.070 – volume: 9 start-page: 11509 issue: 12 year: 2015 ident: 10.1016/j.physleta.2020.127117_br0130 article-title: Recent advances in two-dimensional materials beyond graphene publication-title: ACS Nano doi: 10.1021/acsnano.5b05556 |
| SSID | ssj0001609 |
| Score | 2.58398 |
| Snippet | •Pt, Pd, Ag and Au-doping behaviors on MoTe2 monolayer is expounded.•Adsorption performance of TM-MoTe2 monolayer to NO2 is fully analyzed.•DCD and EDD are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127117 |
| SubjectTerms | DFT method MoTe2 monolayer NO2 gas sensors TM doping |
| Title | Adsorption and sensing performances of transition metal (Pd, Pt, Ag and Au) doped MoTe2 monolayer upon NO2: A DFT study |
| URI | https://dx.doi.org/10.1016/j.physleta.2020.127117 |
| Volume | 391 |
| WOSCitedRecordID | wos000612184400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: AIEXJ dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6FFiReKk61HNU88ABKXeJdn32zoBWgEoIwKG-Wd22jVpEdJXbbn8FP7uzho1BR-sCLFa0062O-zH4zmoOQVzygxcSxheXg8W85nIVWmnnCkuOOFIWdqOTxH8f-dBrM5-FsNPrV1sKcLfyyDC4uwuV_VTWuobJl6ewt1N1tigv4G5WOV1Q7Xv9J8VG2rlbaEKiguMxQlxXnfYWAyt6o5SGl8rXkFGlUFFLNmSaVuhOBrl2MGhk3yKolEtPPVZzTMb4IusPI1MfNEoWnX6iubn9_FA-a1Rq-qxJMxXq8UFVD6_0-dHp80ijz33To_KbmCyN6zGEql9TK1yYtF1W_akRjI2piFlQnbbkD08Z810LfyR7aYabHdhlLalPf1lWdfxh5HW843ZexH3x82T2KyjYZrcDVrtq_nXZdDmKb3naatPskcp9E73OHbFLfDdFObkYfD-efutPd9nTaUPsGg6rz65_oesIzIDHxA7JlvA-INGoeklFePiL3jJIek_MeO4DKB4MdGGIHqgJ67IDCDryeZXswq_cg-qkEo-YNKMyAwgx0mAGJGUDMHEAEiBhQiHlCvh8dxu8-WGYyhyWYH9SWx3PbyRyO_NFxc88JGfeow2maIr0J8onH0YsoqCh4ERZ2HjBkBC5l-Ok8ljJfsKdko6zKfJsA9TPqCeTJAj1bxwt4mBapzzIu0DXAe-wQt_18iTBt6-X0lEXydwXukLed3FI3brlRImy1kxj6qWllgsC7QfbZre_2nNzv_xkvyEa9avKX5K44q0_Wq12DuksA-6Sp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+sensing+performances+of+transition+metal+%28Pd%2C+Pt%2C+Ag+and+Au%29+doped+MoTe2+monolayer+upon+NO2%3A+A+DFT+study&rft.jtitle=Physics+letters.+A&rft.au=Liu%2C+Yun&rft.au=Shi%2C+Ting&rft.au=Si%2C+Quanlong&rft.au=Liu%2C+Tun&rft.date=2021-03-05&rft.issn=0375-9601&rft.volume=391&rft.spage=127117&rft_id=info:doi/10.1016%2Fj.physleta.2020.127117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2020_127117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |